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Context Imbalanced learning and Cost-Sensitive Methods

Bank fraud detection is a difficult classification problem where Imbalanced Learning Cost Sensitive Learning

the number of fraud is much smaller than the number of gen- e my (resp. m-) number of fraud-  Use of a cost-sensitive matrix [1] to defined the weight of each

uine transactions. . | ulent (resp. genuine) transactions,  class and/or instances: (i) fraud and genuine transactions have
Blitz Business Service is company specialized in check where m4 >> m_, not the same weight and (ii) each transaction has its own

fraud detection. The company is analyzing millions of trans- e y; € {0,1} is the label: 0 for weight:
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. where:
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based on the simple error rate loss function which is not suit- .0.0.{ s 04 % ” L . .
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The notion of benefits has then be introduced, using a cost- Objective: Maximizing the profits of the retailer, i.e. maxi-

sentive approach, because it has more sense for the retalil-
ers. It also gives them the possiblity to manage the weights
of each transactions to be closer from the reality than a sim- Solution: assign more weight to the
ple classification error. By doing so, we are able to increase minority class (frauds) == use
the retailer’s benefits by 1.43%. cost-sensitive methods
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Tree-based Cost Sensitive Methods
Cost-Sensitive Trees Cost-Sensitive Gradient Boosting

We build a model which estimate the probability p;of an instance of being a fraud.
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S = Z <WCFPi (i) + (TN (x’i)) ™ Z (WCTR: (i) + T, CEN (:1:1-)) Use of the boosting approach introduced by Friedman [4] where we combine weak learners F, = F, | — o, f;
1€5- 1€+ Use a « gradient descent » in the space of the predictions. Each models f; are trained on the residuals:
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We continue to split until we
reach the maximum depth or
the minimum number of
instances in a node D; > CTN: — CFP; — s,

crp, — CFN; + CT'N, — CFP;

S collection of example

_ Using a Bayes Rule for classification [3], an instance is then predicted positive (or fraudulent) if:
in each node or leaf
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We need to approximate the indicator function which is not differentiable. We use the following upper bound:
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Trees are finally combined and several decision rules are tested =1

Implementation using the XGBoost

Experiments and Practical Evaluation

Protocol: Train/Validation set Experiments Gap maxoprofits Precisoion Recill Flo
6 months. Test set 4 months RF 2.99% 68.1% 5.66% 10.5%

A | - RF aj 2.88% 73.8% 4.71% 8.86%
Several algorithms, using the RF mai_mar 1.81% 30.2% 10.6% 15.7%
notion of profits, are com- RF mean-—margin 1.87% 30.3% 9.52% 14.5%

. o o o o 50-
RF (fraud if 9/24 trees say So): GBtune_mar 2.26% 19.1% 16.6% 17.8%
y S0). GBiune_F1 2.70% 45.4% 9.24% 15.4% 20-
e RF,,,;: leaves are labeled GBmargin 1.56% 18.8% 13.3% 15.6%
according to the majority class | | | | . e
then a majority vote is done Gap to the maximal margin of .each algorithm. In this table, the value of ( was se_t to ; = Gap Margin
e RF,.0;_mar: leaves are la- 5. The results are separated into two groups: Random Forest models and Gradient " Recall
beled to maximize the profit Boosting models.
then a majority vote is used. 10- f
e RF,...._ma-. leaves are la-
beled to maximize the profit Conclusion 0o | | | | |
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then we use the average profit. We have presented several strategies based on cost-sensitive methods to improve the 2
e GB;,,.: learned to minimize current model of the company which take to notion of "benefits" into account. We have Study the influence of the parameter (
logistic loss, the threshold is  seen that it gives the possibility to reach higher performance in terms of both "benefits”"  in the definition of Crp, = rm — C.
computed w.r.t. to different cri-  and F-measure which is a standard measure used in imbalanced scenarios. The pre-
teria sented framework also has the advantage to be clearer for the retailers.
e GB,,./4in: a direct implemen- A perspective consists of using more informations about the customers: its past or the
tation of the presented method. tickets using recurrent neural networks or dimensionality reduction methods.
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