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Résumé

Apprendre à partir de données déséquilibrées reste
une tâche complexe en apprentissage, tant sur le plan
théorique que pratique. Dans cet article, nous abor-
dons cette problématique en utilisant une stratégie
basée sur l’apprentissage de métrique. Contrairement
aux méthodes se basant sur la même approche, notre
algorithme apprend une nouvelle métrique qui ne sera
utilisée que lorsqu’une (nouvelle) donnée est comparée
à un exemple d’apprentissage de la classe minoritaire
(ou classe positive). D’un point de vue géométrique,
cela revient à rapprocher artificiellement des exemples
positifs de cette (nouvelle) donnée sans modifier les ca-
ractéristiques de la classe majoritaire. La stratégie mise
en œuvre permet d’étendre les frontières de décisions
autour des données positives. En terme de perfor-
mance, cela se traduit par une meilleure F-mesure,
critère de performance très souvent employé dans ce
contexte, par rapport aux algorithmes de l’état de l’art.
Au-delà de cette contribution algorithmique, notre ar-
ticle présente une étude théorique basée sur la sta-
bilité uniforme. Cette étude nous donne des garan-
ties de généralisation sur les taux de faux positifs et
de faux négatifs. Les expériences, e↵ectuées sur plu-
sieurs ensembles de données déséquilibrées, montrent
l’e�cacité de notre méthode par rapport aux algo-
rithmes d’apprentissage de métrique existants. Avec la
méthode proposée, nous sommes en mesures de rivali-
ser voire d’obtenir de meilleures performances qu’avec
des algorithmes spécifiquement dédiés au traitement de
données déséquilibrées.

Mots-clef : Imbalanced Binary Classification, Metric
Learning, Nearest-Neighbors, Theoretical Guarantees

1 Introduction

Fraud detection in bank or insurance applica-
tions [AMZ16, Sch06], and anomaly identification for
medical diagnosis [Agg17] are some societal challenges
requiring to address the problem of learning from
highly imbalanced data. When dealing with such a set-
ting, one has to face two major issues : (i) the scarcity
of the class of interest, only composed of a few positive
data, which limits the e�ciency of standard margin-
based loss functions ; (ii) the scattering of positive
examples in the total mass of the training data, which
makes the estimation of local densities much more com-
plicated than in balanced scenarios. Several solutions
have been proposed in the literature to address these
two problems. Most of them consist in applying sam-
pling strategies which aim to balance the dataset by
reducing the number of negative examples and/or crea-
ting new synthetic positive data [SBK+18, PTMH19].
On the other hand, one can resort to cost-sensitive
algorithms [KHB+17] which assign a weight to each
class (or even to each example) so that the classifier
can focus better on the minority class. Other strate-
gies include the use of ensemble methods [WJS+17,
FHSHG18] or the specific adaptation of existing ap-
proaches such as deep learning [HLCLT16, DCK18] or
kernel methods [MLPC15, DML+18, ZWZ+19].

In this paper, we address the problem of learning
from imbalanced data from a metric learning pers-
pective [BHS13, K+13]. Learning a metric specifically
designed for the application at hand may present se-
veral advantages in the context of imbalanced data-
sets : (i) the metric can be learned under semantic
constraints allowing us to expand the decision boun-
daries around the positives ; (ii) this framework en-
ables to design optimization problems based on the
geometry of the data without su↵ering from the is-
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Figure 1 – Intuition behind our method MLFP : a
PSD matrix M is optimized under constraints, and is
used only when a test query is compared to a positive
example. The distance to the negative examples is kept
unchanged. This allows the learned metric to expand
the decision boundaries around the positives and thus
to capture more examples of the class of interest.

sues of standard accuracy-based loss functions (e.g.,
hinge loss for SVMs, exponential loss for boosting, lo-
gistic loss for logistic regression) ; (iii) metric learning
is a nice setting to derive theoretical guarantees on the
learned transformation [BHS15]. Surprisingly, despite
these interesting features, metric learning has not re-
ceived much attention to address the problem of lear-
ning from imbalanced data (see, e.g., the recent pa-
pers [FWJ+18], [WZJ+18] and [GMHS19]). The goal
of this paper is to bridge this gap from both an algo-
rithmic and a theoretical perspective. As illustrated in
Figure 1, we propose the algorithm MLFP that opti-
mizes a linear transformation (via a Positive Semi De-
finite (PSD) matrixM of a Mahalanobis distance) only
when a test query is compared to a minority training
example. A single metric M is learned for the whole
space taking the geometry of the data into account. Un-
like the standard metric learning algorithms (see, e.g.,
LMNN [WS09] or ITML [DKJ+07]), our method
boils down to artificially bringing positive examples
closer to the query without challenging the features
of the negatives. This has a direct impact on the de-
cision boundaries around the positives allowing us to
capture more examples of the class of interest yielding
a better F -Measure (see Section 3 for a formal defi-
nition). By using the uniform stability framework, we
derive theoretical guarantees on the learned matrix M
showing the actual capability of MLFP to control the
false positive and false negative rates.

The paper is organized as follows. In Section 2, we
report some related work on metric learning for imba-

lanced data classification. Section 3 is dedicated to the
presentation of our metric learning algorithm MLFP.
Section 4 presents a theoretical analysis using the uni-
form stability framework and Section 5 illustrates the
performance of MLFP compared to state-of-the-art
algorithms.

2 Related work

Most of the metric learning algorithms (see [BHS13,
K+13] for a survey) are based on the optimization of
the Mahalanobis distance between two points xi and
xj 2 Rq :

dM(xi,xj)
2 = (xi � xj)

TM(xi � xj),

where M is a q⇥ q Positive Semi Definite matrix. One
can express M as LTL where L is a r⇥q matrix where
r is the rank of M. Thus, this distance can be seen as
the Euclidean distance in a new feature space Lx.

A well-known representative of this family of
algorithms is the Large Margin Nearest Neighbor
(LMNN) [WS09]. For each example of a training set
of size m, the learned metric M aims to bring closer
the neighbors of the same class (called target neigh-
bors) while pushing away the examples of other classes
(the impostors). While the number of constraints is
in the order of km2, the authors proposed an e�cient
subgradient descent algorithm which benefits from
the fact that many of these constraints are trivially
satisfied. This algorithm has been shown to be very
e�cient and to scale well with large datasets. Howe-
ver, it is worth noticing that LMNN is not designed
to take into account some imbalance in the data.
Indeed, the similarity constraints constructed from
pairs of examples of the same class do not make any
di↵erence between the positive and negative examples.
Therefore, in imbalanced scenarios, LMNN is prone
to focus on the majority class and thus is subject to
miss the positive examples.
This remark also holds for Information Theoretic
Metric Learning (ITML) [DKJ+07]. We can also cite
Geometric Mean Metric Learning (GMML) [ZHS16]
which learn a matrix M to compute the distance
between the similar examples and the matrix M�1

to compute the dissimilar ones. The idea is that if
M brings similar examples close to each other(i.e.
all the eigenvalues are less than one), then M�1

will push dissimilar examples away. Build on a
geometric intuition, they learn the metric with a
convex optimization problem which have a closed
form solution by seing the latter as an optimization
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problem on the Riemannian manifold of SPD matrices.

The first attempts to address the problem of lear-
ning a metric from imbalanced datasets have been pro-
posed very recently. [WZJ+18] introduce an iterative
metric learning algorithm (IML) that aims to define a
stable neighborhood used to predict the label of a new
test data. The method repeats two main steps : (i)
the learning of a linear transformation, e.g., by using
LMNN, and (ii) a training sample selection given a
test example. The procedure is repeated until stabili-
zation of the neighborhood. By repeating the process
several times, IML is able to locally separate posi-
tives from negatives. However, the main issue comes
from the algorithmic complexity of the method, which
requires to apply LMNN and to update the pairs
used for the training process at each iteration. Ano-
ther approach to learn metrics from imbalanced da-
tasets has been recently proposed [GMHS19]. In their
Imbalanced Metric Learning algorithm (ImbML), the
authors take into account the nature of the pairwise
constraints by using two di↵erent sub-losses, one for
each label, weighted according to the number of po-
sitive and negative examples respectively. This intui-
tive and natural way to proceed prevents the algo-
rithm from favoring the majority class. However, we
will see that applying the learned metric M to all
examples is not necessary, focusing only on the mino-
rity class appears to be much more e�cient and allows
us notably to better control the false negatives. Finally,
[FWJ+18] introduce DMBK for Distance Metric by
Balancing KL-divergence. This algorithm resorts to
the KL-divergence to represent normalized between-
class divergences. Combined with a geometric mean,
DMBK is able to make these divergences balanced.
Thus, this method makes particularly sense for dealing
with multi-class classification tasks, but its interest is
reduced when used in a binary setting.

Beyond the algorithmic limitations of the previous
state-of-the-art algorithms, note that none of them
comes with classification guarantees. In this paper,
we address this problem by studying the capability of
MLFP to optimize a metric M which provides a good
compromise between (i) expanding the decision boun-
daries around the positives which enables to reduce
the false negative rate at test time (one of the main
issues faced in imbalanced learning) ; (ii) controlling
this expansion to prevent the algorithm from detecting
too many false alarms (e.g. anomalies, frauds), repre-
sented by the false positive rate. The theoretical re-
sults take the form of guarantees on the learned metric
using the uniform stability framework [BE02] which

measures the stability of the output of the algorithm
when the training set is subject to slight changes.

3 Metric Learning for Imbalan-

ced Data

In this section, we present our algorithm MLFP,
for Metric Learning from Few Positives. In the follo-
wing, we denote by S = {zi = (xi, yi)}mi=1 the set of m
training examples drawn i.i.d. from an unknown joint
distribution D over X⇥Y, where xi 2 X (here X = Rq)
is a feature vector and yi 2 Y (here Y = {�1,+1}) cor-
responds to its associated label. The label +1 is used
to denote the positive or the minority class. We fur-
ther note S = S+ [ S� with S+ the set of m+ positive
examples and S� the set ofm� negative examples, such
that m = m+ +m�.

3.1 Problem Formulation

Mahalanobis distance-based metric learning algo-
rithms typically minimize a function of the form :

F (M) =
1

m2

X

(z,z0)2S2

`(M, z, z0) + µReg(M)

where ` is a loss function depending on M and pairs
of examples (z, z0) (some algorithms also use triplets of
points), and Reg is a regularization term on M. The
parameter µ controls the compromise between the two
terms. Note here that each example has the same im-
portance whatever its label. In imbalanced settings, the
minority examples correspond to the class of interest
(e.g., frauds in bank transactions). Unfortunately, with
the above formulation, any margin-based loss function
` will be prone to focus on the majority class and will
therefore miss most of the positive instances. In or-
der to avoid the pitfall of classic metric learning algo-
rithms that are prone to focus on the majority class,
we propose to give more importance to the minority
class composed of the positive instances.

In our approach, we use the Euclidean distance when
comparing a query point to a majority-class example.
The originality comes from the use of an optimized
Mahalanobis distance when comparing a query to a
minority-class sample. The objective of this strategy
is to formulate a metric learning problem leading to
a classifier (a kNN here) which is accurate on both
classes even in an imbalanced scenario.

Our algorithm MLFP tries to control the false po-
sitive (FP) and false negative (FN) rates thanks to the
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following constrained optimization problem :

min
M2S+

1

m3

0

BB@(1� ↵)
X

(xi,xj ,xk)
yi=yj=1 6=yk

`FN(M, zi, zj , zk)

+ ↵
X

(xi,xj ,xk)
yi=yj=�1 6=yk

`FP(M, zi, zj , zk)

1

CCA+ µkM� Ik2F ,

such that �max(M)  1. (1)

where S+ is the set of PSD matrices, �max(M) is the
largest eigenvalue of the PSD matrix M, `FN and `FP
are defined by :

`FN(M, zi, zj , zk) = [1�c+dM(xi,xj)2�d(xi,xk)2]+,
`FP(M, zi, zj , zk) = [1� c+d(xi,xj)2�dM(xi,xk)2]+,

where ↵ is the positive rate
m+

m
and µkM� Ik2F is a

regularization term which penalizes a large deviation
from the Euclidean distance. The hyper-parameter c
controls the margin we want to preserve between pairs
of dissimilar examples according to the Euclidean space
and the learned one.

Problem (1) is composed of two terms where tri-
plets are involved. Unlike standard metric learning al-
gorithms, our method takes into account both the Eu-
clidean distance d and the metric learned dM . More
precisely : the first term `FN aims to gather the mino-
rity class examples with respect to the learned metric
such that the distance between two positives (usingM)
is less than the distance to a negative example (using
the Euclidean distance). This subloss can be seen as
a way to prevent the model from generating false ne-
gatives (FN). The second term `FP works in a similar
manner. The only di↵erence lies in the fact that the
query xi is a negative example. Thus, we learn M such
that the positive queries xk are not bringing too close
to xi, i.e. the Euclidean distance between two negatives
xi and xj (with respect to the Euclidean distance) is lo-
wer than the distance between xi and xk (with respect
to M). This subloss can be seen as a way to prevent
the model from generating false positives (FP).

Both FN and FP are important terms to optimize
measures that are more suited to deal with imbalan-
ced settings, such as the F -Measure [Rij79] defined as
follows :

F1 =
2(m+ � FN)

2m+ � FN + FP
.

Minimizing the F -Measure boils down to finding a good
trade-o↵ between FP and FN. However, in a highly im-
balanced setting, where m+ is very low, missing only a
few positives leads to a dramatic decrease of the F -
Measure. The constraint over the largest eigenvalue
�max(M) of the learned matrix M aims to pay more
attention to the positive class. In the next section, we
provide a formal explanation of its use.

3.2 On the Impact of the Constraint

We study the impact of the �max(M) value on both
FN and FP and, thus the influence of the constraint of
our optimization problem.

Proposition 1. Let P[FNM(x)] (resp. P[FPM(x)])
be the probability of a positive query (resp. a negative
query) x of being a false negative (resp. a false posi-
tive) using the 1NN algorithm with the learned matrix
M and P[FN(x)] (resp. P[FP (x)]) the same probabi-
lity using the Euclidean distance.
Then, if �max(M)  1, we have :

P[FNM(x)]  P[FN(x)] and P[FPM(x)] � P[FP (x)].

Sketch of proof. Let " be the distance from x to its
nearest neighbor Nx. The example x is a false negative
if Nx 2 S�, that is, all positives x0

2 S+ are outside
an ellipsoid E",M�1(x), defined by " and M. Therefore,
we have :

P[FNM(x)] = (1� P
⇥
x0

2 E",M�1(x)
⇤
)m+ . (2)

When the Euclidean distance is used, we deal with a
standard sphere S" of radius ", and we get :

P[FN(x)] = (1� P [x0
2 S"(x)])

m+ . (3)

Having �max(M)  1 implies Eq. (2)  Eq. (3). In-
deed �max(M)  1 implies that the sphere S" is in-
cluded in the ellipsoid E",M�1 as illustrated in Figure
2. By this choice, we expand the decision boundaries
around positives and thus capture more minority class
examples. Using a similar scheme, we can prove the se-
cond inequality of Proposition 1. When x is negative
and Nx 2 S+, we have

P[FPM(x)] = (1� P
⇥
x0

2 E",M�1(x)
⇤
)m� , (4)

and

P[FP (x)] = (1� P [x0
2 S"(x)])

m� . (5)
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Figure 2 – Illustration of the constraint �max(M)  1.
Without learning the matrix M, the Euclidean dis-
tance is used both to compare a query x to a nega-
tive Nx and to a positive x0. The isodistance curves
are thus spherical and identical (one in solid black for
Nx, one in dashed red for x0). By learning the matrix
M, we virtually change the distance of the query to
the positive examples. The isodistance curves for the
positives are now ellipses, like the one represented in
red. In the example, the positive x0, that is outside the
sphere, is inside the ellipse and will thus be considered
closer, with the constraint �max(M)  1, than the ne-
gative Nx that lies on the black sphere. With this same
constraint, we are sure that the ellipse is enclosing the
circle (i.e. "

�max
� ") and so that all positives will be

brought closer to the query. In the end, this constraint
ensures that we increase the influence of the positives
and thus leads to the decrease of FN.

From Equations (2) and (4), we can note that they
are both exponentially decreasing w.r.t. to the num-
ber of positives and negatives respectively. However, in
imbalanced scenarios, the number of negatives is sup-
posed to be much higher than the number of positives.
Thus, the probability of having a false positive is de-
creasing faster than the probability of having a false
negative. We then choose to learn a matrix M under
the constraint �max(M)  1, so that our algorithm will
focus first on reducing FN. An illustration of the im-
pact of this constraint in terms of decision boundaries
is shown in Figure 3. The experiments in Section 5 will
confirm that the use of this constraint is very relevant
from an F -Measure perspective and is able to reduce
the number of FN at test time.

4 Theoretical Analysis

In this section, we provide generalization guarantees
about the learned metric M using the uniform stability

framework [BE02] adapted to metric learning [BHS15].
Then, we use this result to derive classification guaran-
tees over a 1-Nearest Neighbor (1NN) classifier making
use of this metric. Note that the whole study is conduc-
ted under the constraint �max(M)  1 as used in Pro-
blem (1) .

First, we denote by ` the weighted combination of
`FN and `FP as defined in Problem (1) and FS the
objective function to optimize over the training set S =
{zi}

m
i=1. We have

FS =
1

m3

mX

i,j,k=1

`(M, (zi, zj , zk)) + µkM� Ik2F .

Let RS be the associated empirical risk over S defined
as

RS =
1

m3

mX

i,j,k=1

`(M, (zi, zj , zk)),

and R be the corresponding expected true risk defined
as

R = E
S⇠Dm

[RS ] = E
S⇠Dm

2

4 1

m3

mX

i,j,k=1

`(M, (zi, zj , zk))

3

5

= E
z,z0,z00⇠D

[`(M, (z, z0, z00))] .

The last equality is due to the i.i.d. aspect of the ex-
pectation. We also suppose that for all x, we have
kxk  K.

4.1 Uniform Stability

Intuitively, an algorithm is stable if its output, in
terms of loss, does not change significantly under a
small modification of the training sample. The supre-
mum of this change must be bounded in O(1/m). In
this section, we assume that the space is bounded, i.e.
there exsists 0 < K < 1 such that, for all x 2 X ,
kxk  K.

Definition 1. A learning algorithm A has a uniform
stability in 

m with respect to a loss function ` and pa-
rameter set ✓, with  a positive constant if :

8S, 8i, 1  i  m, sup
Z

|`(✓S , Z)� `(✓Si , Z)| 


m
,

where S is a learning sample of size m, Z =
(z1, z2, z3) = ((x1, y1), (x2, y2), (x3, y3)) is a triplet of
labeled examples, ✓S the model parameters learned from
S, ✓Si the model parameters learned from the sample Si

obtained by replacing the ith example zi from S by ano-
ther example z0i independent from S and drawn from D.
Finally, `(✓S , Z) is the loss su↵ered at Z.
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Figure 3 – Illustration of the impact of the constraint
�max(M)  1 in MLFP (bottom right) compared to
kNN (top left), LMNN (top right), ImbML (bottom
left) on the autompg dataset with a 1NN classifier. We
perform a PCA, keeping the two most relevant dimen-
sions, and plot the test set on a mesh grid of the space.
In light grey (resp. white), areas classified as negative
(resp. positive).

In this definition, Si represents the notion of small
modification of the training sample. The next defini-
tion aims to study the evolution of the loss function
according to the considered triplets Z and Z 0.

Definition 2. A loss function ` is said to be �-
admissible, w.r.t. the distance metric M if (i) it is
convex w.r.t. its first argument and (ii) if the following
condition holds :

8Z,Z 0
|`(M, Z)� `(M, Z 0)|  �,

where Z = (zi, zj , zk) and Z 0 = (z0i, z
0
j , z

0
k) are two

triplets from a sample S and drawn from D.

From the two above definitions, we can state the fol-
lowing generalization bound.

Theorem 1. Let � > 0 and m > 2. Let S be a sample
of m randomly selected training examples. Let M be the
matrix learned from Problem (1) which has a uniform

stability in


m
. The loss function ` as defined above is

�-admissible. With probability 1��, the following bound
on the true risk R of ` holds :

R  RS + 2


m
+ (2+ 2�)

r
ln(2/�)

2m
,

where

 =
12

µ
⇥ ((1� ↵)K2)2 and � = (1� ↵)(1� c+ 4K2).

Proof 1. (Sktech of proof) The proof is adapted
from [BHS15] but requires a direct extension to the use
of triplets of examples instead of pairs. Notice that `
is convex since it is linear w.r.t. M. The proof resorts
to three main steps : (i) we show that the loss function
is �-admissible, (ii) then we prove that ` is k-lipschitz,
(iii) then we can bound the regularization term and
apply Hoe↵ding’s inequality to get the result. All the
details are given in the Supplementary Material.

The derived bound provides guarantees on the ge-
neralization performances of the learned metric on the
distribution D w.r.t. to the loss `. We now make use
of this bound to provide classification guarantees of a
1NN making use of the learned metric M.

4.2 Classification Guarantees

We derive here generalization guarantees on the FP
and FN rates for a 1NN classifier making use of the
metric M learned by MLFP. Let S be the learning
sample of size m used by a nearest-neighbor classifier.
Let us define the empirical risks for FP and FN :

RFP (S) = Ez=(x,y)⇠D {dM(x,xp)2d(x,xn)2} ⇥ {y=�1}.

where xp,xn 2 S are respectively the nearest positive
and negative neighbors of x in S. Symmetrically, we
have :

RFN (S) = Ez=(x,y)⇠D {d(x,xn)2dM(x,xp)2} ⇥ {y=1}.

We consider then the expected true risks averaged over
all the training samples of size m :

RFP = ES⇠DmRFP (S) and RFN = ES⇠DmRFN (S).

We can no introduce our main result.

Theorem 2. Let � > 0 and m > 0. Let S be a trai-
ning sample of size m i.i.d. from a distribution D, z a
new instance i.i.d. from D, and let M be the learned
matrix from Problem (1) which has a uniform stabi-

lity in


m
with respect to the loss `. Considering that

the loss function ` is �-admissible, let us denote by RS

its empirical risk. With probability 1 � �, we have the
following bounds for the FP and FN rates :

RFP  1
↵

"
RS[{z} +

2
m+ 1

+ (2+ 2�)

s
ln(2/�)
2(m+ 1)

#
,

RFN  1
1� ↵

"
RS[{z} +

2
m+ 1

+ (2+ 2�)

s
ln(2/�)
2(m+ 1)

#
.
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Proof 2. (Sktech of proof) The proof is based on the
following two steps : (i) we bound the indicator function
of FP and FN by the hinge loss ; (ii) we make the true
risk R to appear on the right hand side and benefit from
Theorem 1 to get the result.

By comparing these two bounds, one can observe
that when the class imbalance becomes important, i.e.
when ↵ takes a low value, the guarantees on the FN
rate become better than the guarantees on FP. This
result provides a theoretical confirmation that our ap-
proach - thanks to the constraint �max(M)  1 - is
able to focus more on reducing FN. An illustration of
this phenomenon will be shown in the next section.

5 Experiments

In this section, we compare MLFP to other me-
tric learning algorithms, focusing on (highly) imba-
lanced datasets. For all experiments, we use a 3-
Nearest Neighbor classifier as done in both [WS09]
and [WZJ+18].

5.1 Experimental Setup

We use several public datasets from the UCI 1 and
KEEL 2 repositories. These datasets are diverse in
terms of imbalance ratio (IR, number of majority
examples per positive example), dimension, number of
examples, as shown in Table 1. In addition, we use
eight datasets provided by the French Ministry of the
Economy and Finances (DGFiP). It corresponds to the
tax returns of French companies and are used for fraud
detection. These frauds may correspond to overvalued
charges, voluntary reductions in profits or, local or in-
ternational, VAT fraud. As the DGFiP can only control
a small part of the 3,000,000 companies, it is essential
to optimise the selection of these companies in order
to reduce errors as much as possible. Considering the
control process, it is less costly for the DGFiP to qui-
ckly control a non-fraudulent company than to let a
big fraudster pass. It is therefore important for it to
reduce the number of FN, even if it means increasing
the number of FP a little. All the datasets are stan-
dardized by substracting the mean and dividing by the
standard deviation.

We use the F -Measure as the performance criterion
to compare the di↵erent methods.

Furthermore, 80% of the dataset is randomly selec-
ted in order to train the model and 20% to test it. The

1. https://archive.ics.uci.edu/ml/datasets.html
2. https://sci2s.ugr.es/keel/datasets.php

Table 1 – Properties of the considered datasets, sor-
ted by imbalance ratio (IR) which corresponds to the
ratio m�/m+. The first part refers to the public data-
sets, the second one describes the private DGFiP da-
tasets.
datasets size dim IR datasets size dim IR
balance 625 4 1.2 libras 360 90 14
autompg 392 7 1.7 redwinequality4 1599 11 29.2
ionosphere 351 34 1.8 yeast6 1484 8 41.4
pima 768 8 1.9 abalone17 4177 10 71.0
wine 178 13 2 abalone20 4177 10 159.7
glass 214 9 2.1
german 1000 23 2.3 dgfip 9 2 440 173 3
vehicle 846 18 3.3 dgfip 4 2 255 82 3.8
hayes 132 4 3.4 dgfip 8 1 1028 255 4.6
segmentation 2310 19 6 dgfip 8 2 1031 254 4.6
abalone8 4177 10 6.4 dgfip 9 1 409 171 5.1
yeast3 1484 8 8.1 dgfip 4 1 240 76 5.2
pageblocks 5473 10 8.8 dgfip 16 1 789 162 8.7
satimage 6435 36 9.3 dgfip 16 2 786 164 9.1

di↵erent hyper-parameters are tuned with a 10-fold-
cross-validation over the training set. The sampling of
the test set is repeated 5 times and we report the ave-
rage results in terms of F -Measure (F1).

For our MLFP method, the hyper-parameters µ for
the regularization and c for the margin are both tuned
in the range [0, 1], using a Bayesian optimization with
400 calls. The Bayesian optimization is done with the
Scikit-Optimize library 3. As the matrix M can be ex-
pressed as LTL (Cholesky decomposition), we directly
learn a diagonal matrix L. Since we are not particularly
interested, in this paper, in low rank matrices, we do
not impose any constraint on the dimension of L. At
each iteration of the optimization process, the spectral
radius of the matrix L is constrained to be less than
one so that M = LTL has its largest value less than
one.

We compare MLFP with several methods : The
3-Nearest Neighbor algorithm (3NN), as a baseline.
LMNN, where the hyper-parameter µ, which controls
the trade-o↵ between the two parts of the loss (see
[WS09] for more details), is tuned in [0, 1] using a
Bayesian optimization with 20 calls. ITML [DKJ+07].
GMML [ZHS16], where the parameter t is tuned
in [0, 1] also with 20 calls of a Bayesian optimiza-
tion. IML [WZJ+18] where we select 5k points for
the sampling selection and we also tune the µ pa-
rameter of the LMNN algorithm in [0, 1]. We used
0.8 for the ratio of matching as suggested in the pa-
per. ImbML [GMHS19] where the parameter m is
tuned in {1, 10, 100, 1000, 10000}, the parameter � in
{0, 0.01, 0.1, 1, 10} and the parameter a in [0, 1]. We
also use a Bayesian optimization with 400 calls.

3. https://scikit-optimize.github.io/
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5.2 Results

The main results are reported in Table 2. Unsurpri-
singly, all metric learning methods perform better than
a 3NN. Furthermore, in terms of F -Measure, those
which were designed to deal with imbalanced scenarios
perform better than LMNN, ITML or GMML. Ho-
wever, the most competitive method is MLFP : the
F -Measure is increased on average by 1.6 points com-
pared to the second best method (ImbML). More pre-
cisely, our MLFP outperforms all the other methods
on 8 (over 19) datasets. The fact that MLFP works
better than ImbML shows the advantage of learning
a specific metric when computing distances to posi-
tive examples. So, it is not strictly necessary to take
all terms of the F -measure into account in the loss
function. Focusing on False Negative and False Positive
Rate, as we propose here, is enough. Furthermore, as it
can be seen on Figure 3, both ImbML and MLFP fo-
cuses on the minority class, but they perform this task
in a di↵erent way. Our method tries to reduce the num-
ber of FN by increasing the decision boundaries around
each of positive example and then reduces the impact
of each negatives by surrounding them. In ImbML,
the possibility of having very large margins in the lear-
ned space has the disadvantage of creating larger areas
of negative classification and this potentially increases
the risk of FN.

For the DGFiP datasets, the results are available in
the Table 3. We can see that our method outperforms
all other metric learning methods for these datasets. As
our algorithm tends to focus on the positives, and the-
refore the fraudsters, it is obviously more suitable for
them. This also comes from the fact that we know that,
in this kind of context, fraudsters often try to mimic
the behaviour of non-frauders in order to stay undetec-
ted. By artificially increasing the decision boundaries
around known positives, it is easier to capture fraud-
sters in hiding.

In the theoretical part of this paper, we have pro-
ved that learning a matrix M under the constraint
�max(M)  1 allows our algorithm to focus first on
reducing FN. An illustration of the impact of this
contraint in terms of false negatives is shown in Fi-
gure 4 on the 19 datasets. This figure reports the per-
centage of false negatives at test time generated by
the 3NN algorithm and MLFP with or without the
constraint. The results show that, compared to a 3NN
algorithm, MLFP systematically reduces the number
of false negatives and thus has the desired e↵ect. When
comparing MLFP with and without the constraint, we
can note that on 14 datasets out of 19, the use of the

Figure 4 – Average percentage of false negatives for
each dataset at test time (see Section 5 for more
details), for kNN and MLFP with or without the
constraint on �max. On 14 datasets (with ⇤) over 19,
the number of FN is lower for the version with the
constraint. Note that the number of FN is always lo-
wer with MLFP compared to kNN.

constraint �max(M)  1 leads at test time to a smaller
number of false negatives.

6 Conclusion

In this paper, we have proposed a new metric lear-
ning algorithm to deal with imbalanced datasets. In
this setting, finding the good compromise between the
false negative and false positive rates is still an open
problem. The original contribution of this paper comes
from the optimization in our algorithm MLFP of a
Mahalanobis distance which is only used to compare
a new query to positive examples, while the Euclidean
distance is still used when for comparing that query
to negative samples. A constraint on the maximum ei-
genvalue of the learned matrix is introduced and has
been shown to be provably e�cient to reduce the false
negative rate. Our paper is supported by a theoretical
study and an extensive experimental evaluation sho-
wing that MLFP outperforms state-of-the-art metric-
learning methods.

This work opens the door to two promising lines of
research. First, in MLFP we learn a linear projection
of the data. One interesting perspective would consist
in kernelizing our metric learning algorithm or desi-
gning a deep learning version allowing us to capture
non linearity. A simpler solution might also consist in
learning di↵erent local metrics for di↵erent regions of
the input space as done in [ZES16]. Second, as initia-
ted in [SBK+18], combining a Mahalanobis distance
with a sampling strategy might lead to a new family of
imbalanced learning methods.
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Table 2 – Mean results in terms of F -Measure over 5 experiments for the di↵erent Metric Learning methods,
with 3NN as final classifier, on datasets sorted by imbalance ratio. The mean over all datasets among ML
methods is given and the best results are in bold.

Datasets 3NN LMNN ITML GMML IML ImbML MLFP
(ours)

balance 0.880(0.018) 0.874(0.019) 0.931(0.032) 0.888(0.025) 0.886(0.029) 0.960(0.019) 0.874(0.003)
autompg 0.780(0.054) 0.792(0.031) 0.801(0.018) 0.823(0.034) 0.785(0.021) 0.790(0.044) 0.805(0.021)
ionosphere 0.745(0.015) 0.803(0.049) 0.831(0.054) 0.764(0.056) 0.823(0.044) 0.786(0.053) 0.923(0.026)
pima 0.601(0.042) 0.591(0.037) 0.583(0.022) 0.579(0.035) 0.591(0.037) 0.575(0.026) 0.635(0.032)
wine 0.968(0.016) 0.992(0.016) 0.992(0.016) 0.992(0.016) 0.992(0.016) 0.992(0.016) 0.961(0.041)
glass 0.735(0.049) 0.710(0.064) 0.759(0.051) 0.750(0.032) 0.710(0.064) 0.716(0.043) 0.747(0.034)
german 0.407(0.049) 0.358(0.029) 0.430(0.073) 0.407(0.030) 0.352(0.029) 0.388(0.043) 0.511(0.006)
vehicle 0.850(0.045) 0.928(0.024) 0.931(0.019) 0.936(0.013) 0.933(0.026) 0.937(0.014) 0.859(0.037)
hayes 0.581(0.210) 0.824(0.089) 0.829(0.071) 0.876(0.091) 0.824(0.089) 0.908(0.083) 0.930(0.109)
segmentation 0.882(0.031) 0.888(0.011) 0.866(0.029) 0.870(0.029) 0.895(0.020) 0.909(0.028) 0.882(0.024)
abalone8 0.223(0.025) 0.220(0.040) 0.213(0.025) 0.210(0.038) 0.228(0.021) 0.200(0.023) 0.336(0.018)
yeast3 0.719(0.028) 0.734(0.020) 0.742(0.034) 0.747(0.031) 0.717(0.032) 0.723(0.023) 0.725(0.022)
pageblocks 0.855(0.027) 0.844(0.027) 0.850(0.023) 0.864(0.022) 0.842(0.027) 0.865(0.021) 0.860(0.022)
satimage 0.688(0.034) 0.707(0.038) 0.710(0.024) 0.682(0.028) 0.710(0.039) 0.731(0.030) 0.697(0.030)
libras 0.694(0.188) 0.725(0.105) 0.722(0.204) 0.667(0.272) 0.690(0.120) 0.729(0.157) 0.694(0.066)
redwinequality4 0.062(0.075) 0.057(0.114) 0.027(0.053) 0.055(0.068) 0.000(0.000) 0.031(0.062) 0.083(0.039)
yeast6 0.560(0.205) 0.578(0.246) 0.523(0.205) 0.458(0.307) 0.629(0.244) 0.606(0.148) 0.527(0.152)
abalone17 0.000(0.000) 0.000(0.000) 0.029(0.057) 0.000(0.000) 0.000(0.000) 0.073(0.000) 0.053(0.033)
abalone20 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.044(0.089) 0.000(0.093) 0.078(0.029)
Mean 0.591 0.612 0.619 0.609 0.613 0.627 0.643
Average rank 4.7 3.9 3.5 3.9 4.1 3.1 3

Table 3 – Mean results in terms of F -Measure over 5 experiments for the di↵erent Metric Learning methods,
with 3NN as final classifier, on private DGFiP datasets sorted by imbalance ratio. The mean over all datasets
among ML methods is given and the best results are in bold.

Datasets 3NN LMNN ITML GMML IML ImbML MLFP
(ours)

dgfip 9 2 0.231(0.047) 0.266(0.063) 0.232(0.102) 0.186(0.070) 0.306(0.053) 0.187(0.057) 0.391(0.026)
dgfip 4 2 0.049(0.059) 0.076(0.097) 0.114(0.097) 0.136(0.025) 0.099(0.089) 0.071(0.094) 0.307(0.067)
dgfip 8 1 0.167(0.047) 0.164(0.041) 0.102(0.048) 0.131(0.070) 0.203(0.047) 0.137(0.058) 0.308(0.004)
dgfip 8 2 0.175(0.044) 0.161(0.064) 0.132(0.067) 0.168(0.021) 0.129(0.031) 0.161(0.047) 0.304(0.006)
dgfip 9 1 0.067(0.087) 0.064(0.053) 0.140(0.059) 0.103(0.092) 0.150(0.096) 0.184(0.109) 0.290(0.027)
dgfip 4 1 0.094(0.078) 0.029(0.057) 0.000(0.000) 0.055(0.068) 0.000(0.000) 0.033(0.067) 0.262(0.025)
dgfip 16 1 0.058(0.048) 0.139(0.123) 0.065(0.080) 0.159(0.105) 0.282(0.076) 0.119(0.102) 0.207(0.016)
dgfip 16 2 0.076(0.039) 0.035(0.044) 0.078(0.040) 0.164(0.086) 0.107(0.070) 0.164(0.164) 0.206(0.015)
Mean 0.115(0.067) 0.117(0.081) 0.108(0.067) 0.138(0.042) 0.160(0.101) 0.132(0.055) 0.284(0.060)
Average rank 4.8 4.9 5.1 3.9 3.6 4.3 1.1
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