

Learning from Imabalanced Data An Application to Bank Fraud Detection

Guillaume Metzler

Univ. Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France Blitz Business Services, VILLEFONTAINE, France

25 September 2019

Marianne CLAUSEL
Marc TOMMASI
Yves GRANDVALET
Élisa FROMONT
Amaury HABRARD
Marc SEBBAN
Xavier BADICHE
Brahim BELKASMI

Professeure, Université de Lorraine
Professeur, Université de Lille
Professeur, Université de Technologie de Compiègne
Professeure, Université de Rennes I
Professeur, Université de Saint-Étienne
Professeur, Université de Saint-Étienne
Président Directeur Général de Blitz Business Services
Ingénieur R&D, Blitz Business Services

Rapporteure
Rapporteur
Examinateur
Co-encadrante
Co-encadrant
Directeur
Blitz BS
Blitz BS

Blitz company

Blitz activities

Payment facilities

Smooth checkout flow

Securing cheque transactions

Blitz company

Blitz activities

Smooth checkout flow

Securing cheque transactions

Other activities:

- Assistance with PV management
- Assistance in staff management

Blitz company

Blitz activities

Payment facilities

Smooth checkout flow

Securing cheque transactions

Other activities:

- Assistance with PV management
- Assistance in staff management
- \rightarrow This work Focus on the topic of securing cheque transactions ...

Check fraud detection

What is cheque fraud?

- Unpaid cheque (no money on bank account)
- False cheque
- Not the real identity
 - Incorrect number series in the CMC7

Check fraud detection

What is cheque fraud?

- Unpaid cheque (no money on bank account)
- False cheque
 Not the real identity
 Incorrect number series in the CMC7

Some statistics:

10 months of transactions (03/20/2016 to 10/21/2016)

- around 3.2 millions of transactions
- for 195 millions of euros
- 20 000 are frauds or unpaid (0.6%)
- represent 2 millions of euros (1.1%)

Check fraud detection

What is cheque fraud?

- Unpaid cheque (no money on bank account)
- False cheque
 Not the real identity

 Incorrect number series in the CMC7

Some statistics:

10 months of transactions (03/20/2016 to 10/21/2016)

- around 3.2 millions of transactions
- for 195 millions of euros
- 20 000 are frauds or unpaid (0.6%)
- represent 2 millions of euros (1.1%)

... more precisely on the topic of learning from imbalanced data

Outline

- 1. Introduction on Learning From Imbalanced Data
- 2. A Geometrical Approach based on the Distance to Positives
 - 2.1 Building Risky Areas ME^2 : "Learning Maximum Excluding Ellipsoids from Imbalanced Data with Theoretical Guaranties"
 - 2.2 An Adjusted Version Nearest Neighbor Algorithm γk -NN: "An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data"
- 3. An Approach based on Cost-Sensitive Learning
 - 3.1 Optimizing F-measure by Cost-Sensitive Classification CONE: "From Cost-Sensitive Classification to Tight F-Measure Bounds"
 - 3.2 Improving the Benefits of Mass Distribution

 "Tree-based Cost-Sensitive Methods for Fraud Detection in Imbalanced Data"
- 4. Conclusion and Perspectives

Balanced vs. Imbalanced

Balanced vs. Imbalanced

Positives \simeq Negatives

Imbalanced dataset

Positives ≪ Negatives

Minimizing a surrogate of
$$\frac{1}{m}\sum_{i=1}^m 1_{\{\hat{y}_i \neq y_i\}}$$
 leads to:

focus on both classes

focus on majority examples

Impact of Imbalance

Example of linear SVM and k-NN with 50% and 20% of positives.

Performance Measures

Use appropriate measures

$$F_{\beta} = \frac{(1 + \beta^2)(P - FN)}{(1 + \beta^2)P - FN + FP}$$

$$\mathbb{P}[f(x_+) > f(x_-)]$$

G-mean

Mean Average Precision

Precision

False Positive Rate

Average Precision

Recall

7 / 51

MCC

Balance the two classes

Use sampling strategies

- Oversampling: Random SMOTE BorderSMOTE, ...
- Undersampling: Random Tomek Link ENN, ...

Representation and Cost-Sensitive Learning

Distance and representation

$$d_{\mathbf{M}}(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^T \mathbf{M}(\mathbf{x} - \mathbf{x}')},$$

where M is PSD.

Cost-sensitive learning

$$C_{TP} = 0$$
 $C_{FN} = c$

$$C_{FP} = 1 - c \quad C_{TN} = 0$$

 $\rightarrow c \simeq 1$ to encourage low miss-classification on positives.

$$\ell(y,h(\mathbf{x})) = c \cdot y \cdot (1 - h(\mathbf{x})) + (1 - c) \cdot (1 - y) \cdot h(\mathbf{x})$$

Representation and Cost-Sensitive Learning

Distance and representation

$$d_{\mathbf{M}}(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^T \mathbf{M} (\mathbf{x} - \mathbf{x}')},$$

where M is **PSD**.

Original space

Latent space

Cost-sensitive learning

$$C_{TP} = 0$$
 $C_{FN} = c$

$$C_{FP} = 1 - c \quad C_{TN} = 0$$

 $\rightarrow c \simeq 1$ to encourage low missclassification on positives.

$$\ell(y,h(\mathbf{x})) = c \cdot y \cdot (1 - h(\mathbf{x})) + (1 - c) \cdot (1 - y) \cdot h(\mathbf{x})$$

- Learning Maximum Excluding Ellipsoids from Imbalanced Data with Theoretical Guarantees, PRL, 2018.
- An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data, IC-TAI, 2019.

Representation and Cost-Sensitive Learning

Distance and representation

$$d_{\mathbf{M}}(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^T \mathbf{M} (\mathbf{x} - \mathbf{x}')},$$

where M is **PSD**.

Original space

Latent space

$C_{FP} = 1 - c$ $C_{TN} = 0$

 $ightarrow c \simeq 1$ to encourage low missclassification on positives.

 $C_{TP} = 0$ $C_{FN} = c$

Cost-sensitive learning

$$\ell(y,h(\mathbf{x})) = c \cdot y \cdot (1 - h(\mathbf{x})) + (1 - c) \cdot (1 - y) \cdot h(\mathbf{x})$$

- Learning Maximum Excluding Ellipsoids from Imbalanced Data with Theoretical Guarantees, PRL, 2018.
- → An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data, IC-TAI. 2019.
- → From Cost-Sensitive Classification to Tight F-Measure Bounds, AISTATS, 2019.
- → Tree-based Cost Sensitive Methods for Fraud Detection in Imbalanced Data , IDA, 2018.

Outline

- Introduction on Learning From Imbalanced Data
- 2. A Geometrical Approach based on the Distance to Positives
 - 2.1 Building Risky Areas

 ME^2 : "Learning Maximum Excluding Ellipsoids from Imbalanced Data with Theoretical Guaranties"

- 2.2 An Adjusted Version Nearest Neighbor Algorithm γk -NN: "An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure
- 3. An Approach based on Cost-Sensitive Learning
 - 3.1 Optimizing F-measure by Cost-Sensitive Classification

 CONE: "From Cost-Sensitive Classification to Tight F-Measure Bounds
 - 3.2 Improving the Benefits of Mass Distribution

 "Tree-based Cost-Sensitive Methods for Fraud Detection in Imbalanced Data
- 4. Conclusion and Perspectives

Frauds are close to each other, they form small groups in the feature space

Given a set of m unlabelled points, find the center ${\bf c}$ and the **smallest** radius R of the ball that includes the data (Tax and Duin, 2004).

$$\begin{aligned} & \underset{\mathbf{c},R,\xi}{\min} & & R^2 + \frac{\mu}{m} \sum_{i=1}^m \xi_i, \\ & \text{s.t.} & & \|\mathbf{x}_i - \mathbf{c}\|_2^2 \leq R^2 + \xi_i, \ \forall i, \\ & & \xi_i \geq 0 \ \forall i. \end{aligned}$$

$$\begin{split} \min_{\mathbf{c},\rho,\xi} &\quad \frac{1}{2}\|\mathbf{c}\|_2^2 + \frac{1}{\nu m} \sum_{i=1}^m \xi_i - \rho - \frac{1}{2}\|\mathbf{x}_i\|_2^2, \\ \text{s.t.} &\quad \mathbf{c}^T \mathbf{x}_i \geq \rho + \frac{1}{2}\|\mathbf{x}_i \ \forall i, \\ &\quad \xi_i \geq 0 \ \forall i. \end{split}$$

Being in the ball ←⇒ being above the hyperplane

ME^2 : Learning Risky Areas From MIB to ME^2

- Use the idea of MIB to create MEB
- One model per positive instance
- Require few positive neighbors

ME^2 : Learning Risky Areas From MIB to ME^2

- Use the idea of MIB to create MEB
- One model per positive instance
- Require few positive neighbors

- From balls to ellipsoids
- Increase decision boundary
- → Maximum Excluding Ellipsoids

$M\bar{E}^2$: Learning Risky Areas

Optimization problem

$$\min_{\substack{R,\mathbf{M},\boldsymbol{\xi}\\s.t.}} \frac{1}{m} \sum_{i=1}^{m} \xi_i + \mu(B-R)^2 + \lambda \|\mathbf{M} - \mathbf{I}\|_{\mathcal{F}^2},
s.t. \frac{\|\mathbf{x}_i - \mathbf{c}\|_{\mathbf{M}}^2}{\|\mathbf{x}_i - \mathbf{c}\|_{\mathbf{M}}^2} \ge R - \xi_i, \quad \forall i = 1, \dots, m,
\xi_i \ge 0, \quad \forall i = 1, \dots, m
0 \le R \le B,$$

error terms (in terms of distances) regularization term

- \rightarrow express the Lagrangian $\mathcal L$ including the constraints
- → expression of primal variables w.r.t. dual ones:
 - 1. derivative of \mathcal{L} w.r.t. primal variables
 - 2. set derivatives to 0

Dual formulation

- \rightarrow express the Lagrangian $\mathcal L$ including the constraints
- → expression of primal variables w.r.t. dual ones:
 - 1. derivative of \mathcal{L} w.r.t. primal variables
 - **2**. set derivatives to 0

One of these derivatives gives:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{M}} = 0 \implies \mathbf{M} = \mathbf{I} + \frac{1}{2\lambda} \sum_{i=1}^{m} \alpha_k (\mathbf{x}_k - \mathbf{c}) (\mathbf{x}_k - \mathbf{c})^T.$$

ightarrow M is Positive Semi Definite for free

Theoretical Guarantees

Using stability framework (Bousquet and Elisseeff, 2002)

$$\mathcal{R}(\mathbf{M}, R) \leq \mathcal{R}_{S}(\mathbf{M}, R) + \mathcal{O}\left(\frac{1}{\min(\mu, \lambda)} \sqrt{\frac{\ln(1/\delta)}{2m}}\right),$$

where
$$\mathcal{R}_S(\mathbf{M}, R) = \frac{1}{m} \sum_{i=1}^m [R - \|\xi - \mathbf{c}\|_{\mathbf{M}}^2]_+.$$

Theoretical Guarantees

Using stability framework (Bousquet and Elisseeff, 2002)

$$\mathcal{R}(\mathbf{M}, R) \leq \mathcal{R}_S(\mathbf{M}, R) + \mathcal{O}\left(\frac{1}{\min(\mu, \lambda)} \sqrt{\frac{\ln(1/\delta)}{2m}}\right),$$

where
$$\mathcal{R}_S(\mathbf{M}, R) = \frac{1}{m} \sum_{i=1}^m [R - \|\xi - \mathbf{c}\|_{\mathbf{M}}^2]_+.$$

the true risk on the underlying and unknown distribution

Theoretical Guarantees

Using stability framework (Bousquet and Elisseeff, 2002)

$$\mathcal{R}(\mathbf{M}, R) \leq \mathcal{R}_S(\mathbf{M}, R) + \mathcal{O}\left(\frac{1}{\min(\mu, \lambda)} \sqrt{\frac{\ln(1/\delta)}{2m}}\right),$$

where
$$\mathcal{R}_S(\mathbf{M}, R) = \frac{1}{m} \sum_{i=1}^m [R - \|\xi - \mathbf{c}\|_{\mathbf{M}}^2]_+.$$

the true risk on the underlying and unknown distribution the empirical risk over the sample S

Theoretical Guarantees

Using stability framework (Bousquet and Elisseeff, 2002)

$$\mathcal{R}(\mathbf{M}, R) \leq \mathcal{R}_{S}(\mathbf{M}, R) + \mathcal{O}\left(\frac{1}{\min(\mu, \lambda)} \sqrt{\frac{\ln(1/\delta)}{2m}}\right),$$

where
$$\mathcal{R}_S(\mathbf{M}, R) = \frac{1}{m} \sum_{i=1}^m [R - \|\xi - \mathbf{c}\|_{\mathbf{M}}^2]_+.$$

the true risk on the underlying and unknown distribution the empirical risk over the sample S

generalization gap of the learned model: depends on the complexity of the model

Experimental Results

Comparison with standards algorithms on imbalanced datasets

Dataset	Nb. of ex.	% Pos.
Wine	1 599	3.3
Abalone17	2 338	2.5
Yeast6	1 484	2.4
Abalone20	1 916	1.4
Blitz	15 000	1.0

Lower Rank: able to reach better performance

ME^2 : Learning Risky Areas Limitation of ME^2

Find a way to increase the influence zone of positives

Outline

- 1. Introduction on Learning From Imbalanced Data
- 2. A Geometrical Approach based on the Distance to Positives
 - 2.1 Building Risky Areas

 ME^2 : "Learning Maximum Excluding Ellipsoids from Imbalanced Data with Theoretical Guaranties"

2.2 An Adjusted Version Nearest Neighbor Algorithm

 $\gamma-k\text{-NN}$: "An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data"

- An Approach based on Cost-Sensitive Learning
 - 3.1 Optimizing F-measure by Cost-Sensitive Classification

 CONE: "From Cost-Sensitive Classification to Tight F-Measure Bounds
 - 3.2 Improving the Benefits of Mass Distribution
 "Tree-based Cost-Sensitive Methods for Fraud Detection in Imbalanced Data
- 4. Conclusion and Perspectives

γ -k-NN : a revisit of the k-NN Presentation of γ -k-NN

Observations

Imbalanced setting \to low density of positives low density of positives \to small influence area

γ -k-NN : a revisit of the k-NN Presentation of γ -k-NN

Observations

Imbalanced setting \rightarrow low density of positives low density of positives \rightarrow small influence area

Idea

Bring points closer to positives by modifying their distances

γ -k-NN : a revisit of the k-NN Presentation of γ -k-NN

Observations

Imbalanced setting \rightarrow low density of positives low density of positives \rightarrow small influence area

Idea

Bring points closer to positives by modifying their distances

$$d_{\gamma}(\mathbf{x}, \mathbf{x}_i) = \begin{cases} d(\mathbf{x}, \mathbf{x}_i) & \text{if } y_i = -1, \\ \gamma \cdot d(\mathbf{x}, \mathbf{x}_i) & \text{if } y_i = +1. \end{cases}$$

γ -k-NN: a revisit of the k-NN Study of γ parameter

Importance of the parameter γ

Choose $\gamma < 1$ in Imbalanced settings

γ -k-NN: a revisit of the k-NN

Illustration of the optimal γ with respect to the IR on Balance dataset

γ -k-NN: a revisit of the k-NN

Experiemental results 1/2

ightarrow perform better and even better than a Metric Learning approach.

$\gamma\text{-k-NN:}$ a revisit of the k-NN

Experimental results 2/2

Behaviour of γ -k-NN combined with an over-sampler.

reals: $\gamma < 1$ synthetics: $\gamma > 1$

Coupling with sampling strategies improves the algorithm

Outline

- 1. Introduction on Learning From Imbalanced Data
- 2. A Geometrical Approach based on the Distance to Positives
 - **2.1** Building Risky Areas

 ME^2 : "Learning Maximum Excluding Ellipsoids from Imbalanced Data with Theoretical Guaranties"

2.2 An Adjusted Version Nearest Neighbor Algorithm

 $\gamma-k$ -NN : "An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data"

- 3. An Approach based on Cost-Sensitive Learning
 - 3.1 Optimizing F-measure by Cost-Sensitive Classification

 CONE: "From Cost-Sensitive Classification to Tight F-Measure Bounds"
 - 3.2 Improving the Benefits of Mass Distribution

 "Tree-based Cost-Sensitive Methods for Fraud Detection in Imbalanced Data
- 4. Conclusion and Perspectives

CONE: an Algorithm for F-measure Optimization F-measure

Objective: find a way to optimize the F-measure F_{β}

$$F_{\beta} = \frac{(1+\beta^2)(P-FN)}{(1+\beta^2)P-FN+FP} = \frac{(1+\beta^2)(P-e_1)}{(1+\beta^2)P-e_1+e_2}.$$

Two important quantities: $e_1 = FN$ et $e_2 = FP$ linked to the empirical risk \mathcal{R} .

CONE: an Algorithm for F-measure Optimization F-measure

Objective: find a way to optimize the F-measure F_{β}

$$F_{\beta} = \frac{(1+\beta^2)(P-FN)}{(1+\beta^2)P-FN+FP} = \frac{(1+\beta^2)(P-e_1)}{(1+\beta^2)P-e_1+e_2}.$$

Two important quantities: $e_1 = FN$ et $e_2 = FP$ linked to the empirical risk \mathcal{R} .

How to make the link between F_{β} and \mathcal{R} ?

CONE: an Algorithm for F-measure Optimization F-measure

Objective: find a way to optimize the F-measure F_{β}

$$F_{\beta} = \frac{(1+\beta^2)(P-FN)}{(1+\beta^2)P-FN+FP} = \frac{(1+\beta^2)(P-e_1)}{(1+\beta^2)P-e_1+e_2}.$$

Two important quantities: $e_1 = FN$ et $e_2 = FP$ linked to the empirical risk \mathcal{R} .

How to make the link between F_{β} and \mathcal{R} ?

→ Pseudo linearity of the F-measure !

CONE: an Algorithm for F-measure Optimization Related work

- Based on previous work published in 2014 at NIPS (Parambath et al., 2014)
- Use the pseudo-linearity of the F-measure
- Derive bounds on optimality of F_{β}
- Algorithmitic : grid approach

CONE: an Algorithm for F-measure Optimization Related work

- Based on previous work published in 2014 at NIPS (Parambath et al., 2014)
- Use the pseudo-linearity of the F-measure
- Derive bounds on optimality of F_{β}
- Algorithmitic : grid approach

 \rightarrow Extend the existing work from both theoretical and practical aspect

A pseudo linear function

• F_{β} level sets are hyperplanes in the (e_1, e_2) -space:

$$\forall t \in [0,1], \ F_{\beta}(\mathbf{e}) = t \iff \exists \ \mathbf{a}, b \ \mathsf{t.q.} \ \langle \mathbf{a}(t), \mathbf{e} \rangle + b(t) = 0.$$

- a : weights assigned to the errors
- $\langle \mathbf{a}(t), \mathbf{e} \rangle$: weighted version of \mathcal{R} .
 - \rightarrow Good choice of $t \iff$ Optimizing F_{β} .

CONE: an Algorithm for F-measure Optimization Deriving a bound 1/2

ullet Write the difference of F-measures between ${f e}$ and ${f e}'$

$$F(\mathbf{e}') - F(\mathbf{e}) = \Phi_{\mathbf{e}} \cdot \langle \mathbf{a}(F(\mathbf{e}'), \mathbf{e} - \mathbf{e}'), \ \Phi_{\mathbf{e}} = \frac{1}{(1+\beta^2)P - e_1 + e_2}.$$

- Bound this difference using:
 - 1. linearity of the inner product
 - 2. sub-optimality ε_1 of the learned hypothesis

$$F(\mathbf{e}') - F(\mathbf{e}) \le \Phi_{\mathbf{e}} \varepsilon_1 + \Phi_{\mathbf{e}} \cdot (e_2 - e_1 - (e_2' - e_1')) (t' - t).$$

Problem: $\mathbf{e}(t') = \mathbf{e}' = (e'_1, e'_2)$ is unknown

Deriving a bound 2/2

$$ightarrow$$
 Bound the difference $e_2'-e_1'$

• When t' < t:

$$M_{max} = \max_{\mathbf{e''} \in \mathcal{E}(\mathcal{H}) \atop s.t. \ F(\mathbf{e''}) > F(\mathbf{e})} (e_2'' - e_1'').$$

$$F(\mathbf{e'}) \le F(\mathbf{e}) + \Phi_{\mathbf{e}} \varepsilon_1 + \Phi_{\mathbf{e}} \cdot (e_2 - e_1 - M_{\max})(t' - t),$$

• When t' > t:

$$M_{\min} = \min_{\substack{\mathbf{e}'' \in \mathcal{E}(\mathcal{H}) \\ s.t. \ F(\mathbf{e}'') > F(\mathbf{e})}} (e_2'' - e_1'').$$

$$F(\mathbf{e}') \le F(\mathbf{e}) + \Phi_{\mathbf{e}} \varepsilon_1 + \Phi_{\mathbf{e}} \cdot (e_2 - e_1 - M_{min})(t' - t),$$

CONE: an Algorithm for F-measure Optimization An asymmetric cone

CONE: an Algorithm for F-measure Optimization Existing results

Interpretation existing bound of Parambath et al. (2014)

$$\begin{split} F(\mathbf{e}') &\leq F(\mathbf{e}) + \Phi \cdot (2\varepsilon_0 M + \varepsilon_1) \\ F(\mathbf{e}') &\leq F(\mathbf{e}) + \Phi \varepsilon_1 + 4M\Phi |t' - t|. \end{split}$$
 où

- ε_0 : distance to optimal weights
- $\bullet M = \max_{\mathbf{e}''} \|\mathbf{e}''\|_2$
- ullet $\Phi = (eta^2 P)^{-1}$ independent from ${f e}$

Bounds comparison: Parambath et al. (2014) vs Our

... with highly different slopes.

An iterative algorithm

Step 1: Take the middle of the t-space of reasearch: $t_1 = 0.5$ \rightarrow Highest values of F in $[0, t_1]$

An iterative algorithm

Step 1: Take the middle of the t-space of reasearch: $t_1 = 0.5$

 \rightarrow Highest values of F in $[0,t_1]$

Step 2: Choose t_2 in the middle of $[0, t_1]$

 \rightarrow Highest values of F in $[t_1, 1]$

An iterative algorithm

- **Step 1**: Take the middle of the t-space of reasearch: $t_1 = 0.5$
 - \rightarrow Highest values of F in $[0, t_1]$
- **Step 2:** Choose t_2 in the middle of $[0, t_1]$
 - \rightarrow Highest values of F in $[t_1, 1]$
- **Step 3:** Choose t_3 in the middle of $[t_1,1]$
 - \rightarrow Highest values of F in $[t_1, t_3]$

An iterative algorithm

 \rightarrow Highest values of F in $[0,t_1]$

 \rightarrow Highest values of F in $[t_1, 1]$

Step 3: Choose t_3 in the middle of $[t_1,1]$

 \rightarrow Highest values of F in $[t_1, t_3]$

Step 4: Choose t_4 in the middle of $[t_1,t_3]$

Comparison in terms of convergence

Comparison of performances

SVM: a linear SVM

 $\mathsf{SVM}_{I.R}$: a linear SVM with weighted errors

 SVM_G : grid approach (Parambath et al., 2014)

 SVM_C : our approach

Outline

- Introduction on Learning From Imbalanced Data
- 2. A Geometrical Approach based on the Distance to Positives
 - **2.1** Building Risky Areas

 ME^2 : "Learning Maximum Excluding Ellipsoids from Imbalanced Data with Theoretical Guaranties"

2.2 An Adjusted Version Nearest Neighbor Algorithm

 $\gamma-k$ -NN : "An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data"

3. An Approach based on Cost-Sensitive Learning

- 3.1 Optimizing F-measure by Cost-Sensitive Classification

 CONE: "From Cost-Sensitive Classification to Tight F-Measure Bounds"
- 3.2 Improving the Benefits of Mass Distribution

 "Tree-based Cost-Sensitive Methods for Fraud Detection in Imbalanced Data"
- 4. Conclusion and Perspectives

Improving Retailers Benefits Current model

Currently

Model based on classification error (Decision Tree (Breiman et al., 1984) and Giny criterion)

Limits the number of alarms

Focuses on the number of false alarms, i.e. high precision

→ Does not take main criterion into account: benefits

Improving Retailers Benefits Current model

Currently

Model based on classification error (Decision Tree (Breiman et al., 1984) and Giny criterion)

Limits the number of alarms

Focuses on the number of false alarms, i.e. high precision

→ Does not take main criterion into account: benefits

Idea

Define a new loss which optimizes retailers benefits

Use the amount in the loss function

Compute retailers benefits using a cost matrix (Elkan, 2001)

	Predicted Positive	Predicted Negative
Actual Positive	C_{TP}	$\overline{C_{FN}}$
Actual Negative	C_{FP}	C_{TN}
	'	

$$C_{TP} = 0$$
 $C_{FN} = (r - c(m)) \cdot m$ $C_{FP} = \rho \cdot r \cdot m - \xi$ $C_{TN} = r \cdot m$

$$\ell(y,\hat{y}) = \sum_{i=1}^{m} \left[y_i (\hat{y}_i c_{TP_i} + (1 - \hat{y}_i) c_{FN_i}) + (1 - y_i) (\hat{y}_i c_{FP_i} + (1 - \hat{y}_i) c_{TN_i}) \right].$$

Decision tree and splitting criterion 1/2

Decision tree

Impurity:
$$\Gamma = 1 - \sum_{i \in \mathcal{Y}} p_i^2$$

Split:
$$\max_{attributes} \sum_{v \in \mathsf{Children}} \Gamma_S - \alpha_v \Gamma_{S_v}$$

Weighted version

$$\begin{array}{ll} \text{rity: } \Gamma = 1 - \sum_{i \in \mathcal{Y}} p_i^2 & \frac{\Gamma_S}{m} \sum_{i \in S_-} \left[\frac{m_+}{m} c_{FP_i} + \frac{m_-}{m} c_{TN_i} \right] & + \\ \max_{attributes} \sum_{v \in \mathsf{Children}} \Gamma_S - \alpha_v \Gamma_{S_v} & \frac{1}{m} \sum_{i \in S_+} \left[\frac{m_+}{m} c_{TP_i} + \frac{m_-}{m} c_{FN_i} \right] \end{array}$$

Decision tree and splitting criterion 2/2

Label

Choose the label that maximizes to profits

Decision tree and splitting criterion 2/2

Label

Choose the label that maximizes to profits

Random Forest

Build several decision trees using the splitting criterion Combination using different rules:

- simple majority vote
- weighted majority vote using the induced benefits

Experiments

4 months of transactions:

- Improves the profits
- Reduces the precision

A gap of 1% represents around 43 000 euros.

Gradient tree boosting

Boosting: Combine models such that f_t compensates for F_{t-1} weaknesses.

$$F_T = f_0 + \sum_{t=1}^{T} \alpha_t f_t$$

Gradient Boosting: Same idea, but work in the prediction space rather than parameter space.

$$g_t = -\left[\frac{\partial \ell(y, F_{t-1}(\mathbf{x}_i))}{\partial F_{t-1}(\mathbf{x}_i)}\right], \quad (f_t, \alpha_t) = \underset{\alpha, \ f}{\operatorname{argmin}} \ \sum_{i=1}^m (r_i - \alpha f(x_i))^2.$$

 \rightarrow Give a surrogate of predefined ℓ using the exponential

$$\ell(\mathbf{x}_i, y_i) = y_i(1 - c_i) \exp(-F(\mathbf{x}_i)) + c_i(1 - y_i) \exp(F(\mathbf{x}_i)).$$

Experiments

Using Gradient Boosting

- Reduces training process
- Improves profits
- Higher recall
- Lower precision

Save around 60 000 euros compared to the current one

Outline

- 1. Introduction on Learning From Imbalanced Data
- 2. A Geometrical Approach based on the Distance to Positives
 - **2.1** Building Risky Areas

 ME^2 : "Learning Maximum Excluding Ellipsoids from Imbalanced Data with Theoretical Guaranties"

- 2.2 An Adjusted Version Nearest Neighbor Algorithm
 - $\gamma-k$ -NN : "An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data"
- 3. An Approach based on Cost-Sensitive Learning
 - 3.1 Optimizing F-measure by Cost-Sensitive Classification CONE: "From Cost-Sensitive Classification to Tight F-Measure Bounds
 - 3.2 Improving the Benefits of Mass Distribution

 "Tree-based Cost-Sensitive Methods for Fraud Detection in Imbalanced Data
- 4. Conclusion and Perspectives

Conclusion

Summary of Contributions

Two main axes were proposed to deal with the problem of learning from imbalanced data:

Conclusion Summary of Contributions

Two main axes were proposed to deal with the problem of learning from imbalanced data:

- 1. Geometric: based on the distance to positives
 - Risky areas + local learning
 - Modification of the k-NN, modifying distance to positives

Conclusion

Summary of Contributions

Two main axes were proposed to deal with the problem of learning from imbalanced data:

- 1. Geometric: based on the distance to positives
 - Risky areas + local learning
 - Modification of the k-NN, modifying distance to positives

- 2. Cost-Sensitive Learning: Weighting the errors
 - Bounds + iterative algorithm: optimizing F-measure
 - Loss + algorithm: improving retailers benefits

	Advantages	Disadvantages
ME^2	Easy to learn ${f M}$ Theoretical guarantees on FP	Over-fitting Detect new positives
γ -k-	Easy to implement	Distance Computation
NN	Simplicity	Too simple
CONE	Bounds on F_{β} Derivation of an algorithm Require only few iterations	Algorithm convergence Guarantee at test time
GB_{Tree}	Fast to learn Flexibility	Low Precision

 γ -k-NN: a Metric Learning version

Based on the work on LMNN Weinberger and Saul (2009)

 \rightarrow Propose a version of γ -k-NN based on learning new representations.

Ideas:

- Keep compromise FN vs FP.
- Hyper-parameters: optimized to maximize the F-measure

Deriving theoretical guarantees:

- On the learned metric (Bellet et al., 2015)
- On the classification performances
- → Ongoing work : submission at AISTATS 2020

CONE: Deriving lower bounds

Lemma: The difference $(e_1 - e_2)$ is a decreasing function of t when $\mathbf{e}(t)$ is obtained from an optimal classifier h learned with the weights $\mathbf{a}(t)$.

CONE: Deriving lower bounds

Lemma: The difference $(e_1 - e_2)$ is a decreasing function of t when $\mathbf{e}(t)$ is obtained from an optimal classifier h learned with the weights $\mathbf{a}(t)$.

Example when t' > t:

$$\begin{split} F(\mathbf{e}') - F(\mathbf{e}) &= & \Phi_{\mathbf{e}} \left(\langle \mathbf{a}(t), \mathbf{e} \rangle + (t'-t)(e_2 - e_1) - \langle \mathbf{a}(t'), \mathbf{e}' \rangle \right), \\ &= & \Phi_{\mathbf{e}} \left(t(e_2 - e_1) + (1 + \beta^2)e_1 - (1 + \beta^2)e_1' - t'(e_2' - e_1') + (t'-t)(e_2 - e_1) \right), \\ &\downarrow & \text{Use of the Lemma} \\ &\geq & \Phi_{\mathbf{e}} \left(t(e_2' - e_1') - t'(e_2' - e_1') + (1 + \beta^2)(e_1 - e_1') + (t'-t)(e_2 - e_1) \right), \\ &\downarrow & \dots \\ &\downarrow & \dots \\ &F(\mathbf{e}') - F(\mathbf{e}) \geq & \Phi_{\mathbf{e}} \left((1 + \beta^2)(e_1 - e_1') + (t'-t)e_2 - e_1 - (e_2' - e_1')) \right). \end{split}$$

CONE: Deriving lower bounds

$$F(\mathbf{e}') - F(\mathbf{e}) \ge \Phi_{\mathbf{e}} \left((1 + \beta^2) (e_1 - e_1') + (t' - t)e_2 - e_1 - (e_2' - e_1') \right)$$

- $e_2' e_1'$: as seen previously.
- $e_1 e'_1$: find a tight lower-bound.

CONE: Deriving lower bounds

$$F(\mathbf{e}') - F(\mathbf{e}) \ge \Phi_{\mathbf{e}} \left((1 + \beta^2) (e_1 - e_1') + (t' - t)e_2 - e_1 - (e_2' - e_1') \right)$$

- $e_2' e_1'$: as seen previously.
- $e_1 e'_1$: find a tight lower-bound.

- Bound the values of F_{β}
- Get a new algorithm
- ullet Deriving generalization bounds F_eta
- Optimality of F_{β} at test time
- Empirically: generalization bounds based on the **validation** (Kawaguchi et al., 2017).

 ME^2 : reducing over-fitting

Problem: ME^2 is prone to over-fitting

- → Find a way to "smooth" the classification process
- \rightarrow Convex Combinations of local models (Zantedeschi et al., 2016)

Thank you for your attention!

International Journal

 G.Metzler, X.Badiche, B.Belkasmi, E.Fromont, A.Habrard and M.Sebban; Learning Maximum Excluding Ellipsoids from Imbalanced Data with Theoretical Guarantees, PRL, 2018.

International Conferences

- R.Viola, R.Emonet, A.Habrard, G.Metzler, S. Riou and M.Sebban; An Adjusted Nearest Neighbor Algorithm
 Maximizing the F-Measure from Imbalanced Data, ICTAI, 2019.
- K.Bascol, R.Emonet, E.Fromont, A.Habrard, G.Metzler and M.Sebban; From Cost-Sensitive Classification to Tight F-Measure Bounds. AISTATS, 2019.
- G.Metzler, X.Badiche, B.Belkasmi, E.Fromont, A.Habrard and M.Sebban; Tree-based Cost Sensitive Methods for Fraud Detection in Imbalanced Data, IDA, 2018.

National Conferences

- R.Viola, R.Emonet, A.Habrard, G.Metzler, S.Riou and M.Sebban; Une version corrigée de l'algorithme des plus proches voisins pour l'optimisation de la F-mesure dans un contexte déséquilibré, CAp, 2019.
- K.Bascol, R.Emonet, E.Fromont, A.Habrard, G.Metzler and M.Sebban; Un algorithme d'optimisation de la F-Mesure par pondération des erreurs de classification, CAp, 2018.
- G.Metzler, X.Badiche, B.Belkasmi, E.Fromont, A.Habrard and M.Sebban; Apprentissage de Sphères
 Maximales d'exclusion avec Garanties Théoriques, CAp, 2017.

References I

- Bellet, A., Habrard, A., and Sebban, M. (2015). Metric learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 9(1):1–151.
- Bousquet, O. and Elisseeff, A. (2002). Stability and generalization. *Journal of Machine Learning Research*, 2:499–526.
- Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). *Classification and regression trees.* The Wadsworth statistics/probability series. Wadsworth and Brooks/Cole Advanced Books and Software, Monterey, CA.
- Elkan, C. (2001). The foundations of cost-sensitive learning. In *Proceedings of the 17th International Joint Conference on Artificial Intelligence Volume 2*, pages 973–978, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
- Kawaguchi, K., Kaelbling, L. P., and Bengio, Y. (2017). Generalization in deep learning. arXiv preprint arXiv:1710.05468.
- Parambath, S. P., Usunier, N., and Grandvalet, Y. (2014). Optimizing f-measures by cost-sensitive classification. In Advances in Neural Information Processing Systems (NIPS-14), pages 2123–2131.
- Tax, D. M. J. and Duin, R. P. W. (2004). Support vector data description. *Machine Learning Journal*, 54(1):45–66.
- Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classification. *Journal of Machine Learning Research*, 10:207–244.
- Zantedeschi, V., Emonet, R., and Sebban, M. (2016). Metric learning as convex combinations of local models with generalization guarantees. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

ME^2 : Learning Risky Areas Algorithm

- 1. assign each text example to its closest positive
- 2. apply the following classification rule:

Based on the work on LMNN Weinberger and Saul (2009)

ightarrow Propose a version of γ -k-NN based on learning new representations.

$$\begin{split} \min_{\mathbf{M} \in \mathbb{S}^{+}} & \frac{1}{m^{3}} \left(\frac{1-\alpha}{2} \sum_{\substack{\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{S} \\ y_{i} = y_{j} = 1}} d_{\mathbf{M}}(\mathbf{x}_{i}, \mathbf{x}_{j})^{2} + \\ & \frac{1-\alpha}{2} \sum_{\substack{(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}) \in \mathcal{R} \\ y_{i} = 1}} \left[1 - m' + d_{\mathbf{M}}(\mathbf{x}_{i}, \mathbf{x}_{j})^{2} - d(\mathbf{x}_{i}, \mathbf{x}_{k})^{2} \right]_{+} \\ & + \alpha \sum_{\substack{(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}) \in \mathcal{R} \\ y_{i} = -1}} \left[1 - m' + d(\mathbf{x}_{i}, \mathbf{x}_{j})^{2} - d_{\mathbf{M}}(\mathbf{x}_{i}, \mathbf{x}_{k})^{2} \right]_{+} \right) \mu \|\mathbf{M} - \mathbf{I}\|_{\mathcal{F}}^{2}. \end{split}$$

 γ -k-NN: a revisit of the k-NN γ^\star vs. I.R.

 \rightarrow In average γ is a decreasing function of IR

Improving Retailers Benefits Study of parameter ξ

Influence of ξ parameter

Increasing ξ value:

Improves the Precision
Reduces the Recall
Reduces the retailers benefits

Comparison on Blitz dataset

Comparison Contributions

