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Résumé

Dans le présent papier, nous proposons une approche
basée sur l’algorithme des plus proches voisins pour
de l’apprentissage dans un contexte déséquilibré. Dans
un tel contexte, les exemples de la classe minoritaire
sont au centre de l’attention et nécessitent des critères
d’optimisation spécifiques pour nous permettre de les
détecter, comme la F-mesure. Reposant sur des fon-
dements géométriques, nous présentons un algorithme
qui pondère la distance entre un nouvel exemple et les
exemples positifs de la classe minoritaire. Cela entrâıne
une modification des régions de Voronöı et donc de la
frontière de décision. Une analyse théorique de cette
pondération explique comment il est possible de réduire
le taux de faux négatifs tout en contrôlant le taux de
faux positifs. Les expériences menées sur plusieurs jeux
de données publiques, ainsi que sur de grands jeux de
données du Ministère de l’Economie et des Finances sur
la détection de fraude à l’impôt, mettent en évidence
l’efficacité de la méthode en dépit de sa simplicité. En
outre, elle se révèle d’autant plus intéressante et per-
formante lorsque qu’elle est combinée à des méthodes
d’échantillonage.

Mots-clef : Plus proches voisins, F-mesure, Appren-
tissage dans un contexte déséquilibré.

1 Introduction

Intrusion detection, health care insurance or bank
fraud identification, and more generally anomaly de-

tection, e.g. in medicine or in industrial processes, are
tasks requiring to address the challenging problem of
learning from imbalanced data [Agg17, CBK09]. In
such a setting, the training set is composed of a few po-
sitive examples (e.g. the frauds) and a huge amount of
negative samples (e.g. the genuine transactions). Stan-
dard learning algorithms struggle to deal with this im-
balance scenario because they are typically based on
the minimization of (a surrogate of) the 0-1 loss. The-
refore, a trivial solution consists in assigning the ma-
jority label to any test query leading to a high perfor-
mance from an accuracy perspective but missing the
(positive) examples of interest. To overcome this issue,
several strategies have been developed over the years.
The first one consists in the optimization of loss func-
tions based on measures that are more appropriate for
this context such as the Area Under the ROC Curve
(AUC), the Average Precision (AP) or the F-measure
to cite a few [FHOM09, Ste07]. The main pitfalls rela-
ted to such a strategy concern the difficulty to directly
optimize non smooth, non separable and non convex
measures. A simple and usual solution to fix this pro-
blem consists in using off-the-shelf learning algorithms
(maximizing the accuracy) and a posteriori pick the
model with the highest AP or F-Measure. Unfortuna-
tely, this might be often suboptimal. A more elaborate
solution aims at designing differentiable versions of the
previous non-smooth measures and optimizing them,
e.g. as done by gradient boosting in [FHS+17] with
a smooth surrogate of the Mean-AP. The second fa-
mily of methods is based on the modification of the
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Figure 1 – Toy imbalanced dataset : On the left, the
Voronoi regions around the positives are small. The risk
to generate false negatives (FN) at test time is large.
On the right : by increasing too much the regions of
influence of the positives, the probability to get false
positives (FP) grows. In the middle : an appropriate
trade-off between the two previous situations.

distribution of the training data using sampling strate-
gies [FGHC18]. This is typically achieved by removing
examples from the majority class, as done, e.g., in ENN
or Tomek’s Link [Tom76], and/or by adding examples
from the minority class, as in SMOTE [CBHK02] and
its variants, or by resorting to generative adversarial
models [GPM+14]. One peculiarity of imbalanced da-
tasets can be interpreted from a geometric perspective.
As illustrated in Fig. 1 (left) which shows the Voronoi
cells on an artificial imbalance dataset (where two adja-
cent cells have been merged if they concern examples of
the same class), the regions of influence of the positive
examples are much smaller than that of the negatives.
This explains why at test time, in imbalanced learning,
the risk to get a false negative is high, leading to a low
F-measure, the criterion we focus on in this paper, defi-
ned as the harmonic mean of the Precision = TP

TP+FP

and the Recall = TP
TP+FN , where FP (resp. FN) is

the number of false positives (resp. negatives) and TP
the number of true positives. Note that increasing the
regions of influence of the positives would allow us to
reduce FN and improve the F-measure. However, not
controlling the expansion of these regions may have a
dramatic impact on FP , and so on the F-Measure, as
illustrated in Fig. 1 (right).

The main contribution of this paper is about the
problem of finding the appropriate trade-off (Fig. 1
(middle)) between the two above-mentioned extreme
situations (large FP or FN) both leading to a low F-
Measure. A natural way to increase the influence of
positives may consist in using generative models (like
GANs [GPM+14]) to sample new artificial examples,
mimicking the negative training samples. However,
beyond the issues related to the parameter tuning, the
computation burden and the complexity of such a me-
thod, using GANs to optimize the precision and re-
call is still an open problem (see [SBL+18] for a recent
paper on this topic). We show in this paper that a
much simpler strategy can be used by modifying the

distance exploited in a k-nearest neighbor (NN) al-
gorithm [CH67] which enjoys many interesting advan-
tages, including its simplicity, its capacity to approxi-
mate asymptotically any locally regular density, and
its theoretical rootedness [LB04, KW15, KSU16]. k-NN
also benefited from many algorithmic advances during
the past decade in the field of metric learning, aiming
at optimizing under constraints the parameters of a
metric, typically the Mahalanobis distance, as done
in LMNN [WS09] or ITML [DKJ+07] (see [BHS15]
for a survey). Unfortunately, existing metric learning
methods are dedicated to enhance the k-NN accuracy
and do not focus on the optimization of criteria, like
the F-measure, in scenarios where the positive training
examples are scarce. A geometric solution to increase,
at a very low cost, the region of influence of the mino-
rity class consists in modifying the distance when com-
paring a query example to a positive training sample.
More formally, we show in this paper that the opti-
mization of the F-Measure is facilitated by weighting
the distance to any positive by a coefficient γ ∈ [0, 1]
leading to the expansion of the Voronoi cells around
the minority examples. An illustration is given in Fig.1
(middle) which might be seen as a good compromise
that results in the reduction of FN while controlling
the risk to increase FP . Note that our strategy boils
down to modifying the local density of the positive
examples. For this reason, we claim that it can be ef-
ficiently combined with SMOTE-based sampling me-
thods whose goal is complementary and consists in ge-
nerating examples on the path linking two (potentially
far) positive neighbors. Our experiments will confirm
this intuition.

The rest of this paper is organized as follows. Sec-
tion 2 is dedicated to the introduction of our notations.
The related work is presented in Section 3. Section 4 is
devoted to the presentation of our method. We perform
an extensive experimental study in Section 5 on many
imbalanced datasets, including non public data from
the French Ministry of Economy and Finance on a tax
fraud detection task. We give evidence about the com-
plementarity of our method with sampling strategies.
We finally conclude in Section 6.

2 Notations and Evaluation
Measures

We consider a training sample S = {(xi, yi), i =
1, ...,m} of size m, drawn from an unknown joint dis-
tribution Z = X × Y, where X = Rp is the feature
space and Y = {−1, 1} is the set of labels. Let us as-
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sume that S = S+ ∪ S− with m+ positives ∈ S+ and
m− negatives ∈ S− where m = m+ +m−.

Learning from imbalanced datasets requires to opti-
mize appropriate measures that take into account the
scarcity of positive examples. Two measures are usually
used : the Recall or True Positive Rate which mea-
sures the capacity of the model to recall/detect positive
examples, and the Precision which is the confidence in
the prediction of a positive label :

Recall =
TP

TP + FN
and Precision =

TP

TP + FP
,

where FP (resp. FN) is the number of false positives
(resp. negatives) and TP is the number of true posi-
tives. Since one can arbitrarily improve the Precision
if there is no constraint on the Recall (and vice-versa),
they are usually combined into a single measure : the
F-measure [Rij79] (or F1 score), which is widely used
in fraud and anomaly detection, and more generally in
imbalanced classification [Gee14].

F1 =
2× Precision× Recall

Precision + Recall
=

2TP

2TP + FN + FP
.

Note that F1 considers the Precision and Recall
equally.

3 Related Work

In this section, we present the main strategies that
have been proposed in the literature to address the
problem of learning from imbalanced datasets. We first
present methods specifically dedicated to enhance a k-
NN classifier. Then, we give an overview of the main
sampling strategies used to balance the classes. All
these methods will be used in the experimental com-
parison in Section 5.

3.1 Distance-based Methods

Several strategies have been devised to improve k-
NN. The oldest method is certainly the one presented
in [Dud76] which consists in associating to each neigh-
bor a voting weight that is inversely proportional to its
distance to a query point x. The assigned label ŷ of x
is defined as :

ŷ =
∑

xi∈kNN(x)

yi ×
1

d(x,xi)
,

where kNN(x) stands for the set of the k nearest neigh-
bors of x.

In [BSGR03], the authors account both the label and
the distance to the neighbors (xi, yi) to define a weigh-
ted metric d′ from the euclidean distance d, as follows :

d′(x,xi) =
(mi

m

)1/p
d(x,xi),

where mi is the number of examples in the class yi. As
we will see later, this method falls in the same family
of strategies as our contribution, aiming at weighting
the distance to the examples according to their label.
However, three main differences justify why our me-
thod will be better in the experiments : (i) d′ is fixed
in advance while we will adapt the weight that opti-
mizes the F - measure ; (ii) because of (i), d′ needs to
take into account the dimension p of the feature space
(and so will tend to d as p grows) while this will be
intrinsically captured in our method by optimizing the
weight given the p-dimensional space ; (iii) d′ is useless
when combined with sampling strategies (indeed, mi

m
would tend to be uniform) while our method will allow
us to weight differently the original positive examples
and the ones artificially generated.

Another way to assign weights to each class, which
is close to the sampling methods presented in the next
section, is to duplicate the positive examples according
to the Imbalance Ratio : m−/m+. Thus, it can be seen
as a uniform over-sampling technique, where all posi-
tives are replicated the same number of times. However,
note that this method requires to work with k > 1.

A last family of methods that try to improve k-
NN is related to metric learning. LMNN [WS09]
or ITML [DKJ+07] are two famous examples which
optimize under constraints a Mahalanobis distance
dM(x,xi) =

√
(x− xi)>M(x− xi) parameterized by

a positive semidefinite (PSD) matrix M. Such methods
seek a linear projection of the data in a latent space
where the Euclidean distance is applied. As we will
see in the following, our weighting method is a speci-
fic case of metric learning which looks for a diagonal
matrix - applied only when comparing a query to a
positive example - and that behaves well in terms of
F-Measure.

3.2 Sampling Strategies

One way to overcome the issues induced by the lack
of positive examples is to compensate artificially the
imbalance between the two classes. Sampling strate-
gies [FGHC18] have been proven to be very efficient to
address this problem. In the following, we overview the
most used methods in the literature.

3



The Synthetic Minority Over-sampling Tech-
nique [CBHK02] (SMOTE) over-samples a dataset by
creating new synthetic positive data. For each minority
example x, it randomly selects one of its k nearest
positive neighbors and then creates a new random
positive point on the line between this neighbor and
x. This is done until some desired ratio is reached.

Borderline-SMOTE [HWM05] is an improvement of
the SMOTE algorithm. While the latter generates
synthetic points from all positive points, BorderLine-
SMOTE only focuses on those having more negatives
than positives in their neighborhood. More precisely,
new points are generated if the number n of negatives
in the k-neighborhood is such that k/2 ≤ n ≤ k.

The Adaptive Synthetic [HBGL08] (ADASYN) sam-
pling approach is also inspired from SMOTE. By using
a weighted distribution, it gives more importance to
classes that are more difficult to classify, i.e. where po-
sitives are surrounded by many negatives, and thus ge-
nerates more synthetic data for these classes.

Two other strategies combine an over-sampling step
with an under-sampling procedure. The first one uses
the Edited Nearest Neighbors [Wil72] (ENN) algorithm
on the top of SMOTE. After SMOTE has generated
data, the ENN algorithm removes data that are mis-
classified by their k nearest neighbors. The second one
combines SMOTE with Tomek’s link [Tom76]. A To-
mek’s link is a pair of points (xi,xj) from different
classes for which there is no other point xk verifying
d(xi,xk) ≤ d(xi,xj) or d(xk,xj) ≤ d(xi,xj). In other
words, xi is the nearest neighbor of xj and vice-versa.
If so, one removes the example of (xi,xj) that belongs
to the majority class. Note both strategies tend to eli-
minate the overlapping between classes.

Interestingly, we can note that all the previous sam-
pling methods try to overcome the problem of learning
from imbalanced data by resorting to the notion of k-
neighborhood. This is justified by the fact that k-NN
has been shown to be a good estimate of the density at
a given point in the feature space. In our contribution,
we stay in this line of research. Rather than genera-
ting new examples, that would have a negative impact
from a complexity perspective, we locally modify the
density around the positive points. This is achieved
by rescaling the distance between a test sample and
the positive training examples. We will show that such
a strategy can be efficiently combined with sampling
methods, whose goal is complementary, by potentially
generating new examples in regions of the space where
the minority class is not present.

4 Proposed Approach

In this section, we present our γk−NN method which
works by scaling the distance between a query point
and positive training examples by a factor.

4.1 A Corrected k−NN algorithm

Statistically, when learning from imbalanced data, a
new query x has more chance to be close to a negative
example due to the rarity of positives in the training
set, even around the mode of the positive distribution.
We have seen two families of approaches that can be
used to counteract this effect : (i) creating new synthe-
tic positive examples, and (ii) changing the distance
according to the class. The approach we propose falls
into the second category.

We propose to modify how the distance to the posi-
tive examples is computed, in order to compensate for
the imbalance in the dataset. We artificially bring a
new query x closer to any positive data point xi ∈ S+

in order to increase the effective area of influence of
positive examples. The new measure dγ that we pro-
pose is defined, using an underlying distance d (e.g. the
euclidean distance) as follows :

dγ(x,xi) =

{
d(x,xi) if xi ∈ S−,
γ · d(x,xi) if xi ∈ S+.

As we will tune the γ parameter, this new way to com-
pute the similarity to a positive example is close to a
Mahalanobis-distance learning algorithm, looking for
a PSD matrix, as previously described. However, the
matrix M is restricted to be γ2 ·I, where I refers to the
identity matrix. Moreover, while metric learning typi-
cally works by optimizing a convex loss function under
constraints, our γ is simply tuned such as maximizing
the non convex F-Measure. Lastly, and most impor-
tantly, it is applied only when comparing the query to
positive examples. As such, dγ is not a proper distance,
however, it is exactly this which allows it to compen-
sate for the class imbalance. In the binary setting, there
is no need to have a γ parameter for the negative class,
since only the relative distances are used. In the multi-
class setting with K classes, we would have to tune up
to K − 1 values of γ.

Before formalizing the γk−NN algorithm that will
leverage the distance dγ , we illustrate in Fig. 2, on
2D data, the decision boundary induced by a nearest
neighbor binary classifier that uses dγ . We consider an
elementary dataset with only two points, one positive
and one negative. The case of γ = 1, which is a tra-
ditional 1-NN is shown in a thick black line. Lowering
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Figure 2 – Evolution of the decision boundary based
on dγ , for a 1-NN classifier, on a 2D dataset with one
positive (resp. negative) instance represented by a blue
cross (resp. orange point). The value of γ is given on
each boundary (γ = 1 on the thick line).
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Figure 3 – Behavior of the decision boundary accor-
ding to the γ value for the 1-NN classifier on two toy
datasets. The positive points are represented by blue
crosses and the negatives by orange points. The black
line represents the standard decision boundary for the
1-NN classifier, i.e. when γ = 1.

the value of γ below 1 brings the decision boundary
closer to the negative point, and eventually tends to
surround it very closely. In Fig 3, two more complex
datasets are shown, each with two positive points and
several negative examples. As intuited, we see that the
γ parameter allows to control how much we want to
push the boundary towards negative examples.

We can now introduce the γk−NN algorithm (see
Algo 1) that is parameterized by a γ parameter. It has
the same overall complexity as k−NN. The first step
to classify a query x is to find its k nearest negative
neighbors and its k nearest positive neighbors. Then,
the distances to the positive neighbors are multiplied
by γ, to obtain dγ . These 2k neighbors are then ranked
and the k closest ones are used for classification (with
a majority vote, as in k−NN). It should be noted that,
although dγ does not define a proper distance, we can
still use any existing fast nearest neighbor search al-
gorithm, because the actual search is done (twice but)
only using the original distance d.

Algorithm 1: Classification of a new example
with γk−NN

Input : a query x to be classified, a set of
labeled samples S = S+ ∪ S−, a
number of neighbors k, a positive real
value γ, a distance function d

Output: the predicted label of x

NN−,D− ← nn(k,x, S−) // nearest negative
neighbors with their distances

NN+,D+ ← nn(k,x, S+) // nearest positive
neighbors with their distances
D+ ← γ · D+

NN γ ←
firstK

(
k, sortedMerge((NN−,D−), (NN+,D+))

)
y ← + if

∣∣NN γ ∩NN+
∣∣ ≥ k

2 else − //
majority vote based on NN γ

return y

4.2 Theoretical analysis

In this section, we formally analyze what could be
a good range of values for the γ parameter of our cor-
rected version of the k−NN algorithm. To this aim, we
study what impact γ has on the probability to get a
false positive (and false negative) at test time and ex-
plain why it is important to choose γ < 1 when the
imbalance in the data is significant. The following ana-
lysis is made for k = 1 but note that the conclusion
still holds for a k-NN.

Proposition 1 (False Negative probability) Let
dγ(x,x+) = γd(x,x+), ∀γ > 0, be our modified
distance used between a query x and any positive
training example x+, where d(x,x+) is some distance
function. Let FNγ(z) be the probability for a positive
example z to be a false negative using Algorithm (1).
The following result holds : if γ ≤ 1,

FNγ(z) ≤ FN(z)

Proof 1 (sketch of proof) Let ε be the distance from
z to its nearest-neighbor Nz. z is a false negative if
Nz ∈ S− that is all positives x′ ∈ S+ are outside the
sphere S ε

γ
(z) centered at z of radius ε

γ . Therefore,

FNγ(z) =
∏

x′∈S+

(
1− P (x′ ∈ S ε

γ
(z))

)
,

=
(

1− P (x′ ∈ S ε
γ

(z))
)m+

(1)

while

FN(z) = (1− P (x′ ∈ Sε(z)))
m+ . (2)
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Solving (1) ≤ (2) implies γ ≤ 1.

This result means that satisfying γ < 1 allows
us to increase the decision boundary around positive
examples (as illustrated in Fig. 3), yielding a smaller
risk to get false negatives at test time. An interesting
comment can be made from Eq.(1) and (2) about their
convergence. As m+ is supposed to be very small in im-
balanced datasets, the convergence of FN(z) towards 0
is pretty slow, while one can speed-up this convergence
with FNγ(z) by increasing the radius of the sphere
S ε
γ

(z), that is taking a small value for γ.

Proposition 2 (False Positive probability) Let
FPγ(z) be the probability for a negative example z to
be a false positive using Algorithm (1). The following
result holds : if γ ≥ 1,

FPγ(z) ≤ FP (z)

Proof 2 (sketch of proof) Using the same idea as be-
fore, we get :

FPγ(z) =
∏

x′∈S−

(1− P (x′ ∈ Sγε(z))) ,

= (1− P (x′ ∈ Sγε(z)))
m− (3)

while

FP (z) = (1− P (x′ ∈ Sε(z)))
m− . (4)

Solving (3) ≤ (4) implies γ ≥ 1.

As expected, this result suggests to take γ > 1 to
increase the distance dγ(z,x+) from a negative test
sample z to any positive training example x+ and thus
reduce the risk to get a false positive. It is worth noti-
cing that while the two conclusions from Propositions
1 and 2 are contradictory, the convergence of FPγ(z)
towards 0 is much faster than that of FNγ(z) because
m− >> m+ in an imbalance scenario. Therefore, ful-
filling the requirement γ > 1 is much less important
than satisfying γ < 1. For this reason, we will impose
our Algorithm (1) to take γ ∈]0, 1[. As we will see in
the experimental section, the more imbalance the data-
sets, the smaller the optimal γ, confirming the previous
conclusion.

5 Experiments

In this section, we present an experimental evalua-
tion of our method on public and real private datasets
with comparisons to classic distance-based methods

and state of the art sampling strategies able to deal
with imbalanced data. All results are reported using
k = 3. The experiments with k = 1, fully reported in
the supplementary material, follow the same trends.

5.1 Experimental setup

For the experiments, we use several public datasets
from the classic UCI 1 and KEEL 2 repositories. We
also use eleven real fraud detection datasets provided
by the General Directorate of Public Finances (DG-
FiP) which is part of the French central public adminis-
tration related to the French Ministry for the Economy
and Finance. These private datasets correspond to data
coming from tax and VAT declarations of French com-
panies and are used for tax fraud detection purpose
covering declaration of over-valued, fictitious or prohi-
bited charges, wrong turnover reduction or particular
international VAT frauds such as ”VAT carousels”. The
DGFiP performs about 50,000 tax audits per year wi-
thin a panel covering more than 3,000,000 companies.
Being able to select the right companies to control each
year is a crucial issue with a potential high societal im-
pact. Thus, designing efficient imbalance learning me-
thods is key. The main properties of the datasets are
summarized in Table 5.1, including the imbalance ratio
(IR).

All the datasets are normalized using a min-max
normalization such that each feature lies in the range
[−1, 1]. We randomly draw 80%-20% splits of the data
to generate the training and test sets respectively. Hy-
perparameters are tuned with a 10-fold cross-validation
over the training set. We repeat the process over 5 runs
and average the results in terms of F-measure F1. In
a first series of experiments, we compare our method,
named γk−NN, to 6 other distance-based baselines :

• the classic k−Nearest Neighbor algorithm
(k−NN),

• the weighted version of k−NN using the in-
verse distance as a weight to predict the label
(wk−NN) [Dud76],

• the class weighted version of k−NN
(cwk−NN) [BSGR03],

• the k−NN version where each positive is du-
plicated according to the IR of the dataset
(dupk−NN),

• the metric learning method LMNN [WS09].

1. https://archive.ics.uci.edu/ml/datasets.html

2. https://sci2s.ugr.es/keel/datasets.php
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datasets size dim %+ %− IR
balance 625 4 46.1 53.9 1.2
autompg 392 7 37.5 62.5 1.7
ionosphere 351 34 35.9 64.1 1.8
pima 768 8 34.9 65.1 1.9
wine 178 13 33.1 66.9 2
glass 214 9 32.7 67.3 2.1
german 1000 23 30 70 2.3
vehicle 846 18 23.5 76.5 3.3
hayes 132 4 22.7 77.3 3.4
segmentation 2310 19 14.3 85.7 6
abalone8 4177 10 13.6 86.4 6.4
yeast3 1484 8 11 89 8.1
pageblocks 5473 10 10.2 89.8 8.8
satimage 6435 36 9.7 90.3 9.3
libras 360 90 6.7 93.3 14
wine4 1599 11 3.3 96.7 29.2
yeast6 1484 8 2.4 97.6 41.4
abalone17 4177 10 1.4 98.6 71.0
abalone20 4177 10 0.6 99.4 159.7

dgfip 19 2 16643 265 35.1 64.9 1.9
dgfip 9 2 440 173 24.8 75.2 3
dgfip 4 2 255 82 20.8 79.2 3.8
dgfip 8 1 1028 255 17.8 82.2 4.6
dgfip 8 2 1031 254 17.9 82.1 4.6
dgfip 9 1 409 171 16.4 83.6 5.1
dgfip 4 1 240 76 16.2 83.8 5.2
dgfip 16 1 789 162 10.3 89.7 8.7
dgfip 16 2 786 164 9.9 90.1 9.1
dgfip 20 3 17584 294 5 95 19
dgfip 5 3 19067 318 3.9 96.1 24.9

Table 1 – Information about the studied datasets sor-
ted by imbalance ratio. The first part refers to the pu-
blic datasets, the second one describes the DGFiP pri-
vate datasets.

We set the number of nearest neighbors to k = 3 for
all methods. The hyperparameter µ of LMNN, weigh-
ting the impact of impostor constraints (see [WS09] for
more details), is tuned in the range [0, 1] using a step
of 0.1. Our γ parameter is tuned in the range [0, 1] 3

using a step of 0.1.

In a second series of experiments, we compare our
method to the five oversampling strategies described in
Section 3.2 : SMOTE, Borderline-SMOTE, ADASYN,
SMOTE with ENN, SMOTE with Tomek’s link. The
number of generated positive examples is tuned over

the set of ratios
m+

m−
∈ {0.1, 0.2, ..., 0.9, 1.0} and such

that the new ratio is greater than the original one be-
fore sampling. Other parameters of these methods are

3. We experimentally noticed that using a larger range for
γ leads in fact to a potential decrease of performances due to
overfitting phenomena. This behavior is actually in line with the
analysis provided in Section 4.2.

the default ones used by the package ImbalancedLearn
of Scikit-learn.

5.2 Results

The results on the public datasets using distance-
based methods are provided in Table 5.2. Overall, our
γk−NN approach performs much better than its com-
petitors by achieving an improvement of at least 3
points on average, compared to the 2nd best method
(dupk−NN). The different k−NN versions fail globally
to provide models efficient whatever the imbalance ra-
tio. The metric learning approach LMNN is competi-
tive when IR is smaller than 10 (although algorithmi-
cally more costly). Beyond, it faces some difficulties to
find a relevant projection space due to the lack of posi-
tive data. The efficiency of γk−NN is not particularly
sensitive to the imbalance ratio.

The results for our second series of experiments, fo-
cusing on sampling strategies, are reported on Fig. 4.
We compare each of the 5 sampling methods with the
average performances of 3−NN and γk-NN obtained
over the 19 public datasets reported in Table 5.2. Addi-
tionally, we also use γk−NN on the top of the sampling
methods to evaluate how both strategies are comple-
mentary. However, in this scenario, we propose to learn
a different γ value to be used with the synthetic posi-
tives. Indeed, some of them may be generated in some
true negative areas and in this situation it might be
more appropriate to decrease the influence of such syn-
thetic examples. The γ parameter for these examples is
then tuned in the range [0, 2] using a step of 0.1. If one
can easily observe that all the oversampling strategies
improve the classic k−NN , none of them is better than
our γk-NN method showing that our approach is able
to deal efficiently with imbalanced data. Moreover, we
are able to improve the efficiency of γk-NN when it is
coupled with an oversampling strategy. The choice of
the oversampler does not really influence the results.
The gains obtained by using a sampling method with
γk-NN for each dataset is illustrated in Fig. 6 (left).

To study the influence of using two γ parameters
when combined with an oversampling strategy, we
show an illustration (Fig. 5 (top)) of the evolution of
the F -measure with respect to the γ values for synthe-
tic and real positive instances. The best F -measure is
achieved when the γ on real positives is smaller than 1
and when the γ on synthetic positives is greater than 1,
justifying the interest of using two parameterizations of
γ. In Fig. 5 (bottom), we show how having two γ values
gives the flexibility to independently control the increa-
sed influence of real positives and the one of artificial
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datasets 3−NN dupk−NN wk−NN cwk−NN LMNN γk−NN
balance 0.954(0.017) 0.954(0.017) 0.957(0.017) 0.961(0.010) 0.963(0.012) 0.954(0.029)

autompg 0.808(0.077) 0.826(0.033) 0.810(0.076) 0.815(0.053) 0.827(0.054) 0.831(0.025)

ionosphere 0.752(0.053) 0.859(0.021) 0.756(0.060) 0.799(0.036) 0.890(0.039) 0.925(0.017)

pima 0.500(0.056) 0.539(0.033) 0.479(0.044) 0.515(0.037) 0.499(0.070) 0.560(0.024)

wine 0.881(0.072) 0.852(0.057) 0.881(0.072) 0.876(0.080) 0.950(0.036) 0.856(0.086)

glass 0.727(0.049) 0.733(0.061) 0.736(0.052) 0.717(0.055) 0.725(0.048) 0.746(0.046)

german 0.330(0.030) 0.449(0.037) 0.326(0.030) 0.344(0.029) 0.323(0.054) 0.464(0.029)

vehicle 0.891(0.044) 0.867(0.027) 0.891(0.044) 0.881(0.021) 0.958(0.020) 0.880(0.049)

hayes 0.036(0.081) 0.183(0.130) 0.050(0.112) 0.221(0.133) 0.036(0.081) 0.593(0.072)

segmentation 0.859(0.028) 0.862(0.018) 0.877(0.028) 0.851(0.022) 0.885(0.034) 0.848(0.025)

abalone8 0.243(0.037) 0.318(0.013) 0.241(0.034) 0.330(0.015) 0.246(0.065) 0.349(0.018)

yeast3 0.634(0.066) 0.670(0.034) 0.634(0.066) 0.699(0.015) 0.667(0.055) 0.687(0.033)

pageblocks 0.842(0.020) 0.850(0.024) 0.849(0.019) 0.847(0.029) 0.856(0.032) 0.844(0.023)

satimage 0.454(0.039) 0.457(0.027) 0.454(0.039) 0.457(0.023) 0.487(0.026) 0.430(0.008)

libras 0.806(0.076) 0.788(0.187) 0.806(0.076) 0.789(0.097) 0.770(0.027) 0.768(0.106)

wine4 0.031(0.069) 0.090(0.086) 0.031(0.069) 0.019(0.042) 0.000(0.000) 0.090(0.036)

yeast6 0.503(0.302) 0.449(0.112) 0.502(0.297) 0.338(0.071) 0.505(0.231) 0.553(0.215)

abalone17 0.057(0.078) 0.172(0.086) 0.057(0.078) 0.096(0.059) 0.000(0.000) 0.100(0.038)

abalone20 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.067(0.038) 0.057(0.128) 0.052(0.047)

mean 0.543(0.063) 0.575(0.053) 0.544(0.064) 0.559(0.046) 0.560(0.053) 0.607(0.049)

Table 2 – Results for 3−NN on the public datasets. The values correspond to the mean F-measure F1 over
5 runs. The standard deviation is indicated between brackets. The best result on each dataset is indicated in
bold.
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Figure 4 – Comparison of different sampling strate-
gies averaged over the 19 public datasets. OS refers to
the results of the corresponding sampling strategy and
OS+γ to the case when the sampling strategy is com-
bined with γk-NN. k−NN and γk−NN refers to the
results of these methods without oversampling as ob-
tained in Table 5.2. (numerical values for these graphs
are provided in supplementary material)

We now propose a study on the influence of the im-
balance ratio on the optimal γ-parameter. We consider
the Balance dataset which has the smallest imbalance
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Figure 5 – (Top) An example of heatmap that shows
the best couple of γ for the OS+γk−NN strategy on the
yeast6 dataset with SMOTE and Tomek’s link. (Bot-
tom) Illustration, on a toy dataset, of the effect of va-
rying the γ for generated positive points (in grey) while
keeping a fixed γ = 0.4 for real positive points.

ratio that we increase by iteratively randomly under-
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sampling the minority class over the training set. We
report the results on Fig. 6 (right). As expected, we
can observe that the optimal γ value decreases when
the imbalance increases. However, note that from a cer-
tain IR (around 15), γ stops decreasing to be able to
keep a satisfactory F-Measure.
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Figure 6 – (Top) Comparison of k-NN with (i)
γk−NN (points in blue) and (ii) γk−NN coupled with
the best sampling strategy (OS?) (points in orange) for
each dataset and for k = 3. Points below the line y = x
means that k-NN is outperformed. (Bottom) Evolution
of the optimal γ value with respect to the IR for k = 3.

The results for the real datasets of the DGFiP are
available in Table 3. Note that only the SMOTE al-
gorithm is reported here since the other oversamplers
have comparable performances. The analysis of the re-
sults leads to observations similar as the ones made
for the public datasets. Our γ−kNN approach outper-
forms classic k−NN and is better than the results ob-
tained by the SMOTE strategy. Coupling the SMOTE
sampling method with our distance correction γk-NN
allows us to improve the global performance showing
the applicability of our method on real data.

6 Conclusion

In this paper, we have proposed a new strategy that
addresses the problem of learning from imbalanced da-

tasets, based on the k−NN algorithm and that modi-
fies the distance to the positive examples. It has been
shown to outperform its competitors in term of F1-
measure. Furthermore, the proposed approach is com-
plementary to oversampling strategies and can even in-
crease their performance. Our γk−NN algorithm, des-
pite its simplicity, is highly effective even on real data
sets.

Two lines of research deserve future investigations.
We can note that tuning γ is equivalent to building a
diagonal matrix (with γ2 in the diagonal) and applying
a Mahalanobis distance only between a query and a
positive example. This comment opens the door to a
new metric learning algorithm dedicated to optimizing
a PSD matrix under F-Measure-based constraints. If
one can learn such a matrix, the second perspective will
consist in deriving generalization guarantees over the
learned matrix. In addition, making γ non-stationary
(a γ(x) that smoothly varies in X ) would increase the
model flexibility.
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