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Context of Thesis

Blitz company

Blitz activities

Buy now.
Pay in monthly
installments.

Payment facilities Smooth checkout flow  Securing cheque
transactions
Other activities:

e Assistance with PV management
e Assistance in staff management

— This work Focus on the topic of securing cheque transactions ...
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Context of Thesis

Check fraud detection

What is cheque fraud ?
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Context of Thesis

Check fraud detection

What is cheque fraud ? ..
Some statistics :
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. more precisely on the topic of learning from imbalanced data
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1. Introduction on Learning From Imbalanced Data
2. A Geometrical Approach based on the Distance to Positives

2.1 Building Risky Areas
ME? : "Learning Maximum Excluding Ellipsoids from Imbalanced Data with

Theoretical Guaranties"
2.2 An Adjusted Version Nearest Neighbor Algorithm
v — k-NN : "An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure

from Imbalanced Data"

3. An Approach based on Cost-Sensitive Learning

3.1 Optimizing F-measure by Cost-Sensitive Classification
CONE: "From Cost-Sensitive Classification to Tight F-Measure Bounds"
3.2 Improving the Benefits of Mass Distribution

"Tree-based Cost-Sensitive Methods for Fraud Detection in Imbalanced Data"

4. Conclusion and Perspectives
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Balanced vs. Imbalanced

Balanced dataset

Positives ~ Negatives



Learning from Imbalanced Data

Balanced vs. Imbalanced

Balanced dataset Imbalanced dataset
0o’ 2.
[ ] [ ]
So° %8 %8 ¢
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.".o. ’ %2% 9..:. .... 2% 0.. °
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Positives ~ Negatives Positives < Negatives

L 1
Minimizing a surrogate of . > it1 1ig, £y, leads to:

focus on both classes focus on majority examples



Learning from Imbalanced Data

Impact of Imbalance

Example of linear SVM and k-NN with 50% and 20% of positives.




Learning from Imbalanced Data

Performance Measures

Use appropriate measures

Graph of the F-measure for g =1

Tos

% 0.6 E

£

o© 0.0
0 llgg'sze()%oasoigivéoo >0 SOJFUI False Positive Rate

(1+ 8 (P~ FN)
Iy = 5 Pf(z4) > f(z-)]
(1+B2%)P—FN + FP
G-mean Precision mMcc
Mean Average Precision False Positive Rate
Recall Average Precision
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Learning from Imbalanced Data

Balance the two classes

Use sampling strategies

Original dataset

SMOTE Random Undersampling
o‘. M :..‘ . c’.
K 0 s . :
. ‘-\’:" ) .. :'{t\’:‘. . .'
’ K ) X G s
. Cr B Saadra s
Bl b " Sl
v ¥ o, ‘.
(I Tdet .

e Oversampling: Random - SMOTE - BorderSMOTE, ...
e Undersampling: Random - Tomek Link - ENN, ...
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Learning from Imbalanced Data

Representation and Cost-Sensitive Learning

Distance and representation Cost-sensitive learning

(3, x') = /(¢ = x) TM(x — ), Crp=0  Cpn=c

where M is PSD. Crp=1—-c¢ Crn=0
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[ ) o0 Metric Learning .. ..
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Original space Latent space



Learning from Imbalanced Data

Representation and Cost-Sensitive Learning

Distance and representation Cost-sensitive learning

(3, x') = /(¢ = x) TM(x — ), Crp=0  Cpn=c

where M is PSD. Crp=1—-c¢ Crn=0

o0 o_ o — ¢ =~ 1 to encourage low miss-
® ® ‘: .. classification on positives.
. Metric Learning

b ¢ o €y, b)) = e9-(1—h(x))+(1—0)-(1—y)-h(x)
Original space Latent space

—> Learning Maximum Excluding Ellipsoids from
Imbalanced Data with Theoretical Guarantees,

PRL, 2018.

—> An Adjusted Nearest Neighbor Algorithm Maxi-
mizing the F-Measure from Imbalanced Data, I1C-

TAI, 2019.



Learning from Imbalanced Data

Representation and Cost-Sensitive Learning

Distance and representation Cost-sensitive learning

dna(x, %) = 1/ (x = x)TM(x - x), Crp =0 Crn =c

where M is PSD. Crp=1—-c¢ Crn=0

o0 o_ o — ¢ ~ 1 to encourage low miss-
® PY o ) ® o classification on positives.
[ ) o0 Metric Learning .. ..
Uy, h(x)) = cy-(1—h(x))+(1—c)-(1-y)-h(x)
Original space Latent space

— Learning Maximum Excluding Ellipsoids from —> From Cost-Sensitive Classification to Tight F-
Imbalanced Data with Theoretical Guarantees, Measure Bounds, AISTATS, 2019.
PRL, 2018.

—> An Adjusted Nearest Neighbor Algorithm Maxi- —> Tree-based Cost Sensitive Methods for Fraud De-
mizing the F-Measure from Imbalanced Data, IC- tection in Imbalanced Data , IDA, 2018.

TAI, 2019.



2. A Geometrical Approach based on the Distance to Positives

2.1 Building Risky Areas
ME? : "Learning Maximum Excluding Ellipsoids from Imbalanced Data with

Theoretical Guaranties"”
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M E?: Learning Risky Areas

Hypothesis

Frauds are close to each other, they form small groups in the
feature space

Given a set of m unlabelled points, find the center ¢ and the smallest radius R of the ball that

includes the data (Tax and Duin, 2004).

1 1 1
. 2 1 m ) min  =|lc||2 N e 5 I, 27
C}r’n}g‘:]’n5 R + T 2i=1 &, ot 2H I3 + o 2i=1 §i—p 2” ill3
. 1
st |lxi—c|3 <R?+¢, Vi, s.t. cT'xy > p+ §||xZ Vi,
& > 0Vi.

& > 0Vi.
Being in the ball < being above the hyperplane



M E?: Learning Risky Areas

From MIB to M E?

. @ . . e Use the idea of MIB to create MEB

@ @ e One model per positive instance

. e Require few positive neighbors
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M E?: Learning Risky Areas

From MIB to M E?

e Use the idea of MIB to create MEB
e One model per positive instance

e Require few positive neighbors

e From balls to ellipsoids

e Increase decision boundary

. . — Maximum Excluding Ellipsoids
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M E?: Learning Risky Areas

Optimization problem

. ] m
min — > & B — R)? + \[|M — 1| -2,
min G (B - R AIM -
s.t. |x, —cliy > R—&, Vi=1,...,m,
>0, Vi=1,....m
0<R<B,
error terms (in terms of distances) regularization term

40 45

0
45

Influence of Influence of A
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M E?: Learning Risky Areas

Dual formulation

— express the Lagrangian £ including the constraints
— expression of primal variables w.r.t. dual ones:

1. derivative of £ w.r.t. primal variables
2. set derivatives to 0
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M E?: Learning Risky Areas

Dual formulation

— express the Lagrangian £ including the constraints
— expression of primal variables w.r.t. dual ones:

1. derivative of £ w.r.t. primal variables
2. set derivatives to 0

One of these derivatives gives:

oL
67M_0:>M_I+7Zak k—C k—C)T.

— M is Positive Semi Definite for free

14 / 51



M E?: Learning Risky Areas

Theoretical Guarantees

Using stability framework (Bousquet and Elisseeff, 2002)

1 —m
where Rg(M, R) = ey D[R =€ - CH%/I]-F
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Theoretical Guarantees

Using stability framework (Bousquet and Elisseeff, 2002)

L [m(1/5)
R(M, R) < Rs(M, R) + O (mm(% SV e )
where Rs(M, R) — %2;11[3 11 = el
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M E?: Learning Risky Areas

Theoretical Guarantees

Using stability framework (Bousquet and Elisseeff, 2002)

1 In(1 /5))

M,R)<Rg
R( ">_R5(M7R)+O<min(u,)\) o

I —m
where Rg(M, R) = p- SR =€ - cll3g)+-
the true risk on the underlying and unknown distribution

the empirical risk over the sample S

generalization gap of the learned model: depends on the complexity of
the model

15 / 51



M E?: Learning Risky Areas

Experimental Results

Comparison with standards algorithms on imbalanced datasets

Dataset | Nb. of ex. | % Pos.
Wine 1599 3.3
Abalonel? 2 338 2.5
Yeast6 1484 2.4
Abalone20 1916 1.4
Blitz 15 000 1.0

Average Rank

RBF OCSVM ™
LOCSVM ~

RBF SVM ~

i
o

LSVM

Algorithm

Lower Rank: able to reach better

performance

16 / 51



M E?: Learning Risky Areas

Limitation of M E?

Unreachable new positives

Find a way to increase the influence zone of positives



2. A Geometrical Approach based on the Distance to Positives

2.2 An Adjusted Version Nearest Neighbor Algorithm
v — k-NN : "An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure

from Imbalanced Data"
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~v-k-NN : a revisit of the £-NN

Presentation of 7-k-NN

Observations

Imbalanced setting — low density of positives

low density of positives — small influence area
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~v-k-NN : a revisit of the £-NN

Presentation of 7-k-NN

Observations

Imbalanced setting — low density of positives

low density of positives — small influence area

Idea

Bring points closer to positives by modifying their distances

v-d(x,xq)  ify; = +1.

el

dy(x,%x;) = {
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~v-k-NN: a revisit of the k-NN

Study of v parameter

Importance of the parameter v

Probability of False Negative Probability of False Positive
y<1 y=1

FN,(z) = (1-P(x ¢ 35))"” FPy(z) = (1 “p (X € 8))™

Choose 7 < 1 in Imbalanced settings

20 / 51
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y optimal
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[llustration of the optimal v with respect to the IR on Balance dataset
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~v-k-NN: a revisit of the k-NN

Experiemental results 1/2

Comparison of y-3NN with baselines
mean over 19 datasets

0.65

0.60 -
2
3
g 0.55 A
]
'y

0.50 1

0.45 -

& S NS N & N
> G G
S R &
Methods

— perform better and even better than a Metric Learning approach.
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~v-k-NN: a revisit of the k-NN

Experimental results 2/2

Behaviour of y-k-NN combined with an

.
N4 o
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o

o
9
o

05 10 s 2.0
y on reals
reals: v < 1
synthetics: v > 1

i

r0.16
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r0.10

r0.08
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0.00
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1079 . y3NN
0S"+y-3NN

0.8
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ES ws»PiMa, yeast6
= satimage
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«abalone8
0.2
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Coupling with sampling strategies

improves the algorithm

23 / 51



3. An Approach based on Cost-Sensitive Learning

3.1 Optimizing F-measure by Cost-Sensitive Classification
CONE: "From Cost-Sensitive Classification to Tight F-Measure Bounds"

24 / 51



CONE: an Algorithm for F-measure Optimization

F-measure

Objective: find a way to optimize the F-measure Fj

b Q4P -FN) (1P -e)
PT U+ P -FN+FP (1+3)P e teo

Two important quantities: e; = F'N et es = F'P linked to the empirical
risk R.
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F-measure

Objective: find a way to optimize the F-measure Fj

b Q4P -FN) (1P -e)
PT U+ P -FN+FP (1+3)P e teo

Two important quantities: e; = F'N et es = F'P linked to the empirical
risk R.

How to make the link between Fz and R?

— Pseudo linearity of the F-measure !
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CONE: an Algorithm for F-measure Optimization

Related work

Based on previous work published in 2014 at NIPS (Parambath et al.,
2014)

Use the pseudo-linearity of the F-measure

Derive bounds on optimality of Fjs

Algorithmitic : grid approach
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CONE: an Algorithm for F-measure Optimization

Related work

Based on previous work published in 2014 at NIPS (Parambath et al.,
2014)

Use the pseudo-linearity of the F-measure

Derive bounds on optimality of Fjs
Algorithmitic : grid approach

— Extend the existing work from both theoretical and practical
aspect

26 / 51



CONE: an Algorithm for F-measure Optimization

A pseudo linear function

e Fj level sets are hyperplanes in the (e1, e2)-space:

Vt € [0,1], Fg(e) =t <= Ja,bt.q. (a(t),e) + b(t) = 0.

e a : weights assigned to the errors
e (a(t),e) : weighted version of R.

— Good choice of t <= Optimizing Fj.

27 / 51



CONE: an Algorithm for F-measure Optimization

Deriving a bound 1/2

e Write the difference of F-measures between e and €’

1

F(e') — F(e) = ®c - (a(F(€'),e — '), ®e = (1+B8)P—e1+e

e Bound this difference using:
1. linearity of the inner product

2. sub-optimality ;1 of the learned hypothesis

(F(e/) — F(e) < ®eey + De - (ea — 1 — (¢ — €)) (' ).

Problem: e(t') = € = (€], €}) is unknown

28 / 51



CONE: an Algorithm for F-measure Optimization

Deriving a bound 2/2

— Bound the difference e}, — ¢}

e When t/ < t:
M _ ma: el .
max e”eS();-[) ( 2 1)
s.t. F(e)>F(e)
F(e/) < + Pec1 + Pe - (€2 — €1 — ]\/[max)(t/ —1),

e When t' > t:

Mpin = min el —e).
min " CE(H) ( 2 1)
s.t. F(e")>F(e)
F(e') < + Doy + P - (62 —e1 — Afmin)(t/ — t),

29 / 51



CONE: an Algorithm for F-measure Optimization

An asymmetric cone

30 / 51



CONE : an Algorithm for F-measure Optimization

Existing results

F
1
F(e) < F(e)+® - (260M +¢1)
2M‘b€0
F(e) < F(e) + ey +4MD|t' —¢|.
oo | F ol
F
5 - ¢ e £(: distance to optimal weights

. .. — 1/
Interpretation existing bound o M= max [€”]]2

of Parambath et al. (2014) o © = (32P)~" independent from e
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CONE: an Algorithm for F-measure Optimization

Bounds comparison: Parambath et al. (2014) vs Our

Similar bounds ...

Abalone 12

.. with highly different slopes.
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CONE: an Algorithm for F-measure Optimization

An iterative algorithm

1 5 Step 1: Take the middle of the
\\// t-space of reasearch: ¢t1 = 0.5
— Highest values of F' in [0, ]
} t
0 t1

Step 1
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An iterative algorithm

F F
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— Highest values of F' in [0, ]
’ " ! S ! Step 2: Choose t in the middle of
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— Highest values of F' in [t1,1]
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CONE: an Algorithm for F-measure Optimization

An iterative algorithm

F F
1 > 1= \y7 | Step 1: Take the middle of the
v V2 t-space of reasearch: ¢t1 = 0.5
— Highest values of F' in [0, ]
’ " ! S ! Step 2: Choose t in the middle of
Step 1 Step 2 [0, 1]

— Highest values of F' in [t1,1]

Step 3: Choose t3 in the middle of
[th 1}
— Highest values of F in [ty, t3]

t Step 4: Choose t4 in the middle of
[t1, t3]

o 1 &

t3
Step 4
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CONE: an Algorithm for F-measure Optimization

Comparison in terms of convergence

11
1.0{ +—+
!
1 10
1
0.8 !
1
| 0.9
g 1 —- F-M Parambath et al. (2014) g N — - F-M Parambath et al. (2014)
706 | —— Bound Parambath et al. (2014) 2 \ —— Bound Parambath et al. (2014)
3 1 e EM 3 Y
g \ Ours 2os \‘ F-M Ours
I \ —— Bound Ours I \ —— Bound Ours
0.4 1 -
1 N\
| N
07 Seo
— Pt ——
02 s
0.6
0.0
1 4 7 10 13 16 19 1 4 7 10 13 16 19
Number of steps / Grid size

Number of steps / Grid size

Adult
— A more informative bound
— A faster convergence
— Improves the performances

Abalone 12
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CONE: an Algorithm for F-measure Optimization

Comparison of performances

Abalone 12
0.20
om——mm——— -]
©0.15 [
o I -
2 1]
©0.10 |-
= Il
Y- 0.05 |
! I SVM = SVM, g
1 —. VMg == SVMc
0.00 L——1
1 4 7 10 13 16 19
Number of steps / Grid size
Adult
0.70
0 068
5 e ey 7 B T ]
2 0.66 /-___a-"-ud"
3
s 0.64
uw
0.62 SVM  wmm SVM, 5.
—— SVMg == SVMc
0.60— T T T . -
1 4 7 10 13 16 19

Number of steps / Grid size

SVM: a linear SVM

SVM7 gr: a linear SVM with
weighted errors

SVMg: grid approach
(Parambath et al., 2014)

SVM¢: our approach
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3. An Approach based on Cost-Sensitive Learning

3.2 Improving the Benefits of Mass Distribution

"Tree-based Cost-Sensitive Methods for Fraud Detection in Imbalanced Data"

36 / 51



Improving Retailers Benefits

Current model

Currently

Model based on classification error (Decision Tree (Breiman et al.,
1984) and Giny criterion)

Limits the number of alarms

Focuses on the number of false alarms, i.e. high precision

— Does not take main criterion into account: benefits
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Improving Retailers Benefits

Current model

Currently

Model based on classification error (Decision Tree (Breiman et al.,
1984) and Giny criterion)

Limits the number of alarms

Focuses on the number of false alarms, i.e. high precision

— Does not take main criterion into account: benefits

Idea

Define a new loss which optimizes retailers benefits

Use the amount in the loss function

37 / 51



Improving Retailers Benefits

Cost-Sensitive Model

Compute retailers benefits using a cost matrix (Elkan, 2001)

‘ Predicted Positive Predicted Negative

Actual Positive Crp Crn

Actual Negative Crp Crn
Crp=0 Cpn = (r —c(m))-m
Crpp=p-r-m-—~¢& Cry=7r-m

m
= Wildicrp, + (1= g)ern,) + (1= i) (Gicep, + (1 = Gi)ern,)] -
=1
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Improving Retailers Benefits

Decision tree and splitting criterion 1/2

max FS’; +F5r —TI'g

attributes

s

o Weighted version
Decision tree

FS =
Impurity: T =1-5"._,p? 1 my m_
e m Zies, [7m crp;, + FCTN@-] +
Split:  max . I's—a,l 1 my m_
P attributes ZveChlldren S vt S E Zi€S+ m crp; + WCFNi
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Improving Retailers Benefits

Decision tree and splitting criterion 2/2

Label

Choose the label that maximizes to profits
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Improving Retailers Benefits

Decision tree and splitting criterion 2/2

() = (D) O
TORNONNOENOIIO NG

Label

Choose the label that maximizes to profits

Random Forest

Build several decision trees using the splitting criterion
Combination using different rules:

simple majority vote

weighted majority vote using the induced benefits

40 / 51



Improving Retailers Benefits

Experiments

60

4 months of transactions:

Precision
40

e Improves the profits

e Reduces the precision

(%) swoud xew deg

20

A gap of 1% represents
around 43 000 euros.
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Improving Retailers Benefits

Gradient tree boosting

Boosting: Combine models such that f; compensates for F;_; weaknesses.

T
Pr=fo+Y afi

t=1

Gradient Boosting: Same idea, but work in the prediction space rather
than parameter space.

_ [85(%}’}—1(&))}

OF, 1(x1) , (ft,ar) = argmin Z i — af(x))?

a7
— Give a surrogate of predefined ¢ using the exponential

U(xi,yi) = yi(1 — ;) exp(=F(x;)) + ¢i(1 — y;) exp(F(x;)).
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Improving Retailers Benefits

Experiments

Using Gradient Boosting
Reduces training pro-
- - cess
Improves profits
' Higher recall
- - a Lower precision

Save around 60 000 eu-

4

40
(%) swoud xew des

Precision and Recall
°

20
[ J

N g oM

3 £

s g 7 ros compared to the
w ¢
@ =
Vel current one
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4. Conclusion and Perspectives
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Summary of Contributions
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Conclusion

Summary of Contributions

Two main axes were proposed to deal with the problem of learning from
imbalanced data:
1. Geometric: based on the distance to positives
e Risky areas + local learning
e Modification of the k-NN, modifying distance to positives
2. Cost-Sensitive Learning: Weighting the errors

e Bounds + iterative algorithm: optimizing F-measure
e Loss + algorithm: improving retailers benefits
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Conclusion

Bilan

ME?

7-k-
NN

CONE

C;’BTree

Advantages

Easy to learn M
Theoretical guarantees on F'P

Easy to implement
Simplicity

Bounds on Fjp

Derivation of an algorithm

Require only few iterations

Fast to learn
Flexibility

Disadvantages

Over-fitting
Detect new positives

Distance Computation
Too simple
Algorithm convergence

Guarantee at test time

Low Precision
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Perspectives

~v-k-NN: a Metric Learning version

Based on the work on LMNN Weinberger and Saul (2009)

— Propose a version of v-k-NN based on learning new representations.

Ideas :

e Keep compromise F'N vs F'P.

e Hyper-parameters: optimized to maximize the F-measure

Deriving theoretical guarantees:

e On the learned metric (Bellet et al., 2015)

e On the classification performances

— Ongoing work : submission at AISTATS 2020

47 / 51



Perspectives
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Lemma: The difference (e; — e2) is a decreasing function of ¢ when e(t) is
obtained from an optimal classifier h learned with the weights a(t).

48 / 51



Perspectives

CONE: Deriving lower bounds

Lemma: The difference (e; — e2) is a decreasing function of ¢ when e(t) is
obtained from an optimal classifier h learned with the weights a(t).

Example when t/ > t:

F(e')— F(e)= ®¢ <(a(t),e) + (' —t)(e2 —e1) — (a(ﬂ),e’)) ,
—— —_————

Pe <t(62 —e1) + (14 B%)er — (1+ B7)ey —t'(eh — e}) + (' — t)(e2 — 61)> ;
———

(Y

de (t(r:’l —eh) =ty —e)+ (1 +8%)(er — )+ —t)(ea — 61)> ,

F(e') = F(e) > ®e ((1+%)(e1 —ef) + (' —tez —e1 — (e —€}))).
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Perspectives

CONE: Deriving lower bounds
F(e) = F(e)>  ®o ((14 %) (er —¢)) + (' —t)ea — e1 — (¢ — €1)))

e ¢, — ¢ as seen previously.

e ¢; — ¢}: find a tight lower-bound.
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Perspectives

CONE: Deriving lower bounds

F(e') = F(e)> @ ((1+%)(er —¢)) + (' —t)ez —e1 — (¢ — €7)))
e ¢, — ¢ as seen previously.

e ¢; — ¢}: find a tight lower-bound.

Fy
1 e Bound the values of Fj
e Get a new algorithm
e Deriving generalization bounds Fj
/ e Optimality of Fj3 at test time
F e Empirically : generalization bounds
based on the validation (Kawaguchi
4 et al., 2017).
>
0 t
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Perspectives

ME?: reducing over-fitting

Problem: M E? is prone to over-fitting

— Find a way to "smooth" the classification process

— Convex Combinations of local models (Zantedeschi et al., 2016)
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Thank you for your attention !

International Journal

® G.Metzler, X.Badiche, B.Belkasmi, E.Fromont, A.Habrard and M.Sebban; Learning Maximum Excluding
Ellipsoids from Imbalanced Data with Theoretical Guarantees, PRL, 2018.
International Conferences
® R.Viola, R.Emonet, A.Habrard, G.Metzler, S. Riou and M.Sebban; An Adjusted Nearest Neighbor Algorithm
Maximizing the F-Measure from Imbalanced Data, ICTAI, 2019.
@® K.Bascol, R.Emonet, E.Fromont, A.Habrard, G.Metzler and M.Sebban; From Cost-Sensitive Classification to
Tight F-Measure Bounds, AISTATS, 2019.
® G.Metzler, X.Badiche, B.Belkasmi, E.Fromont, A.Habrard and M.Sebban; Tree-based Cost Sensitive
Methods for Fraud Detection in Imbalanced Data , IDA, 2018.
National Conferences
® R.Viola, R.Emonet, A.Habrard, G.Metzler, S.Riou and M.Sebban; Une version corrigée de I'algorithme des
plus proches voisins pour I'optimisation de la F-mesure dans un contexte déséquilibré, CAp, 2019.
® K.Bascol, R.Emonet, E.Fromont, A.Habrard, G.Metzler and M.Sebban; Un algorithme d’optimisation de la
F-Mesure par pondération des erreurs de classification, CAp, 2018.
® G.Metzler, X.Badiche, B.Belkasmi, E.Fromont, A.Habrard and M.Sebban; Apprentissage de Sphéres

Maximales d’exclusion avec Garanties Théoriques, CAp, 2017.
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M E?: Learning Risky Areas

Algorithm

1. assign each text example to its closest positive

2. apply the following classification rule:
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Perspectives

~v-k-NN: Version Metric Learning

Based on the work on LMNN Weinberger and Saul (2009)

— Propose a version of y-k-NN based on learning new representations.

1 l-a 2
min dave(x4,%4)° +
min o f—— > dmlxixg)
Xi,X; ES
yi=y;=1

11—«
3 > [1—m' + dn(xi,%5)° — d(xi,xz)?]
(xiv’;jivzllc)ER

+

fa Y [1—m' +d(xi,%;)* — dm(xi, xx)?] | 1M =T||%.
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~v-k-NN: a revisit of the k-NN

~v* vs. L.R.
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Improving Retailers Benefits

Study of parameter &

Influence of & parameter

Increasing ¢ value:

vl e Improves the Precision
% == Gap Max Profits
>

B Frocon Reduces the Recall

Recall

| f Reduces the retailers benefits
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Comparison on Blitz dataset

Comparison Contributions
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