

POZNAN UNIVERSITY OF TECHNOLOGY

On Analyzing Sequences and Building Sequential Data Warehouse

Robert Wrembel Poznan University of Technology Institute of Computing Science Poznań, Poland Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel

Outline

- Introduction
 - ordered data and time-aware models
- **⊃** Processing ordered data \rightarrow overview
 - Time Series
 - Complex Event Processing
 - Sequences
- **\square** Analyzing sequences \rightarrow overview
 - searching for patterns
 - OLAP on data streams
 - warehousing and OLAP
- Seq-SQL @PUT (Poznan University of Technology)

2

our approach to warehousing sequential data

Ordered Data

- Analysis of data items (observations, events, signals) whose order matters
 - typically, data items are ordered by time
 - scientific and engineering data
 - sensor measurements
 - power supply and consumption measurements
 - computer network traffic
 - stock exchange data
 - air pollution monitoring data
 - click stream
 - query logs
- Point-based events
- Interval-based events

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

3

Point-based

- Sevent: <value, timestamp>
 - duration: instant or duration time is irrelevant
- Relations between events
 - before, after, equals
- Examples
 - stock exchange data
 - Web click stream
 - query logs

Interval-based

Event: value, duration

- duration: <TS_{beg}, TS_{end}>
- duration: <TS_{beq}, time period>

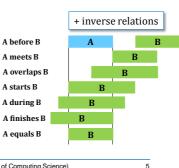
Support for temporal relations

- starts-with, during, overlapping, within
- temporal aggregation operators like
 - count started
 - count finished

Control Co

J. F. Allen. Maintaining knowledge about temporal

 F. Moerchen: Unsupervised pattern mining from symbolic temporal data. SIGKDD Explorations, (9)1, 2007



intervals. CACM, 26(11), 1983

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Coupling TB and IB Models

Intervals are shorthand for time points: conversion PB → IB (when the semantics of duration is not important)

- R. T. Snodgrass. The Temporal Query Language TQuel. ACM TODS, 12(2), 1987
- A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass. Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings, 1993
- J. Chomicki. Temporal Query Languages: a Survey. Conf. on Temporal Logic, 1994
- D. Toman. Point-based vs Interval-based Temporal Query Languages. PODS, 1996
- N.A. Lorentzos, Y.G. Mitsopoulos: SQL Extension for Interval Data. TKDE, 9(3), 1997

Intervals have semantics

 M. H. Böhlen, R. Busatto and C. S. Jensen: Point- Versus Interval-based Temporal Data Models. ICDE, 1998

Temporal Databases

⇒ SQL-92

introduced interval data type

⇒ TSQL2

- temporal aggregates
 - N. Kline, R.T. Snodgrass: Computing temporal aggregates. ICDE, 1995
- temporal algebra
 - R.T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer, 1995

Time interval-based query languages

- IXSQL
 - N.A. Lorentzos, Y.G. Mitsopoulos: SQL Extension for Interval Data. TKDE, 9(3), 1997
- ATSQL
 - M. H. Böhlen, R. Busatto and C. S. Jensen: Point- Versus Interval-based Temporal Data Models. ICDE, 1998

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

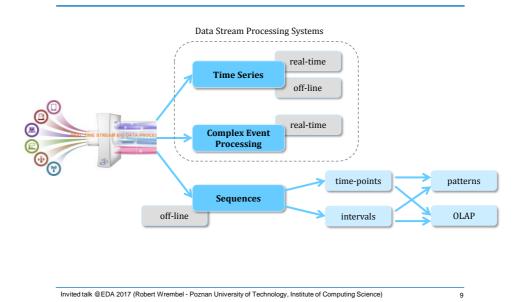
Data Stream Processing Systems

- Ordered data as data stream
- DSPS: basic functionality
 - computing in real-time aggregates in a sliding window
- Systems (real-time processing)
 - Apache Storm
 - Apache Flink
 - Apache Kafka Streams
 - Apache Spark Streaming
 - Apache Samza
 - DataTorrent RTS
 - TIBCO StreamBase

• ...

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Ordered Data



Time Series

- A time series consists of values (elements, events) ordered by time
 - taken at successive equally spaced points in time
 at a given frequency
 - variables of continuous values
- Examples
 - signals from sensors
 - financial
 - voice



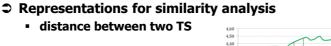
Time Series Analysis

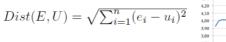
- **\bigcirc** Past is known \rightarrow predicting the future
- Trend analysis
- Aggregating in a sliding window
- Detecting dangerous events / outliers
- Finding similarities between TS
 - D. Rafiei, A.O. Mendelzon: Querying Time Series Data Based on Similarity, TKDE, 12(5), 2000
- Pattern analysis
 - finding patterns in TS → sequential pattern mining on discrete sequences
 - searching for TS with a given pattern
- **○** Classification & clustering \rightarrow similarities

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

11

Time Series Analysis



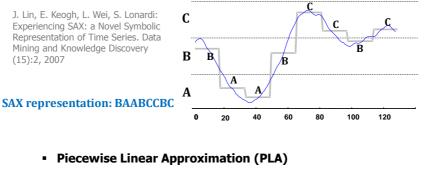


Piecewise Aggregate Approximation (PAA): divide a TS into equal parts, represent each part by its AVG

Time Series Analysis

Representations

- Symbolic Aggregate approXimation (SAX)
 - uses Piecewise Aggregate Approximation

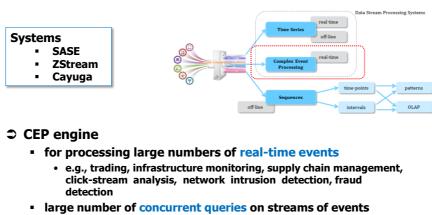


- Discrete Fourier Transform
- ...

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

13

Complex Event Processing



- detecting patterns and outliers
- do not support multidimensional analysis

Complex Event Processing

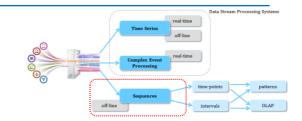
Functionality

- filtering
- in-memory caching
- aggregation over windows
- database lookups
- database writes
- joins
- queries (request-response, subscription)
- producing hierarchical events
 - e.g., events from multiple sensors aggregated into events on a "hub" that integrates the sensors
- advanced pattern matching (in real-time)
 - complex AND / OR expressions
 - negation

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

15

Sequences



- A sequence consists of ordered values (elements, events) recorded with or without a notion of time
 - numerical properties (quantify an event)
 - text properties (describe an event)
- Point-based sequences
- **○** Interval-based \rightarrow sequences of intervals

Sequences

Commuters' flow in a public transportation infrastructure

pass1 pass2 pass3	$2 \text{in} \longrightarrow S8$	
⊃ Oth	ner examples	the number of round-trips (e.g., S1 \rightarrow S2 \rightarrow S2 \rightarrow S1) and their distributions over origin-destination within Q1 of 2017
•	navigation betw	een web pages
•	identification of	pattern of purchases over time
•	sequence of sea	rch queries
•	alarm logs	
•	workflow manag	gement systems
•	money laundry s	scenarios

• ...

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Sequences

Sequence analysis

- offline → the whole sequence is available in advance
- discovering unknown patterns → sequential pattern mining
- prediction → Markov models
- general purpose processing (searching for known patterns)
- OLAP-like analysis (by means of SQL-like languages)

Research Focus (sequences)

General purpose sequence processing

- SEQ: [SLR94,SLR95,SLR96]
- SRQL: [RDR+98]
- SQL-TS: [SZZA01a,SZZA01b,SZZA04]
- AQuery: [LS03]
- PartOrder: [MM00]
- SciQL: [ZKM13]
- Commercial: Oracle11g, 12, Aster
- Open source: Hive, Spark

Features

- general purpose
- off-line processing
- point based

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

19

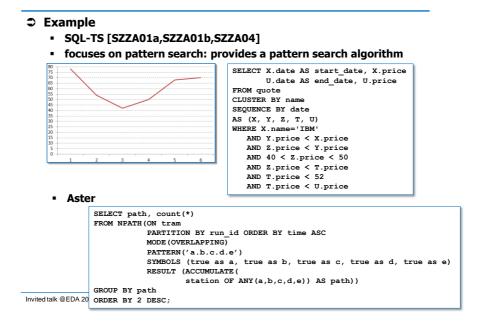
Research Focus (gen. purp. seq. proc.)

Features cont.

- SQL-like language
- data models
 - relational, extended relational, array, multi-dimensional, partial order + probabilistic model
- operations
 - selection
 - projection
 - join
 - offset access
 - basic aggregation functions: Count, Min, Max, Sum, Avg
 - pattern expression
- basic query optimization idea
 - eliminate the set of sequences as soon as possible

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Research Focus (gen. purp. seq. proc.)



Research Focus (stream + OLAP)

- Building cubes on streaming data for real-time OLAPlike analysis
 - Stream Cube [CDH+02,HCD+05]
 - E-Cube [LR10,LRR+10,LRG+10,LRG+11]
- Features
 - streaming data stored in data cubes
 - only parts of the cubes are materialized
 - the most frequently access paths in dimensions
 - algorithm for efficient cube computation
 - based on hyperlink-tree (Stream Cube)
 - sharing query results (E-cube)
 - no formal model

Research Focus (stream + OLAP)

Features cont.

- searching for complex patterns
 - with negation \rightarrow E-Cube
- multidimensional analysis of event patterns
 - a pattern dimension
 - pattern hierarchies
- roll-up optimization

cample	(E-Cube)	PATTERN <event pattern=""> WHERE GROUPBY AGG WITHIN <window></window></event>
PATTERN	SEQ(Recycle r, Washing w,	
	! SEQ(Sharpening s, I	Disinfection d, Checking c, s.id=d.id=c.id=o.id)
		id=o.id and o.ins-type="surgery")
WITHIN	1 hour	

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

23

Research Focus (stream + OLAP)

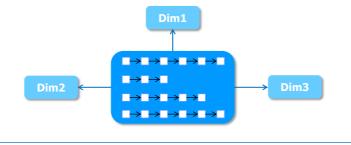
Stream Data Warehouse

➡ Golab, et.al.: Data Stream Warehousing. Tutorial, ICDE, 2014

- Process and collect streaming data from multiple sources
- Access real-time and historical data
- Technologies involved
 - RDBMS for some historical data and metadata
 - Hadoop for massive historical data
 - DSMS for streaming data

Research Focus (sequences)

- Sequential data as cubes → sequential data warehouse
 - facts
 - dimensions
- Analysis
 - searching for known patterns
 - OLAP-like aggregations



Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Research Focus (sequences as cubes)

- Grouping and aggregating by patterns
 - S-OLAP [LKH+08,Chu08,CLKH09,CKLC10, RL10,CKLC11, HWK+13,HWK+17]
 - application area: commuter flows
- Warehousing RFID data
 - FlowCube [GHL06a,GHLK06,GHL06b]
 - RFID DW [CKRS04]
 - application area: good transportation (RFID)

Log analysis

- Search logs [ZJPL09]
- Process Cube [vdA13]
- application area: analyzing log data
- Sequences of intervals
 - TIDAQL [MKM+15b,MKM+15a]
 - application area: general

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

S-OLAP

- Sequences organized as cubes
- Dimensions may have concept hierarchies
 - station → district
 - time \rightarrow day \rightarrow month
- **>** Pattern dimension

Idea

- group sequences having the same pattern in a cell
- apply aggregate function (Count, Sum, Avg) to each group \rightarrow result is s-cuboid

Passenger (Sequence) ID	Event Sequence	× (X, Y, Y, X)	COUNT
		G Clarendon (Clarendon, Pentagon, Pentagon, Clarendon)	16,289
s28	$\langle [t_4; Clarendon; enter; 0], [t_7; Pentagon; exit; 1.9], \rangle$	(Clarendon, Wheaton, Wheaton, Clarendon)	2,654
	$[t_9;$ Pentagon;enter;0], $[t_{10};$ Clarendon;exit;1.9] \rangle	Wheaton (Rockville, TwinBrook, TwinBrook, Rockville)	
s623	$\langle [t_1; \text{Pentagon; enter; 0}], [t_9; \text{Wheaton; exit; 1.9}] \rangle$	Silveston endon	
		Dimension X (Pentagon, Wheaton, Wheaton, Pentagon)	6,543
		Dimension in	
	Lo et.al.: OLAP on Sequence	Data. SIGMOD, 2008	

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

S-OLAP

C Pattern based aggregate (PBA) queries

SELECT	COUNT(*)
FROM	Event
WHERE	time >= 2007-10-01T00:00 AND
	time < 2007-12-31T24:00
CLUSTER BY	card-id AT individual,
	time AT day
SEQUENCE BY	time ASCENDING
SEQUENCE GROUP BY	card-id AT fare-group,
	time AT day
CUBOID BY	SUBSTRING (X, Y, Y, X) WITH
	X AS location AT station,
	Y AS location AT station
	LEFT-MAXIMALITY (x1, y1, y2, x2) WITH
	x1.action = "in" AND
	y1.action = "out" AND
	y2.action = "in" AND
	x2.action = "out"

S-OLAP

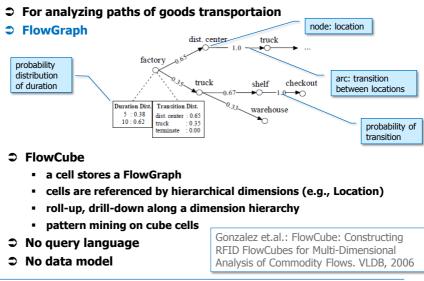
Cube computation

- partially materialize the cube
- inverted list to support finding sequences including a given pattern
 - pattern → {sequence ID, {positions within the sequence where a given pattern begins}}
- method for building complex patterns from simpler ones
 inverted list joining and computing values of cells
- ⇒ Iceberg cells computation
 - synopsis-based algorithm (SBA)
 - synopsis of sequences maintained in RAM
 - synopsis is based on uniform sampling of sequences
 - use statistical tests on the synopsis to decide whether a cell is iceberg at a given significance level
 - for the identified potential iceberg cells, estimate their aggregate values based on the synopsis

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

29

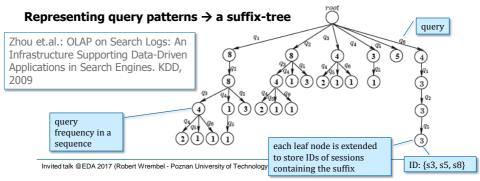
FlowCube



OLAP on Search Logs

Idea

- each query in a query sequence S is a dimension
- the frequency of a query is a measure
- sequential drill-down on S
 - prepending sequence S1 at the head of S
- appending S1 at the tail of S
- sequential roll-up on S
 - removing a subsequence of S either at the head or tail



Process Cube

To organize workflows as cube cells for process mining

Components

- event database (events have properties that have values)
- the structure of a cube (dimensions, hierarchies) → Process Cube
 a cube cell stores process instances
- view (select dim. instances, slice, dice) → Process Cube View
- materialized view (instantiation of PCV) \rightarrow Materialized Process Cube View

Operations provided:

- slice/dice
- roll-up/drill-down (no discussion how to represent workflows in cube cells)
- No query language

Research Focus (sequences)

Indexing

various alternatives of suffix trees, e.g.,

- Zhou et.al.: OLAP on Search Logs: An Infrastructure Supporting Data-Driven Applications in Search Engines. KDD, 2009
- Andrzejewski et.al.: FOCUS: An Index for Continuous Subsequence Pattern Queries. ADBIS, 2012
- inverted index, e.g.,
 - Lo et.al.: OLAP on Sequence Data. SIGMOD, 2008
 - Zhou et.al.: OLAP on Search Logs: An Infrastructure Supporting Data-Driven Applications in Search Engines. KDD, 2009

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

33

Summary: Approaches

Contribution	DModel	Storage	QL	QOpt	Indx	L.I.oper.	H.I.oper.	Dom.	Cube sup.	PSearch	TPoint	Interv.	Applic.
SEQ: [SLR94,SLR95,SLR96]	ext.rel.	rel.	yes	yes	no	no	yes	general	no	no	yes	no	OLTP
SRQL: [RDR+98]	ext.rel.	rel.	yes	no	no	yes	no	general	no	no	yes	no	OLTP
SQL-TS: [SZZA01a,SZZA01b,SZZA04]	rel.	rel.	yes	yes	no	no	yes	general	no	yes	yes	no	OLTP
AQuery: [LS03]	arrable	ext. rel., col.	yes	yes	no	yes	?	general	no	no	yes	no	OLTP
PartOrder: [MM00]	part.ord.+prob.	no	no	no	no	no	no	general	no	no	yes	no	OLTP
SciQL: [ZKM13]	array	array	yes	no	no	?	?	general	no	no	yes	no	OLTP
StreamCube: [CDH+02,HCD+05]	rel.	MD	no	yes	no	no	no	stream	yes	no	yes	no	OLAP
e-Cube: [LR10,LRR+10,LRG+10,LRG+11]	rel.	stream	yes	yes	no	no	yes	stream	yes	yes	yes	no	OLAP
S-OLAP: [LKH+08,Chu08,CLKH09,CKLC10,													
RL10,CKLC11,HWK+13,HWK+17]	rel.	rel.	yes	yes	inv.indx	no	yes	com.flows	yes	SQL ext.	yes	no	OLAP
FlowCube: [GHL06a,GHLK06,GHL06b]	no	MD	no	no	no	no	no	RFID	yes	no	yes	no	OLAP
RFID DW: [CKRS04]	no	rel.	no	no	no	no	no	RFID	yes	no	yes	no	OLAP
Log OLAP: [ZJPL09]	?	MD	no	yes	yes	no	yes	logs	yes	yes	yes	no	OLAP
ProcessCube: [vdA13]	dedicated	MD	no	no	no	no	yes	workflows	yes	DM alg.	?	no	OLAP
TIDAQL: [MKM+15b,MKM+15a]	no	rel.	yes	yes	yes	no	yes	general	yes	no	no	yes	OLAP
I-OLAP: [KMWE14]	dedicated	rel.	no	no	no	yes	yes	general	yes	no	no	yes	OLAP
SEQ-SQL: [BMM+12,BMKW14,KPW15,													
BCM+15,BKW16]	dedicated	rel.	yes	no	no	yes	yes	general	yes	yes	yes	no	OLAP
Oracle12c	rel.	rel.	yes	yes	yes	no	yes	general	no	M_R	yes	no	OLTP
Aster	rel.	rel.	yes	yes	?	no	yes	general	no	nPath	yes	no	OLTP
Hive	NoSQL	NoSQL	yes	?	?	no	yes	general	no	MatchPath	yes	no	OLTP
Spark	NoSQL	mem.	yes	?	?	no	yes	general	no	MatchPath	yes	no	OLTP

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Seq-SQL @PUT

Example sequential data

	failure date	car ID	model	make	prod. year	mileage	failureID	rep. cost
e1	2012.04.04	BB111	308	Peugeot	2003	145 500	F1	1 500
e2	2012.06.11	BB111	308	Peugeot	2003	160 000	F2	800
e3	2012.06.12	AA222	207	Peugeot	2004	184 000	F3	2 100
e4	2012.06.13	CC333	Golf	VW	2007	80 000	F2	790
e5	2013.07.27	BB111	308	Peugeot	2003	179 000	F3	2 200
e6	2012.12.02	AA222	207	Peugeot	2004	201 123	F4	650
e7	2012.12.08	CC333	Golf	VW	2007	120 000	F4	660
e8	2012.12.13	DD444	Polo	VW	2005	110 000	F1	1 400
e9	2013.01.30	EE555	Octavia	Skoda	2000	190 000	F3	1 900
e10	2013.02.16	DD444	Polo	VW	2005	121 000	F2	850

Data model elements

- event
- sequence
- measure
- dimension
- dimension hierarchy

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

35

Seq-SQL @PUT

C Event

- elementary data item that lasts for an instant
- events have attributes
 - descriptors
 - measures
 - dimensions
 - an attribute may form a hierarchy
 - failure date \rightarrow month \rightarrow quarter \rightarrow year
 - carID \rightarrow model \rightarrow make \rightarrow manufacturing company
 - failureID \rightarrow failureType

	failure date	car ID	model	make	prod. year	mileage	failureID	rep. cost
e1	2012.04.04	BB111	308	Peugeot	2003	145 500	F1	1 500
e2	2012.06.11	BB111	308	Peugeot	2003	160 000	F2	800
e3	2012.06.12	AA222	207	Peugeot	2004	184 000	F3	2 100
e4	2012.06.13	CC333	Golf	VW	2007	80 000	F2	790
e5	2013.07.27	BB111	308	Peugeot	2003	179 000	F3	2 200
e6	2012.12.02	AA222	207	Peugeot	2004	201 123	F4	650
e7	2012.12.08	CC333	Golf	VW	2007	120 000	F4	660
e8	2012.12.13	DD444	Polo	VW	2005	110 000	F1	1 400
e9	2013.01.30	EE555	Octavia	Skoda	2000	190 000	F3	1 900
e10	2013.02.16	DD444	Polo	VW	2005	121 000	F2	850

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Seq-SQL

Sequence

- a list of events
- created by operator CreateSequence
 - input: the set of events
 - output: a set of sequences
 - selects events that fulfill a given condition
 - a sequence is created from events having the same value of a forming attribute
 - events within a sequence are ordered by an ordering attribute (typically timestamp)

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

37

Seq-SQL

CreateSequence(failures, car_id, car_mileage, null)

create seq failures_seq on failures
forming attributes car_id
ordering attributes car_mileage

s1	e1	2012.04.04	BB111	308	Peugeot	2003	145 500	F1	1 500
	e2	2012.06.11	BB111	308	Peugeot	2003	160 000	F2	800
	e5	2013.07.27	BB111	308	Peugeot	2003	179 000	F3	2 200
s2	e3	2012.06.12	AA222	207	Peugeot	2004	184 000	F3	2 100
	e6	2012.12.02	AA222	207	Peugeot	2004	201 123	F4	650
s3	e4	2012.06.13	CC333	Golf	VW	2007	80 000	F2	790
	e7	2012.12.08	CC333	Golf	VW	2007	120 000	F4	660
s4	e8	2012.12.13	DD444	Polo	VW	2005	110 000	F1	1 400
	e10	2013.02.16	DD444	Polo	VW	2005	121 000	F2	850
s5	e9	2013.01.30	EE555	Octavia	Skoda	2000	190 000	F3	1 900

CreateSequence

(failures, car_id, car_mileage, mileage>130000)

create seq failures_seq on failures
forming attributes car_id
ordering attributes car_mileage
where mileage>130000

s1	e1	2012.04.04	BB111	308	Peugeot	2003	145 500	F1	1 500
	e2	2012.06.11	BB111	308	Peugeot	2003	160 000	F2	800
	e5	2013.07.27	BB111	308	Peugeot	2003	179 000	F3	2 200
s2	e3	2012.06.12	AA222	207	Peugeot	2004	184 000	F3	2 100
	e6	2012.12.02	AA222	207	Peugeot	2004	201 123	F4	650
s5	e9	2013.01.30	EE555	Octavia	Skoda	2000	190 000	F3	1 900

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

39

Seq-SQL

- Operations on sequences: transform a set of sequences into another set of sequences
 - First, Last
 - Subsequence
 - Split, Combine
 - Select sequences
 - Select events
 - Join
 - Union, Difference, Intersection
 - Drill-down, Roll-up
 - Group by
 - Aggregate

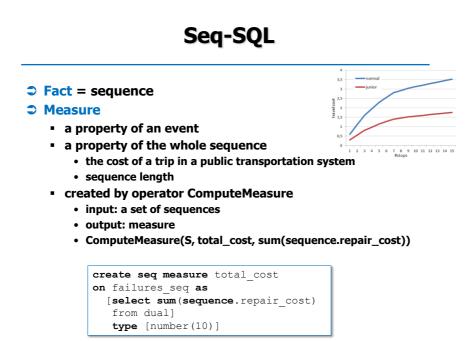
Seq-SQL

Split: divides sequences into the set of new sequences based on values of a given expression

s1	e1	2012.04.04	BB111	308	Peugeot	2003	145 500	F1	1 500
	e2	2012.06.11	BB111	308	Peugeot	2003	160 000	F2	800
	e5	2013.07.27	BB111	308	Peugeot	2003	179 000	F3	2 200
			••	. ,		1		,	
se	lect	seq ev.c	limens	lon.d	ım_tıme	e.day, i	allure	_descr	iptior
fr	om f	ailures s	e a						
		_	-						
		_	-	nsion	.dim ti	me.vear	> 201	21	
wh	ere	event [ev	.dime			.me.year	c > 201	2]	
wh	ere	_	.dime			.me.year	> 201	2]	
wh	ere	event [ev	.dime			.me.year	201	2]	
wh	ere	event [ev	.dime			.me.year	c > 201	2]	
wh	ere	event [ev	.dime			.me.year	s > 201	2]	
wh	ere	event [ev	.dime			.me.year 2003	2011 145 500	2] F1	1 500
wh sp	ere lit	event [ev on e_d_di	7.dime .m_tim	ie_yea:	r –	-			<u> </u>
wh sp	ere lit e1	event [ev on e_d_di 2012.04.04	r.dime .m_tim BB111	10_yea1	r Peugeot	2003	145 500	F1	

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

41



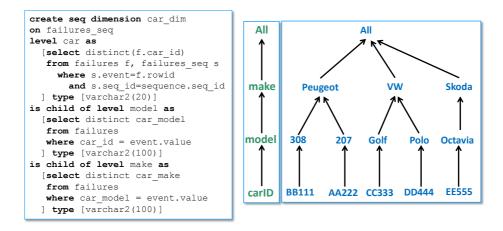
Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Dimension

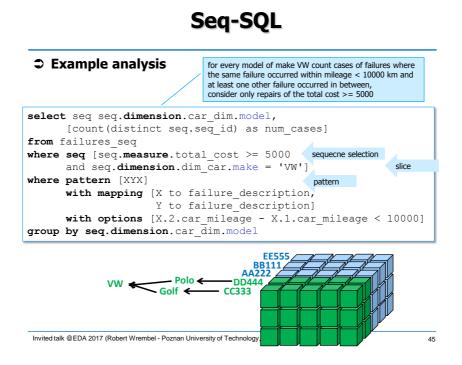
- defines a context for analysis
- an attribute of an event or
- a property of the whole sequence
 - trip segment (short: 1-4 stops, medium: 5-9 stops, long: >9 stops)
- may be hierarchical
- defined by operator CreateContext
 - name
 - event attribute | compute dimension
 - optional set of dimension hierarchies

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

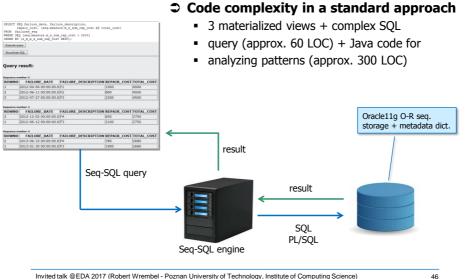
43



Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)



Prototype sequence DW (v.0)



ProcessCube

the lowest levels of dimensions defined on events attributes

- Seq-SQL
 - a dimension may be either the property of an event or the whole sequence
- ProcessCube
 - the notion of a measure is undefined
- Seq-SQL
 - a measure may be the property of either an event or the whole sequence
- ProcessCube
 - only high level operations on the process cube are defined (slice, dice, roll-up, drill-down)
- Seq-SQL
 - defines the whole formal model for sequential data
 - including 12 low level operations on sequences
 - · based on these operations, higher level operations may be built

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

47

$Seq-SQL \leftrightarrow S-OLAP$

S-OLAP

- a dimension can be a property of either an event attribute or a pattern
- Seq-SQL
 - the definition of a dimension is more general
 → can be a property
 of an event or a property of the whole sequence, thus a pattern as
 well
- S-OLAP
 - no formal data model for sequences
- Seq-SQL
 - formal model defined
- S-OLAP
 - defines 6 operations that process patterns only
- Seq-SQL
 - provides 12 low level operations on sequences, measures, and dimensions

Experimental Evaluation

Data

- sensor measurements
- volumes: 100MB, 200MB, 400MB, 600MB, and 800MB \rightarrow 10M, 20M, 40M, 60M, and 80M of events

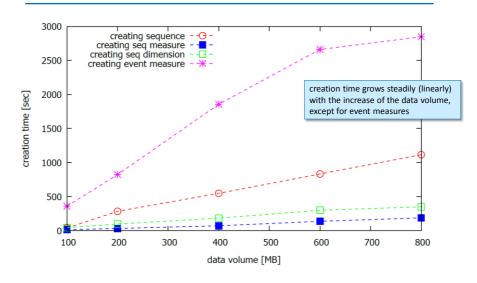
Measurements

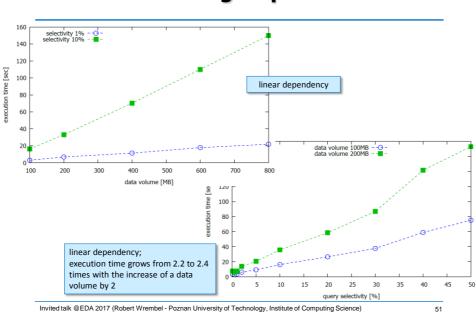
- creation time of DW objects: sequences, sequence measures, sequence dimensions, and event measures
- exec. time of queries of multiple selectivities on multiple data volumes
- ...

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

49

Creating objects





Selecting sequences

Storing Sequences

- **C** Storage may impact performance
- Mutliple ways of storing sequences
 - relational table
 - noSQL "table"
 - graph
 - list
 - array
 - ...

Different systems & syntax for patterns

- Oracle Database 12c: Match_Recognize
- Teradata Aster 6.00.01: NPath

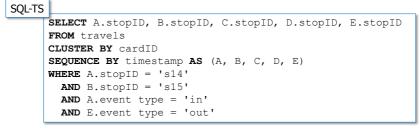
goal: to evaluate

- Apache Hive 0.13.0: NPath
 - syntax similar to Aster; available in Hive v. 0.11.0, in v. 0.12.0 renamed to MATCHPATH, unavailable from v. 0.14.0
- Apache Spark 1.3.0 (includes Hive)

Evaluation: Query

n-elements pattern query

- includes exactly n elements in its pattern
- example (n=5): find travels of passengers (CLUSTER BY cardID) that
 - started at tram stop 's14' (A.event type = 'in')
 - went through stop 's15'
 - went through 2 other stops
 - finished at the 5-th stop (E.event type = 'out')

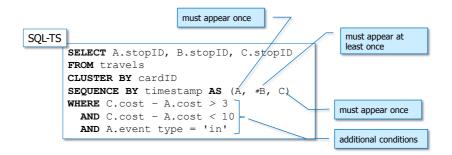


Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

53

Evaluation: Query

- Control Co
 - includes at least n pattern elements in its AS clause
- \Im Example (n>=3)



Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Evaluation: Data

Artificially generated sequential data

- representing passenger travels in the public transportation network of the city of Poznań, with 120 tram stops
- poisson distribution of travel lengths (median=7.5) and card types
- the structure of data generated by card readers \rightarrow table
- AVG row size = 30B

a passenger's intelligent card ID
a tram stop at which a given event occurred {'s1',, 's120'})
tram number
a timestamp of an event
passenger's card type {0, 1, 2, 3}
a cumulative cost of a travel
a type of an event: 'in', 'out', null

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Evaluation: Setup

- The number of data items stored in the database
 - 24,055,341 (1 GB)
 - 121,020,658 (5GB)
 - 240,543,617 (10GB)
 - 480,057,689 (20 GB)
- **C** The experiments conducted on 2 workstations
 - Intel R CoreTM i7-4700MQ
 - 16GB DDR3 1600MHz CL9 RAM, HDD Seagate ST1000LM014-1EJ164
 - Linux Ubuntu 14.10

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Evaluation: Queries

- ➡ Find sequences of 3, 5, 7, 9, and 11 elements
- ⇒ An example Oracle query finding 5-elements sequences

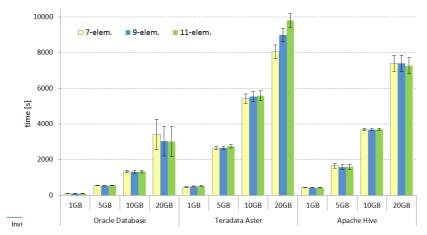
<pre>SELECT stA, stB, stC, stD, stE, count(*) FROM</pre>
(SELECT * FROM travels MATCH_RECOGNIZE
(PARTITION BY cardID ORDER BY timestamp ASC
MEASURES a.stopID as stA, b.stopID as stB, c.stopID as stC,
d.stopID as stD, e.stopID as stE
ONE ROW PER MATCH AFTER MATCH SKIP TO NEXT ROW
PATTERN(a b c d e)
DEFINE a as a.event type = 'in', e as e.event type = 'out'))
GROUP BY StA, StB, StC, StD, StE ORDER BY 6 DESC

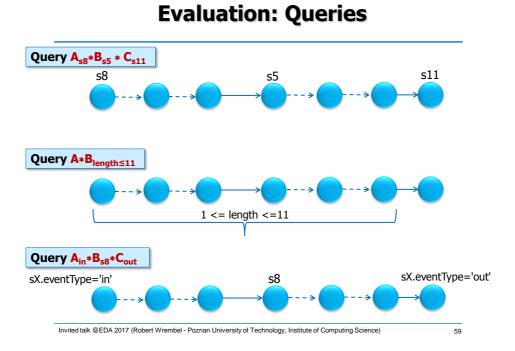
Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

57

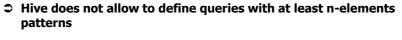
Evaluation: Queries

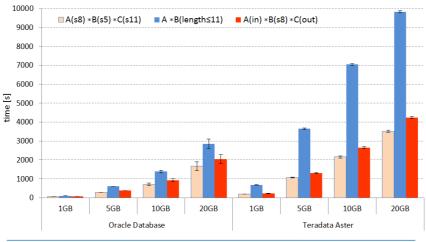
- Aster query execution times linearly depend on a sequence length and on a data volume
- Oracle and Hive query execution times linearly depend on a data volume and they do not depend much on a sequence length





Evaluation: Queries

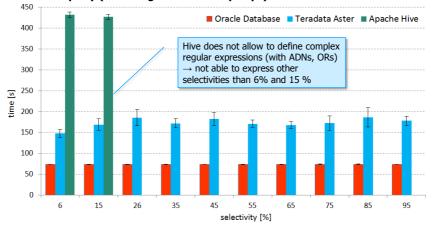


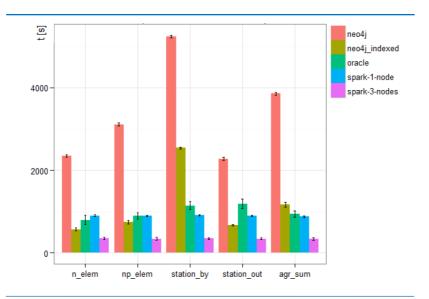


Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Evaluation: Queries

- Impact of a query selectivity on the query execution time
- Query selectivity is defined as RetSeq/AllSeq
 - RetSeq is the number of sequences returned by a test query
 - AllSeq is the total number of sequences returned by a reference query (returning at least 2-stop trips)

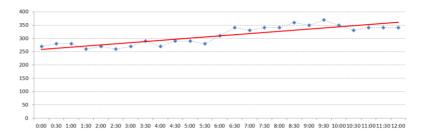




Evaluation

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Idea: replace raw data within an interval by a linear regression model



Pros

- compression
- approximation of a value in any time-point

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

63

Seq-SQL: Intervals as Functions

Related approaches

- Chen et.al.: Multi-dimensional regression analysis of time-series data streams. VLDB, 2002
 - linear regression applied to time series
- Thiagarajan et.al.: Querying continuous functions in a database system. SIGMOD, 2008
 - functions: first class citizens, used in queries
 - function views: relational interface to access results of function executions
- Perera et.al.: Modeling large time series for efficient approximate query processing. DASFAA, 2015
 - raw data are used to create models
 - models used for generating approximate query answers (faster than querying raw data)

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Experimental setup

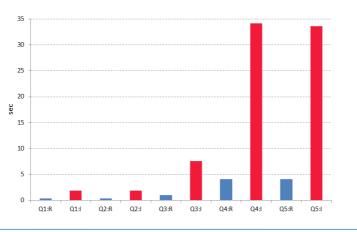
- data: 1 reading per 30 min within 4-years period
- storage: RDBMS
- querying: SQL + stored functions
- queries
 - Q1: for each meter, find its monthly energy usage in [2012 2015]
 - Q2: for each building, find monthly energy usage in [2012 2015] (hierarchy: meter → building)
 - Q3: select meter with MAX AVG energy usage during a day [8:15AM 4:15PM] in the 2nd quarter of 2013
 - Q4: for each meter, find a working day in 2013 with MAX energy usage
 - Q5: for each meter, find working days in 2013 with energy usage > AVG of this meter

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

65

Seq-SQL: Intervals as Functions

- R: raw relational data
- I: interval representation



Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Limitations

- does not support mining of either patterns or processes
- supports off-line analysis of sequences
- not so advanced pattern matching as in S-OLAP

Publications

- [BMM+12]
- [BMKW14]
- [KMWE14][KPW15]
- [KPW15]
 [BCM+15]
- [BKW16]
- [ABK+16]

Open problems

to be handled by the National Science Center grant

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

67

Projects@PUT

- Analytical processing and mining of sequential data: models, algorithms, and data structures
 - National Science Center (NSC) grant No. 2015/19/B/ST6/02637
 - https://www.ncn.gov.pl/?language=en
 - one PhD scholarship is open

Goals

- G1: developing data models for representing time pointbased and interval-based sequential data
 - low level elementary operations + their execution costs
 - query trees built with these operations \rightarrow query optimization
- G2: developing a fully functional query language for sequential data processing in an OLAP-like style
 - including complex pattern matching

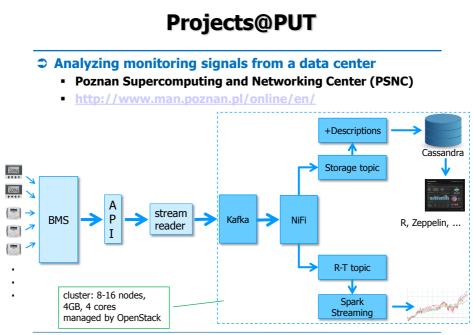
Analytical processing and mining of sequential data: models, algorithms, and data structures @NSC

Goals

- G3: developing data storage architectures suitable for OLAP processing of sequential data and their performance evaluation
- G4: developing indexing techniques for sequential data and their performance evaluation
- G5: developing mining algorithms for sequential data
- G6: building a prototype architecture of sequential data warehouse as a service

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

69



Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

Projects@PUT

- Analysis of monitoring signals from data center @PSNC
- Processing
 - time series analysis
 - alarm signals → sequences → patterns
- Over 4400 different variables (signals) generated by BMS

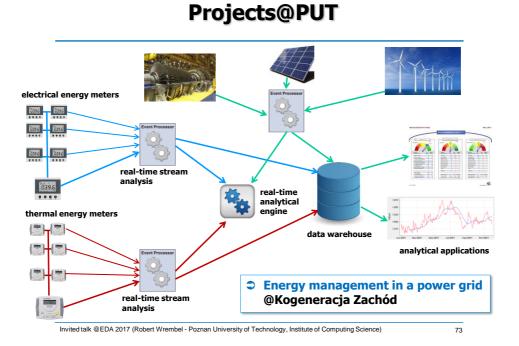
Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

71

Projects@PUT

- Energy management in a power grid
 - Kogeneracja Zachód
 - http://kogeneracjazachod.pl/
 - one PhD scholarship envisaged → financed from project: Erasmus Mundus Joint Doctorate on Information Technologies for Business Intelligence - Doctoral College (IT4BI-DC)

Information Technologies for Business Intelligence Doctoral College



Summary

- **Control of techniques for processing ordered data**
 - time series
 - complex event processing
 - sequences
- The state of the art in processing and warehousing sequential data
- ⇒ Seq-SQL @PUT
 - SeqDW model
 - implementation
 - evaluation
 - projects
- **○** Open issues \rightarrow NSC grant

Rerferences

- [ABK+16] W. Andrzejewski, B. Bębel, S. Kłosowski, B. Łukaszewski, R. Wrembel, G. Bakkalian: Searching for Patterns in Sequential Data: Functionality and Performance Assessment of Commercial and Open-Source Systems. ER Workshops 2016.
- [BCM+15] B. Bebel, T. Cichowicz, T. Morzy, F. Rytwiński, R. Wrembel, and C. Koncilia. Sequential data analytics by means of seq-sql language. In DEXA, 2015.
- [BKW16] G. Bakkalian, C. Koncilia, and R. Wrembel. On representing interval measures by means of functions. In MEDI, 2016.
- BMKW14] B. Bębel, T. Morzy, Z. Królikowski, and R. Wrembel. Formal model of time point-based
- sequential data for OLAP-like analysis. Bulletin of the Polish Academy of Sciences (Technical Sciences), 62(2), 2014.
- [BMM+12] B. Bębel, M. Morzy, T. Morzy, Z. Królikowski, and R. Wrembel. OLAP-like analysis of time pointbased sequential data. In ER Workshops, 2012.
- [CDH+02] Y. Chen, G. Dong, J. Han, B.W. Wah, and J. Wang. Multi-dimensional regression analysis of time-series data streams. In VLDB, 2002.
- [Chu08] C.K. Chui. The design and implementation of an olap system for sequence data analysis. In IDAR@SIGMOD, 2008.
- [CKLC10] C.K. Chui, B. Kao, E. Lo, and D. Cheung. S-OLAP: an OLAP system for analyzing sequence data. In SIGMOD, 2010.
- [CKLC11] C.K. Chui, B. Kao, E. Lo, and R. Cheng. I/o-efficient algorithms for answering pattern-based aggregate queries in a sequence olap system. In CIKM, 2011.
- [CKRS04] S.S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S. Sarma. Managing RFID data. pages 1189–1195, 2004.

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

75

References

- [CLKH09] C.K. Chui, E. Lo, B. Kao, andW.S. Ho. Supporting ranking pattern-based aggregate queries in sequence data cubes. In CIKM, 2009.
- [DGP+07] A.J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W.M. White. Cayuga: A general purpose event monitoring system. In CIDR, 2007.
- [GHL06a] H. Gonzalez, J. Han, and X. Li. FlowCube: constructing RFID flowcubes for multidimensional analysis of commodity flows. In VLDB, 2006.
- [GHL06b] H. Gonzalez, J. Han, and X. Li. Mining compressed commodity workflows from massive rfid data sets. CIKM, 2006.
- [GHLK06] H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and analyzing massive RFID data sets. In ICDE, 2006.
- [HCD+05] J. Han, Y. Chen, G. Dong, J. Pei, B.W. Wah, J. Wang, and Y.D. Cai. Stream Cube: An architecture for multi-dimensional analysis of data streams. DPD, 18(2), 2005.
- [HWK+13] Z. He, P. Wong, B. Kao, E. Lo, and R. Cheng. Fast evaluation of iceberg patternbased aggregate queries. In CIKM, 2013.
- [HWK+17] Z. He, P. Wong, B. Kao, E. Lo, R. Cheng, and Z. Feng. Efficient pattern-based aggregation on sequence data. TKDE, 29(2), 2017.
- [KMWE14] C. Koncilia, T. Morzy, R. Wrembel, and J. Eder. Interval OLAP: analyzing interval data. In DaWaK, 2014.
- [KPW15] C. Koncilia, H. Pichler, and R. Wrembel. A generic data warehouse architecture for analyzing workflow logs. In ADBIS, 2015.
- [LKH+08] E. Lo, B. Kao,W.S. Ho, S.D. Lee, C.K. Chui, and D.W. Cheung. OLAP on sequence data. In SIGMOD, 2008.
- [LR10] M. Liu and E.A. Rundensteiner. Event sequence processing: new models and optimization techniques. In IDAR@SIGMOD, 2010.

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

References

- [LRG+10] M. Liu, E.A. Rundensteiner, K. Greenfield, C. Gupta, S.Wang, I. Ari, and A. Mehta. E-cube: Multidimensional event sequence processing using concept and pattern hierarchies. In ICDE, 2010.
- [LRG+11] M. Liu, E.A. Rundensteiner, K. Greenfield, C. Gupta, S.Wang, I. Ari, and A. Mehta. E-Cube: multi-dimensional event sequence analysis using hierarchical pattern query sharing. In SIGMOD, 2011.
- [LRR+10] M. Liu, M. Ray, E.A. Rundensteiner, D.J. Dougherty, C. Gupta, S.Wang, I. Ari, and A. Mehta. Processing nested complex sequence pattern queries over event streams. In DMSN, 2010.
- [LS03] A. Lerner and D. Shasha. AQuery: Query Language for Ordered Data, Optimization Techniques, and Experiments. In VLDB, 2003.
- [MKM+15a] P. Meisen, D. Keng, T. Meisen, M. Recchioni, and S. Jeschke. Bitmap-based online analytical processing of time interval data. In ITNG, 2015.
- [MKM+15b] P. Meisen, D. Kenig, T. Meisen, M. Recchioni, and S. Jeschke. TidaQL: a query language enabling on-line analytical processing of time interval data. In ICEIS, 2015.
- [MM00] H. Mannila and C. Meek. Global partial orders from sequential data. In KDD, 2000.
- [RDR+98] R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K.S. Beyer, and M. Krishnaprasad. SRQL: Sorted relational query language. In SSDBM, 1998.
- [RL10] C.W.W. Raymond and E. Lo. Competitive privacy: Secure analysis on integrated sequence data. In DASFAA, 2010.
- [SLR94] P. Seshadri, M. Livny, and R. Ramakrishnan. Sequence query processing. SIGMOD Rec., 23(2), 1994.
- [SLR95] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A model for sequence databases. In ICDE, 1995.
- [SLR96] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and implementation of a sequence database system. In VLDB, 1996.

Invited talk @EDA 2017 (Robert Wrembel - Poznan University of Technology, Institute of Computing Science)

77

References

- [SZZA01a] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. Optimization of sequence queries in database systems. In PODS, 2001.
- [SZZA01b] R. Sadri, C. Zaniolo, A.M. Zarkesh, and J. Adibi. A sequential pattern query language for supporting instant data mining for e-services. 2001.
- [SZZA04] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. Expressing and optimizing sequence queries in database systems. TODS, 29(2), 2004.
- [vdA13] W.M.P. van der Aalst. Process cubes: Slicing, dicing, rolling up and drilling down event data for process mining. In AP-BPM, 2013.
- [ZJPL09] B. Zhou, D. Jiang, J. Pei, and H. Li. OLAP on search logs: an infrastructure supporting data-driven applications in search engines. In KDD, 2009.
- [ZKM13] Y. Zhang, M. Kersten, and S. Manegold. SciQL: Array data processing inside an RDBMS. In SIGMOD, 2013.