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In fraud detection (or imbalanced learning): few number of frauds or anomalies,
P <<NandIR=P/N <0.5% in real cases.

Examples: spam detection, medical diagnosis, intrusion detection, bank fraud
detection, ...

Most of the classical Machine Learning techniques do not work well in such context

— they focus on the majority class and predict all instances as negative
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How to deal with imbalanced data?

Data level: use sampling methods like under/over-sampling or SMOTE

Algorithms: - use metric learning based algorithm (e.g. LMNN)
* cost-sensitive learning
- combine several models together (e.g. boosting and stacking)

Post-Process: tune the decision threshold (class probability estimator)

All strategies present advantages and drawbacks



Context and Outline

Context: Bank Fraud detection on check transactions, <0.5% of fraud
Retailers — maximize their profit and avoid frauds

Target: Build a model which focuses on retailers’ desires — cost-sensitive
model

Outline 1. Cost-sensitive decision trees
2. Ensemble of cost-sensitive decision trees
1. Random forest
2. Gradient boosting-based model
3. Experiments on a real dataset



Usual decision tree splitting criterion

Parent node

Children nodes

Gini impurity of the node (binary case): I' = 1 — Zpg =1-p> —p> =2p,p_

Split is made by maximizing: Z I's —ayls,
v€Children

[1] Breiman, L., Friedman, J. Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks, CA (1984).
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A cost sensitive model

Cost-sensitive matrix [2] with expert criteria

Pred. fraud Pred. genuine

Actual fraud

CT P, CEFN,
Actual genuine CF P, CT N;
where:
crp, = crn, = (r—c)-m
crp, =p-r-m—_( CrN, =T M

™. amount of the transaction P probability of finding another source of

payment

T profit rate customer dissatisfaction cost

C loss rate (after insurance) of an unpaid transaction

——— Goal: maximize the overall profit of the retailer

[2] Bahnsen, A.C., Villegas, S., Aouada, D., Ottersten, B., Correa, A.M.: Fraud Detection by Stacking Cost-sensitive Decision Trees. DSCS (2017).
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Cost sensitive decision trees

Parentnode |’ S

Pred. fraud Pred. genuine
Use the «,COSt 7 Actual fraud CT P, CrN
matrix : : -
Actual genuine CFPp, CTN,

Splitting criterion:

['s = \S] > (—CFP T +—cTN( ))

1E€S_

f crp, = crn, =0 and cpp, = cpn, = 1, standard Gini Impurity.



Cost sensitive decision trees

Parentnode |’ S

max FS; -+ Psr —1I'g

attributes

I's

Children nodes

Compute the splitting criterion

1 my m_ 1 my m_
I's = — — \Ld — A\ L Tar — AT — A\Li) |

s ,LEES:_ ( m crp (i) + m ern; (2 )) " S ZEES:JF ( m erpi(Ti) £ m crN: (7 ))
Look for the best (attribute, value) which is solution of:

max FSZ +1's. —I'g

attributes



Cost sensitive decision trees

Parentnode |’ S

max FS; -+ FS —1I'g

attributes

Children nodes I S

T

Sode

Until maximum depth or other stopping criterion
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Cost sensitive decision trees

How to label the leaves ?

Compute the profits if all the examples are predicted positive Y+ and negative v—

7+(l)}( Y e+ D CTR—) VU)}( > N+ ). CFM)

1:x; €lINS_ 1, €lNS_ 1:x; €INS_ tx; €lNSy

Choose the Iabelj which is solution of: max

je{_l_?_} fyj
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Cost sensitive random forest

Build a collection of trees

................. :,,:2

N

Combine the output of each tree: average profit or predicted label
to build several model (see experimental setting)
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Gradient Boosting model

|dea of boosting: combine several weak learners ftinto a single strong model £’

T
I = Z ot fi
t=0

Usual loss function for boosting: exponential loss

L(xs,y:) = ysexp(—F(x;)) + (1 — y;) exp(F'(2;))

Gradient boosting: work in the function space rather than the parameter space [3]

Using:

.= g, = — OL(y. Fi1 (1)) o ar mm i —af(z;))?
r{ = gt — [ aFt—l(qu:) ] (f, ) = g ?Z: f(x;))

Updaterule: F; = Fi_1 + oy fi

[3] Friedman, J.H.: Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics 29 (2000).
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Cost sensitive gradient boosting

ldea: include the cost matrix into
the loss function L

Our loss: L(y,q) = Z vi(gicrp, + (1 — 9i)ern,) + (1 — vi) (Gicrp, + (1 — gi)ern;,))]
1=1

How to use the output of a gradient tree boosting model?

For a model which return a probability p;, predict fraud (; = 1) if [4]:

CTN;, — CFPp;
Di > = S;
crp, — CFN, + CTN, — CFP,

Rewrite loss as a minimization problem:

Z YiCTP; ‘|‘ 1 — yZ)CFP )HP7;>87; T (inFNq; T (1 — yi)CTNi)I[piSSi
1=1

[4] Elkan, C.: The Foundations of Cost-Sensitive Learning. Proceedings of the 17th International Joint Conference on Artificial Intelligence (2001).
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Cost sensitive gradient boosting

The loss can be rewritten (using the analytical value of S;):
L(xia y%) — (1 o Si)yiﬂpi<8i + S’L(l _ yi)]:[pi>87;
We show, because I, -, < exp(F'(z;)), itis enough to minimize

L) = (1= si)yse" ) + 5i(1 - e e

The gradient boosting model is computed using a specific solver, XGboost which
only needs the first and second derivative of the loss function.
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Experimental Setting

Baseline: standard random forest (RF) with 24 trees.

RF1ab—maj: each leaf is labeled according to the majority class of the examples that
fall into the leaf + use of a majority vote.

RF1ab—pro: each leaf is labeled to maximize the profit over the set of all examples
in the leaf + use of a majority vote.

RF mean—pro : Same as before but vote is done with the concept of profits.

GBiune-—... :gradient boosting model with a logistic loss, threshold is tuned for ...
criterium.

G Byprofits : gradient boosting model with the « profit loss »

Data: 10 months of transactions (6 training/validation set and 4 test set)
~ 2.7M of transactions and only 0.33% of frauds.
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Compare different procedures with the current model of the company

Experimental Results

Experiments Rate loss max profits | Precision | Recall F4

RF 2.99% 68.1% 5.66% | 10.5%
RF a; 2.88% 73.8% 4.71% | 8.86%
RF maj—mar 1.81% 30.2% 10.6% | 15.7%
RF mean—margin 1.87% 30.3% 9.52% | 14.5%
GBiune—_Pre 3.01% 61.0% 6.49% | 11.7%
GBiune—mar 2.26% 19.1% 16.6% | 17.8%
GBiune—F1 2.70% 45.4% 9.24% | 15.4%
GBmargin 1.56% 18.8% 13.3% | 15.6%

 Improve the benefit of the retailers with both models.
- GB-based model gives better results.
- Reduce the loss — having a lower precision (< 30%) but higher recall.

16




Optimal value of C for the retailers
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Evolution of Precision, Recall,
F-Measure and the gap to the maximal
profits with respect to the parameter G

NB: gap computed with { =
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Measure
F1
Gap Margin
Precision
Recall

e (: customer dissatisfaction
cost

e when C Increases the cost
of a False Positive is
decreasing

|

The Precision is increasing
and the Recall is decreasing



Conclusion

e Provide an understandable model for our customer

* Reduce the gap of the maximal benefits from 2.99 % to 1.56 % (represents a gain
of 60 k euros per 4 months

* Able to control the precision

 RF (with our decision rule) and GB-based model can give similar results [6], but
GB-based models are trained one order of magnitude faster

Perspectives

* Improve the fraud detection models with currently unused informations:
* |oyalty cards
e customers’ baskets
e historical purchase information

[5] Nikolaou, N., Edakunni, N., Kull, M., Flach, P., Brown, G.: Cost-Sensitive Boosting Algorithms. Do we really need them ? Machine Learning 104
(2016).
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