A generic modelling to capture the temporal evolution in graphs

Authors: Landy ANDRIAMAMPIANINA, Franck RAVAT, Jiefu SONG, Nathalie VALLES-PARLANGEAU

Presentation by: Landy ANDRIAMAMPIANINA

BUSINESS ISSUES:

GENERAL CONTEXT

- Goal of companies: *continually evolve* and *change* business processes.
- How? use *interconnected* and *time-evolving* data.

GRAPH MODELLING:

TEMPORAL GRAPH

Temporal graphs deal with two evolution types (Zaki et al., 2016): <u>Evolution of graph topology</u>

GENERAL CONTEXT

Temporal graphs deal with two evolution types (Zaki et al., 2016):
 <u>Evolution of graph data</u>

GENERAL CONTEXT

1) Snapshots: retrieval complexity and data redundancy

(Borgwardt et al., 2006) (Chan et al., 2008) (Fard et al., 2012) (Khurana and Deshpande, 2013).

• Limits of existing works:

GENERAL CONTEXT

2) no evolution of graph structure

- Limits of existing works:
- 3) 1 temporal graph model = 1 specific domain

 Research question: How to model temporal graph to integrate any temporal evolution types?

Change in graph structure

PRODUCT

id = PX12 name = Bike components = 45XS, W1S $validity_time =$ [T1, T2[

id = PX12 name = Bike $production_place =$ China $validity_time =$ [T2, now]

GENERAL CONTEXT

Temporal graph

Translation rules

Logical level

Our model concepts Property graph concepts an entity state $S_i^{E_i}$ a node a relationship state $S_{\downarrow}^{R_i}$ an edge an entity type Yi a label tagged on a node a relationship type Z_i a label tagged on an edge an entity identifier id_{E_i} a property a set of entity type attributes A_{Y} . a set of properties a set of relationship type attributes A_{Z} . a set of properties a validity time of an entity state $T_{\sigma^{E_i}}$ two properties (start and end validity time) a validity time of a relationship state T_{SR_i} two properties (start and end validity time)

TAB. 2 - Translation rules of our model into the property graph model.

MATCH (n)

WHERE n.start_validity_time > date("2020-01-08")
 and n.start_validity_time < date("2020-01-23")
RETURN n</pre>

Advantages of our model:

- All temporal evolution types

GENERAL CONTEXT

- Only keeps changing entities and relationships
- Complete approach from conceptual modelling to implementation

• Future research directions:

- Evaluation of the performance of our implementation
- Temporal graph manipulation

Thank you for your attention