
Apprentissage d’ensemble basé sur des points de
repère avec des caractéristiques de Fourier
aléatoires et un renforcement du gradient

Léo Gautheron1, Pascal Germain2, Amaury Habrard1, Guillaume Metzler1,
Emilie Morvant1, Marc Sebban1, and Valentina Zantedeschi

1 Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School,
Laboratoire Hubert Curien UMR 5516, F-42023, Saint-Etienne, France

firstname.name@univ-st-etienne.fr
2 Département d’Informatique et de Génie Logiciel, Université Laval, Québec,

Canada
pascal.germain@ift.ulaval.ca

3 Inria Lille - Nord Europe, Modal Project-Team, 59650 Villeneuve d’Ascq, France

Abstract. Cet article s’appuie sur deux stratégies d’apprentissage de
pointe, le renforcement du gradient (gradient boosting (GB)) et les car-
actéristiques de Fourier aléatoires (random Fourier features (RFF)), pour
résoudre le problème de l’apprentissage de noyau. Notre étude s’appuie
sur un résultat récent montrant que l’on peut apprendre une distribu-
tion par le biais des RFF pour produire un nouveau noyau adapté à la
tâche à accomplir. Pour apprendre cette distribution, nous exploitons
un schéma de GB exprimé sous forme d’ensembles d’apprenants faibles
RFF, chacun d’entre eux étant une fonction du noyau conçue pour ap-
prendre les résidus. Contrairement aux techniques d’apprentissage de
noyaux multiples qui utilisent un dictionnaire pré-calculé de fonctions du
noyau, à chaque itération nous apprenons un noyau à partir des données
d’apprentissage comme une somme pondérée de RFF. Cette stratégie
permet de construire un classificateur basé sur un petit ensemble de
noyaux“repères”, mieux adaptés à l’application en question. Nous effec-
tuons une analyse expérimentale approfondie pour mettre en évidence les
avantages de notre méthode par rapport aux méthodes de pointe basées
sur le boosting et l’apprentissage de noyaux.

Keywords: Gradient boosting · Random Fourier features ·Kernel learning

1 Introduction

Kernel methods are among the most popular approaches in machine learning
due to their capability to address non-linear problems, their robustness and
their simplicity. However, they exhibit two main flaws in terms of memory usage
and time complexity. Landmark-based kernel approaches [2, 18] can be used to
drastically reduce the number of instances involved in the comparisons, but they
heavily depend on the choice and the parameterization of the kernel. Multiple



2 L. Gautheron et al.

Kernel Learning [16] and Matching Pursuit methods [14] can provide alternative
solutions to this problem but these require the use of a pre-defined dictionary of
base functions. Another strategy to improve the scalability of kernel methods is
to use approximation techniques such as the Nyström method [3, 15] or Random
Fourier Features (RFF) based approaches [6, 12, 17]. The latter are probably
the most used thanks to their simplicity and ease of computation. They allow
the approximation of any shift-invariant kernel with random features based on
the Fourier transform of the kernel. Several works have extended this family of
methods by allowing one to adapt the RFF approximation directly from the
training data [1, 7, 10, 13, 17]. Among them, the recent work of Letarte et al. [7]
introduces a method to obtain a weighting distribution over the random features
by a single pass over them. This strategy is derived from a statistical learning
analysis, starting from the observation that each random feature can be inter-
preted as a weak hypothesis in the form of trigonometric functions obtained by
the Fourier decomposition. Thus, a classifier can be seen as a weighted majority
vote over the random features. This decomposition is then considered as a prior
distribution over the space of weak hypotheses/random features; they propose
to learn a posterior distribution by optimizing a PAC-Bayesian bound w.r.t a
kernel alignment generalization loss over the training data. In other words, this
corresponds to automatically learning a representation of the samples through
the approximation of a kernel suited for the task at hand. However, in practice,
this method requires the use of a fixed set of landmarks selected beforehand and
independently from the task. It is only once these landmarks are selected that the
method can learn a representation based on the PAC-Bayesian bound. This leads
to three important limitations: (i) the need for a heuristic strategy for selecting
relevant landmarks, (ii) these latter and the associated representation might not
be adapted for the underlying task, and (iii) the number of landmarks might not
be minimal w.r.t. that task, inducing higher computational and memory costs.

We propose in this paper to tackle the aforementioned issues with a gradient
boosting approach [4]. Our aim is to learn iteratively the classifier and a compact
and efficient representation at the same time. Our greedy optimization method
is similar to Oglic & Gärtner’s one [9], which at each iteration of the functional
gradient descent [8] refines the representation by adding the base function min-
imizing a residual-based loss function. But unlike our approach, their method
does not allow to learn a classifier at the same time. Instead, we propose to
jointly optimize the classifier and the base functions in the form of kernels by
leveraging both gradient boosting and RFF. Interestingly, we further show that
we can benefit from a significant performance boost by (i) considering each weak
learner as a single trigonometric feature, and (ii) learning the random part of
the RFF.

Organization of the paper. Section 2 describes the notations and the neces-
sary background knowledge. We present our method in Section 3 as well as two
efficient refinements before presenting an extensive experimental study in Sec-
tion 4, comparing our strategy with boosting-based and kernel learning methods.



Learning Landmark-based Ensembles with RFF & Gradient Boosting 3

2 Notations and Related Work

We consider binary classification tasks from a d-dimensional input space Rd
to a label set Y={−1,+1}. Let S=

{
(xi, yi)

}n
i=1
∼ Dn be a training set of n

points sampled i.i.d. from D, a fixed and unknown data-generating distribution
over Rd×Y . We focus on kernel-based algorithms that rely on pre-defined kernel
functions k : Rd×Rd→R assessing the similarity between any two points of the
input space. These methods present a good performance when the parameters
of the kernels are learned and the chosen kernels are able to fit the distribution
of the data. However, selecting the right kernel and tuning its parameters is
computationally expensive, in general. To reduce this overhead, one can resort
to Multiple Kernel Learning techniques [16] which boil down to selecting the
combination of kernels that fits the best the training data: a dictionary of T
base functions {kt}Tt=1 is composed by various kernels associated with some
fixed parameters, and a combination is learned, defined as

H(x,x′) =

T∑
t=1

αt kt(x,x′), (1)

with αt∈R the weight of the kernel kt(x,x′). As shown in Section 3, our main
contribution is to address this issue of optimizing a linear combination of kernels
by leveraging RFF and gradient boosting (we recall basics on it in Section 3.1).
To avoid the dictionary of kernel functions in Equation (1) from being pre-
computed, we propose a method inspired from Letarte et al. [7] to learn a set of
approximations of kernels tailored to the underlying classification task. Unlike
Letarte et al., we learn such functions so that the representation and the clas-
sifier are jointly optimized. We consider landmark-based shift-invariant kernels
relying on the value δ=xt−x ∈ Rd and usually denoted by abuse of notation by
k(δ) = k(xt−x) = k(xt,x), where xt ∈ Rd is a point—called landmark—lying
on the input space which all the instances are compared to, and that strongly
characterizes the kernel. At each iteration of our gradient boosting procedure,
we optimize the kernel function itself, exploiting the flexibility of the framework
of Letarte et al., where a kernel is a weighted sum of RFF [12] defined as

kqt(x
t − x) =

K∑
j=1

qtj cos
(
ωj · (xt − x)

)
, (2)

where the ωj are drawn from the Fourier transform of a shift invariant kernel k
denoted by p(ω) and defined as

p(ω) =
1

(2π)d

∫
Rd

k(δ)e−iω·δdδ. (3)

When qt=p, we retrieve the classical setting of RFF and we have k(δ)'kqt(δ).
It is known that the larger the number of random features K in Equation (2), the
better the resulting approximation [12]. Letarte et al. [7] aim to learn the weights



4 L. Gautheron et al.

Algorithm 1: Gradient boosting [4]

Inputs : Training set S =
{

(xi, yi)
}n
i=1

; Loss `; Number of iterations T

Output: sign
(
H0(x) +

∑T
t=1 α

that(x)
)

1: ∀i = 1, . . . , n, H0(xi) = argminρ
∑n
i=1 `(yi, ρ)

2: for t = 1, . . . , T do

3: ∀i = 1, . . . , n, ỹi = −
∂`
(
yi, H

t−1(xi)
)

∂Ht−1(xi)

4: at = argmina
∑n
i=1

(
ỹi − ha(xi)

)2
5: αt = argminα

∑n
i=1 `

(
yi, H

t−1(xi) + αhat(xi)
)

6: ∀i = 1, . . . , n, Ht(xi) = Ht−1(xi) + αthat(xi)
7: end for

of the random Fourier features qt. To do so, they consider a loss function ` that
measures the quality of the similarities computed using the kernel kqt . Their
theoretical study on ` leads to a closed-form solution for qt computed as

∀j ∈ {1, . . . ,K}, qtj =
1

Zt
exp

(−β√n
n

n∑
i=1

`(htωj (xi))
)
, (4)

with β≥0 a parameter to tune, htω(x)=cos (ω ·(xt−x)), and Zt a normalization

constant such that
∑K
j=1 q

t
j=1. They learn a representation of the input space of

nL features where each of them is computed using kqt with the landmark (xt, yt)
selected randomly from the training set. Once the new representation is com-
puted, a (linear) predictor is learned from it, in a second step.

It is worth noticing that this kind of procedure exhibits two limitations. First,
the model can be optimized only after having learned the representation. Second,
the landmarks have to be fixed before learning the representation. Thus, the
constructed representation is not guaranteed to be compact and relevant for the
learning algorithm considered. To tackle these issues, we propose in the following
a strategy that performs both steps at the same time through a gradient boosting
process that allows to jointly learn the set of landmarks and the final predictor.

3 Gradient Boosting Random Fourier Features

The approach we propose follows the widely used gradient boosting framework
first introduced by Friedman [4]. We briefly recall it below.

3.1 Gradient Boosting in a Nutshell

Gradient boosting is an ensemble method that aims at learning a weighted ma-
jority vote over an ensemble of T weak predictors in a greedy way by learning
one classifier per iteration. The final majority vote is of the form

∀x ∈ Rd, sign

(
H0(x) +

T∑
t=1

αthat(x)

)
,



Learning Landmark-based Ensembles with RFF & Gradient Boosting 5

Algorithm 2: GBRFF1

Inputs : Training set S =
{

(xi, yi)
}n
i=1

; Number of iterations T ;
K number of random features; Parameters γ and β

Output: sign
(
H0(x) +

∑T
t=1 α

t∑K
j=1 q

t
j cos

(
ωtj · (xt − x))

)
1: H0 ← H0(xi) = 1

2
ln

1+
1
n

∑n
j=1 yj

1− 1
n

∑n
j=1 yj

2: for t = 1, . . . , T do
3: ∀i = 1, . . . , n, wi = exp(−yiHt−1(xi))
4: ∀i = 1, . . . , n, ỹi = yiwi
5: Draw {ωtj}Kj=1 ∼ N (0, 2γ)K×d

6: xt = argmin
x∈Rd

1

n

∑n
i=1 exp

(
− ỹi 1

K

∑K
j=1 cos(ωtj · (x− xi))

)
.

7: ∀j = 1, . . . ,K, qtj = 1
Zt exp

(
−β
√
n

n

∑n
i=1 exp

(
− ỹi cos

(
ωtj · (xt − xi)

)))

8: αt = 1
2

ln

∑n
i=1

(
1+yi

∑K
j=1 q

t
j cos

(
ωt

j ·(x
t−xi)

))
wi

∑n
i=1

(
1−yi

∑K
j=1 q

t
j cos

(
ωt

j ·(x
t−xi)

))
wi

9: ∀i = 1, . . . , n, Ht(xi) = Ht−1(xi) + αt
∑K
j=1 q

t
j cos

(
ωtj · (xt − xi)

)
10: end for

where H0 is an initial classifier fixed before the iterative process (usually set such
that it returns the same value for every sample), and αt is the weight associated
to the predictor hat and is learned at the same time as the parameters at of that
classifier. Given a differentiable loss `, the objective of the gradient boosting
algorithm is to perform a gradient descent where the variable to be optimized
is the ensemble and the function to be minimized is the empirical loss. The
pseudo-code of gradient boosting is reported in Algorithm 1. First, the ensemble
is constituted by only one predictor: the one that outputs a constant value
minimizing the loss over the whole training set (line 1). Then at each iteration,
the algorithm computes for each training example the negative gradient of the
loss (line 3), also called the residual and denoted by ỹi. The next step consists
in optimizing the parameters of the predictor hat that fits the best the residuals
(line 4), before learning the optimal step size αt that minimizes the loss by
adding hat , weighted by αt, to the current vote (line 5). Finally, the model is
updated by adding αthat(·) (line 6) to the vote.

3.2 Gradient Boosting with Random Fourier Features

Our main contribution takes the form of a learning algorithm which jointly
optimizes a compact representation of the data and the model. Our method,
called GBRFF1, leverages both Gradient Boosting and RFF. We describe its
pseudo-code in Algorithm 2. We present below its main constitutive elements by
following the steps of the gradient boosting method of Algorithm 1.



6 L. Gautheron et al.

The loss function ` at the core of our algorithm is the exponential loss:

`
(
HT
)

=
1

n

n∑
i=1

exp
(
− yiHT (xi)

)
. (5)

Given `
(
HT
)
, line 1 of Algorithm 1 amounts to setting the initial learner as

∀i ∈ {1, . . . , n}, H0(xi) =
1

2
ln

1 + 1
n

∑n
j=1 yj

1− 1
n

∑n
j=1 yj

. (6)

The residuals of line 3 are defined as ỹi = −∂`
(
yi, H

t−1(xi)
)

∂Ht−1(xi)
= yi e−yiH

t−1(xi).

Line 4 of Algorithm 1 tends to learn a weak learner that outputs exactly the
residuals’ values by minimizing the squared loss; but, this is not well-suited
in our setting with the exponential loss (Equation (5)). To benefit from the
exponential decrease of the loss, we are rather interested in weak learners that
output predictions having a large absolute value and being of the same sign as the
residuals. Thus, we aim at favoring parameter values minimizing the exponential
loss between the residuals and the predictions of the weak learner as follows:

at = argmin
a

1

n

n∑
i=1

exp
(
− ỹiha(xi)

)
. (7)

Following the RFF principle, we can now define our weak learner as

hat(xi) =

K∑
j=1

qtj cos
(
ωtj · (xt − xi)

)
, (8)

where its parameters are given by at=({ωtj}Kj=1,x
t, qt). Instead of using a pre-

defined set of landmarks [7], we build this set iteratively, i.e., we learn one land-
mark per iteration. To benefit from the closed form of Equation (4), we propose
the following greedy approach to learn the parameters at. At each iteration t, we
draw a set of K random features {ωtj}Kj=1∼pK with p the Fourier transform of
a given kernel (as defined in Equation (3)); then we are looking for the optimal
landmark xt. Plugging Equation (8) into Equation (7) and assuming a uniform
prior distribution over the random features, xt is learned to minimize

xt = argmin
x∈Rd

f(x) =
1

n

n∑
i=1

exp
(
− ỹi

1

K

K∑
j=1

cos(ωtj · (x− xi))
)
. (9)

Even if this problem is non-convex due to the cosine function, we can still com-
pute its derivative and perform a gradient descent to find a possible solution.
The partial derivative of Equation (9) with respect to x is given by

∂f

∂x
(x)=

1

Kn

n∑
i=1

ỹi
K

K∑
j=1

sin(ωtj · (x−xi))

 exp

− ỹi
K

K∑
j=1

cos(ωtj · (x−xi))

 K∑
j=1

ωtj .



Learning Landmark-based Ensembles with RFF & Gradient Boosting 7

According to Letarte et al. [7], given the landmark xt found by gradient descent,
we can now compute the weights of the random features qt as

∀j ∈ {1, . . . ,K}, qtj=
1

Zt
exp

[
−β√n
n

n∑
i=1

exp
(
− ỹi cos

(
ωtj · (xt−xi)

))]
, (10)

with β ≥ 0 a parameter to tune and Zt the normalization constant.
The last step concerns the step size αt. It is computed so as to minimize the

combination of the current model Ht−1 with the weak learner ht, i.e.,

αt = argmin
α

n∑
i=1

exp
[
−yi(Ht−1(xi)+αh

t(xi))
]

= argmin
α

n∑
i=1

wi exp
[
−yiαht(xi)

]
,

where wi= exp(−yiHt−1(xi)). In order to have a closed-form solution of α, we
use the convexity of the above quantity and the fact that ht(xi) ∈ [−1, 1] to
bound the loss function to optimize. Indeed, we get

n∑
i=1

wie
−yiαht(xi) ≤

n∑
i=1

[
1−yiht(xi)

2

]
wie

α+

n∑
i=1

[
1+yih

t(xi)

2

]
wie
−α.

This upper bound is strictly convex. Its minimum αt can be found by setting to
0 the derivative w.r.t. α of the right-hand side of the previous equation. We get

n∑
i=1

(
1− yiht(xi)

2

)
wi eα =

n∑
i=1

(
1 + yih

t(xi)

2

)
wi e−α,

for which the solution is given by αt =
1

2
ln

(∑n
i=1(1− yiht(xi))wi∑n
i=1(1 + yiht(xi))wi

)
.

The same derivation can be used to find the initial predictor H0.
Note that, as usually done in the RFF literature [1, 6, 12, 13, 17], in GBRFF1

we make use of the RBF kernel kγ(x,x′)=e−γ‖x−x
′‖2 with corresponding Fourier

transform the normal law N (0, 2γ)d.

3.3 Refining GBRFF1

In GBRFF1, the number of random features used at each iteration K has a
direct impact on the computation time of the algorithm. Moreover ωt is drawn
according to the Fourier transform of the RBF kernel and thus is not learned.
The second part of our contribution is to propose two refinements. First, we bring
to light the fact that one can drastically reduce the complexity of GBRFF1 by
learning a rough approximation of the kernel, yet much simpler and still very
effective, using K=1. In this scenario, we show that learning the landmarks boils
down to finding a single real number in [−π, π]. Then, to speed up the conver-
gence of the algorithm, we suggest to optimize ωt after a random initialization
from the Fourier transform. We show that a simple gradient descent with respect



8 L. Gautheron et al.

Algorithm 3: GBRFF2

Inputs : Training set S =
{

(xi, yi)
}n
i=1

; Number of iterations T ;
Parameters γ and λ

Output: sign
(
H0(x) +

∑T
t=1 α

t cos
(
ωt · xi − bt)

)
1: H0 ← H0(xi) = 1

2
ln

∑n
j=1

(
1+yj

)
∑n

j=1

(
1−yj

)
2: for t = 1, . . . , T do
3: ∀i = 1, . . . , n, wi = exp(−yiHt−1(xi))
4: ∀i = 1, . . . , n, ỹi = yiwi
5: Draw ω ∼ N (0, 2γ)d

6: bt = argmin
b∈[−π,π]

1
n

∑n
i=1 exp

(
− ỹi cos

(
ω · xi − b)

))
7: ωt = argmin

ω∈Rd

λ‖ω‖22 + 1
n

∑n
i=1 exp

(
− ỹi cos

(
ω · xi − bt)

))
.

8: αt = 1
2

ln

∑n
i=1

(
1+yi cos

(
ωt·xi−bt

))
wi

∑n
i=1

(
1−yi cos

(
ωt·xi−bt

))
wi

9: ∀i = 1, . . . , n, Ht(xi) = Ht−1(xi) + αt cos
(
ωt · xi − bt

)
10: end for

to this parameter allows a faster convergence with better performance. These two
improvements lead to a variant of our original algorithm, called GBRFF2 and
presented in Algorithm 3.

Cheaper landmark learning using the periodicity of the cosine. As we
set K=1, the weak learner hat(x) is now simply defined as

hat(x) = cos
(
ωt · (xt − xi)

)
,

where its parameters are given by at = (ωt,xt). As said previously, this formula-
tion allows us to eliminate the dependence on the hyper-parameter K. Moreover,
one can also get rid of β, because learning the weights qtj of the random features
(line 7 of Algorithm 2) is no more necessary. Instead, since K=1, we can see αt

learned at each iteration as a surrogate of the weight of each random feature.
As our weak learner is based on a single random feature, the objective function
(line 6) to learn the landmark at iteration t becomes

xt = argmin
x∈Rd

fωt(x) =
1

n

n∑
i=1

exp
(
− ỹi cos(ωt · (x− xi))

)
.

Let c ∈ J1, dK be the index of the c-th coordinate of the landmark xt. We rewrite
the objective function as

fωt(xt) =
1

n

n∑
i=1

e−ỹi cos(ω
t·xt−ωt·xi) =

1

n

n∑
i=1

e−ỹi cos(ω
t
cx

t
c+

∑
j 6=c ω

t
jx

t
j−ω

t·xi).



Learning Landmark-based Ensembles with RFF & Gradient Boosting 9

Note that we can leverage the periodicity of the cosine function along each
direction to find the optimal c-th coordinate of the landmark xtc∈ [−πωt

c
, πωt

c
] that

minimizes fωt(xt) by fixing all the other coordinates. Figure 1 illustrates this
phenomenon on the two-moons dataset when applying GBRFF1 with K=1.
The plots in the first row show the periodicity of the loss represented as repeating
diagonal green/yellow stripes (light yellow is associated to the smallest value
taken by the loss). Note that there is an infinite number of landmarks giving
such a minimal loss at the middle of the yellow stripes. Thus, it suffices to set
one coordinate of the landmark to an arbitrary value, and then the algorithm
is still able at any iteration to find along the second coordinate a value that
minimizes the loss (the resulting landmark at the current iteration is depicted
by a white cross). The second row shows that such a strategy allows us to get
an accuracy of 100% on this toy 2D dataset after 10 iterations.

By generalizing this principle, instead of learning a landmark vector xt∈Rd,
we fix all but one coordinate of the landmark, e.g. to 0, and then learn a single
scalar bt∈ [−π, π] that minimizes

fωt(bt) =
1

n

n∑
i=1

exp
(
−ỹi cos

(
ωt · xi − bt

))
.

Learning ωt for faster convergence. The second refinement concerns the
randomness of the RFF due to vector ωt. So far, the latter was drawn according
to the Fourier transform (line 5 of Algorithm 2) and then used to learn bt.
We suggest instead to fine-tune ωt by doing a simple gradient descent with as
initialization the vector drawn according to the Fourier transform. Supported by
the experiments performed in the following, we claim that such a strategy allows
us to both speed up the convergence of the algorithm and boost the accuracy.
This update requires to add a line of code, just after line 6 of Algorithm 2,
expressed as a regularized optimization problem:

ωt = argmin
ω∈Rd

λ‖ω‖22 +
1

n

n∑
i=1

exp
(
− ỹi cos

(
ω · xi − bt)

))
,

its derivative being
∂fω
∂ω

(ω) = 2λω +
1

n

n∑
i=1

xiỹi sin(ω·xi−bt) e−ỹi cos(ω·xi−bt).

4 Experimental Evaluation

The objective of this section is three-fold: first, we aim to bring to light the inter-
est of learning the landmarks rather than a priori fixing them as done in Letarte
et al. [7]; second we study the impact of the number K of random features; lastly,
we perform an extensive experimental comparison of our algorithms4 with some
boosting-based and kernel-learning state-of-the-art methods.

4 In case of acceptance, the code of the methods and experiments will be published.



10 L. Gautheron et al.

Fig. 1. GBRFF1 with K=1 on the two-moons dataset at different iterations. Top
row shows the periodicity of the loss (light yellow indicates the minimal loss). Bottom
row shows the resulting decision boundaries between the classes (blue & red) by fixing
arbitrarily one coordinate of the landmark and minimizing the loss along the other one.

4.1 Setting

For GBRFF1 (Algorithm 2), we select by cross-validation (CV) the hyper-

parameter γ∈ 2{−2,...,2}

d with d the number of features of the training data. For
GBRFF2 (Algorithm 3), we tune λ∈ {0, 2−5, 2−4, 2−3, 2−2}. We compare our
two methods with the following algorithms.
• LGBM [5] is a state-of-the-art gradient boosting method using trees as base
predictors. We select by CV the maximum depth of the trees in {1, . . . , 5}.
• BMKR [16] is a Multiple Kernel Learning method based on gradient boosting
with the least square loss. It selects at each iteration the best performing kernel
plugged inside an SVR to learn the residuals. It considers at each iteration 10
RBF kernels with γ ∈ 2{−4,...,5} and the linear kernel k(x,x′) = x>x′. We select
by CV the SVR parameter C∈10{−2,...,2}.
• GFC [9] is a greedy feature construction method based on functional gradient
descent. It iteratively refines the representation learned by adding a feature that
matches the residual function defined for the least squared loss. We use the final
representation to learn a linear SVM where C∈10{−2,...,2} is selected by CV.
• PBRFF [7] first draws randomly with replacement a set of nL landmarks from
the training set, then learns the new representation where each new feature is
computed using Equation (2) and finally learns a linear SVM on the mapped
training set. We fix the number of random features to K = 10 and we draw
them like for our two methods GBRFF1 and GBRFF2 from the normal law
N (0, 2γ)d. We select by CV its parameters γ ∈ 2{−2,...,2}

d , β ∈ 10{−2,...,2} and

the SVM parameter C ∈ 10{−2,...,2}.



Learning Landmark-based Ensembles with RFF & Gradient Boosting 11

Table 1. Description of the datasets (n: number of examples, d: number of features,
c: number of classes) and the classes chosen as negative (-1) and positive (+1).

Name n d c Label -1 Label +1 Name n d c Label -1 Label +1

wine 178 13 3 2, 3 1 australian 690 14 2 0 1
sonar 208 60 2 M R pima 768 8 2 0 1
newthyroid 215 5 3 1 2, 3 vehicule 846 18 4 van bus, opel, saab
heart 270 13 2 1 2 german 1000 23 2 1 2
bupa 345 6 2 2 1 splice 3175 60 2 +1 -1
iono 351 34 2 g b spambase 4597 57 2 0 1
wdbc 569 30 2 B M occupancy 20560 5 2 0 1
balance 625 4 3 B, R L bankmarketing 45211 51 2 no yes

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0

Ac
cu

ra
cy

PBRFF K=10
GBRFF1 K=10
GBRFF2

Fig. 2. Mean test accuracy over 20 train/test splits over the 16 datasets. We train the
three methods using from 1 to 50 landmarks.

We consider 16 datasets coming mainly from the UCI repository. We bina-
rized them as described in Table 1 where we specify the classes that are consid-
ered respectively as label ‘-1’ and as label ‘+1’. For each dataset, we generate 20
random splits of 70% training examples and 30% testing samples. All datasets
are scaled such that each feature in the training set has a mean of 0 and a vari-
ance of 1; the factors computed on the training set are then used to scale each
feature in the test set. The hyper-parameters of the methods are tuned by a
5-fold CV on the training set by performing a grid search.

4.2 Influence of learning the landmarks

We present in Figure 2 the behavior of the three methods that make use of
landmarks and RFF, that is PBRFF, GBRFF1 and GBRFF2. With more
than 25 landmarks, PBRFF and GBRFF1 show similar mean accuracy and
reach about 87.5% after 50 iterations. However, for a small set of landmarks
(in particular smaller than 25) GBRFF1 is consistently superior by about 1



12 L. Gautheron et al.

20 100 200 300 500 1000
Total number of random features used in the whole process (T ×K)

70

75

80

85

90
A

cc
ur

ac
y

74.86

82.63

85.25 86.07 86.87 87.63

77.90

84.23
86.07 86.91 87.51 88.03

79.71

85.34
86.75 87.47 87.90 88.35

82.47

86.74 87.53 87.97 88.16 88.55

GBRFF1 K=20 GBRFF1 K=10 GBRFF1 K=5 GBRFF1 K=1

Fig. 3. Mean results over the 16 datasets w.r.t. the same total number of random
features T×K for K∈{1, 5, 10, 20}, with T the number of boosting iterations.

point higher than PBRFF, showing the interest of learning the landmarks. But
the certainly most striking result comes from the performance of our variant
GBRFF2 which outperforms the two competing methods. This is particularly
true for a small number of landmarks. Notice that GBRFF2 is able to reach
its maximum with about 20 landmarks, while GBRFF1 and PBRFF require
more iterations without reaching the same performance. This definitely shows
the benefit of learning the random features compared to drawing them randomly.

4.3 Influence of the number of random features

A key parameter of GBRFF1 is K, the number of random features used at each
iteration. To highlight its impact, we report in Figure 3 the mean test accuracy
of GBRFF1 with K∈{1, 5, 10, 20} across all datasets and over the 20 train/test
splits. To have a fair study, the comparison is performed according to the same
total number of random features after the whole boosting process, that is T×K
with T the number of iterations. First of all, we observe that with a total of 1, 000
random features, K does not have a big impact on the performance. However,
when decreasing the value of T × K, we can note that it becomes much more
interesting in terms of accuracy to set K to a small value. This shows that the
more we want a compact final representation, the more we need to refine the
random features: it is better to weight each of the features greedily with αt (line
8 of Algorithm 3) rather than using the closed-form solution of Equation (10)
(line 7 of Algorithm 2) to weight them all at once. Even if in the usual context
of RFF it is desirable to have a large K value to approximate a kernel, this
series of experiments shows that a simple rough approximation with K=1 along
with a sufficient number of iterations allow the final ensemble to mimic the
approximation of a new kernel suited for the task at hand.

4.4 Influence of the number of samples on the computation time

The specificities of GBRFF2 come from the number of random features K set
to 1 at each iteration and the learning of ωt. We already shown in Figure 2
that this allows us to get better results. We study in this section how GBRFF2



Learning Landmark-based Ensembles with RFF & Gradient Boosting 13

1,702 3,829 8,614
19,381

43,606
98,113

220,753
496,693

1,117,558
2,514,505

5,657,635
12,729,678

Number of samples

0

20

40

60

80

100
T

im
e

in
se

co
nd

s

BMKR GFC PBRFF GBRFF1 GBRFF2 LGBM

Fig. 4. Computation time in seconds required to train and test the six compared meth-
ods with fixed parameters on an artificial dataset having an increasing number of sam-
ples. Half of the dataset is used for training and half for testing and a method requiring
more than 100 seconds at a given step is not trained on the larger datasets.

scales compared to the other methods. To do so, we consider artificial datasets
with an increasing number of samples (generated with scikit-learn [11] library’s
make classification function). The initial size is set to 150 samples, and we
successively generate datasets with a size 50% larger than the previous one.
Here, we randomly split the datasets into 50% train / 50% test and we report
the time in seconds necessary to train the models and to predict the labels of
the test examples. The parameters are fixed as follows: C = 1 for the methods
using SVM or SVR; the tree depth is set to 5 for LGBM; K = 10, γ = 1

d , and
β = 1 for PBRFF and GBRFF1; γ = 1

d and λ = 0 for GBRFF2. Note that
all the methods are run with 100 iterations (or landmarks) and for a maximum
execution time of 100 seconds. We report the results in Figure 4.

We first recall that GBRFF2 learns at each iteration a random feature and
a landmark while GBRFF1 only learns the landmark and PBRFF draws them
randomly. Thus, GBRFF1 should present higher computation times compared
to PBRFF. However, we can note that for datasets with a number of samples
larger than 20, 000, GBRFF1 becomes cheaper than PBRFF. This is due to
the fact that the SVM classifier learned by PBRFF does not scale as well as
gradient boosting-based methods. The two-step method GFC is in addition
also slower than GBRFF1. This shows the computational advantage of having
a one-step procedure to learn both the representation and the final classifier.
When looking at the time limit of 100 seconds, both GBRFF1 and GBRFF2
are the fastest kernel-based methods compared to BMKR, GFC and PBRFF.
This shows the efficiency of learning kernels in a greedy fashion. We also see
that GBRFF2 performs faster than GBRFF1 for any number of samples. At
the limit of 100 seconds, it is able to deal with datasets that are 10 times larger
that GBRFF1, due to the lower complexity of the learned weak learner used
in GBRFF2. Finally, GBRFF2 is globally the second fastest method behind
the gradient boosting method LGBM that uses trees as base classifiers.



14 L. Gautheron et al.

Table 2. Mean test accuracy ± standard deviation over 20 random train/test splits. A
‘-’ in the last row indicates that the algorithm did not converge in time on this dataset.
Average ranks and mean results are computed over the 15 first datasets.

Dataset BMKR GFC PBRFF GBRFF1 LGBM GBRFF2

wine 99.5 ± 1.0 99.3 ± 1.1 98.1 ± 2.1 98.3 ± 1.5 96.5 ± 3.0 98.5 ± 1.6
sonar 78.8 ± 7.2 76.6 ± 3.2 76.7 ± 5.2 81.8 ± 3.5 83.0 ± 4.2 83.0 ± 5.0
newthyroid 96.5 ± 1.7 96.5 ± 2.1 96.5 ± 1.5 95.3 ± 2.2 94.8 ± 3.0 96.9 ± 2.1
heart 85.6 ± 4.0 79.4 ± 4.5 85.4 ± 3.5 83.6 ± 4.0 84.0 ± 3.2 83.1 ± 4.0
bupa 68.1 ± 4.9 64.7 ± 3.2 69.0 ± 4.2 70.3 ± 4.9 71.9 ± 4.0 71.2 ± 4.5
iono 94.2 ± 1.4 91.5 ± 2.3 94.2 ± 1.8 88.2 ± 2.3 93.2 ± 2.8 89.2 ± 2.1
wdbc 96.1 ± 1.2 95.8 ± 1.3 96.5 ± 1.1 96.8 ± 1.1 95.7 ± 1.4 97.3 ± 1.2
balance 96.0 ± 1.2 95.1 ± 2.0 98.9 ± 1.1 97.7 ± 0.7 93.5 ± 2.6 97.7 ± 0.6
australian 85.9 ± 2.0 80.9 ± 2.4 84.6 ± 2.3 86.7 ± 1.7 85.9 ± 1.8 86.9 ± 1.9
pima 76.4 ± 2.0 68.7 ± 2.6 76.1 ± 2.5 76.5 ± 2.7 76.0 ± 2.7 77.1 ± 2.5
vehicle 96.6 ± 1.3 95.9 ± 0.8 96.5 ± 1.4 96.3 ± 1.2 96.6 ± 1.0 97.1 ± 1.0
german 72.3 ± 1.8 64.3 ± 2.8 72.4 ± 1.4 73.7 ± 1.6 73.4 ± 1.6 74.0 ± 1.3
splice 87.5 ± 1.0 87.0 ± 1.0 83.5 ± 0.7 83.9 ± 1.1 96.9 ± 0.5 92.4 ± 0.8
spambase 93.5 ± 0.4 91.3 ± 0.6 91.6 ± 0.7 90.7 ± 0.7 95.2 ± 0.7 92.8 ± 0.6
occupancy 99.3 ± 0.1 98.9 ± 0.7 98.9 ± 0.1 98.8 ± 0.1 99.2 ± 0.1 98.9 ± 0.1

Mean 88.4 ± 2.1 85.7 ± 2.0 87.9 ± 2.0 87.9 ± 2.0 89.1 ± 2.2 89.1 ± 2.0
Average Rank 2.88 4.94 3.75 3.88 3.31 2.25

bankmarketing - - - 89.7 ± 0.2 90.8 ± 0.2 90.0 ± 0.2

4.5 Performance comparison between all methods

Table 2 presents for each dataset the mean results over the 20 splits using 100
iterations/landmarks for each method. Due to the size of the dataset “bankmar-
keting”, we do not report the results of the algorithms that do not converge in
time for this dataset, and we compute the average ranks and mean results over
the other 15 datasets. In terms of accuracy, GBRFF2 shows very good results
compared with the state-of-the-art as it obtains the best average rank among
the six methods and on average the best mean accuracy (with LGBM) leaving
apart “bankmarketing”. Interestingly, our method is the only kernel-based one
that scales well enough to be applied to this latter dataset.

4.6 Comparison of LGBM and GBRFF2 on toy datasets

In this last experiment, we focus on LGBM and GBRFF2 which have been
shown to be the two best performing methods. We consider three synthetics 2D
datasets with non-linearly separable classes. The first one, called “swiss”, repre-
sents two spirals of two classes side by side. The second one, namely “circles”,
consists of four circles with the same center and an increasing radius by alter-
nating the class of each circle. The third dataset, called “board”, consists of a
four by four checkerboard with alternating classes in each cell. Note that both
LGBM and GBRFF2 are run for 1000 iterations allowing them to converge.

Figure 5 gives evidence that GBRFF2 is able to achieve better results than
LGBM using only a small number of training examples, i.e., 500 or less. The
performances are asymptotically similar for both methods on the board and cir-
cle datasets with a faster rate of convergence for GBRFF2. Furthermore, if we



Learning Landmark-based Ensembles with RFF & Gradient Boosting 15

Fig. 5. Comparison of LGBM and GBRFF2 on three synthetic datasets in terms of
classification accuracy and decision boundaries (upper part of the figure) and in terms
of performance w.r.t. the number of examples (last row of plots).

look at the decision boundaries and their associated performances at train and
test time, we can see that LGBM is prone to overfit the training data com-
pared to our approach, showing a drastic drop in performance between learning
and testing. The learned decision boundaries are also smoother with GBRRF2
than with LGBM. These experiments show the advantage of having a non linear
weak learner in a gradient boosting approach.



16 L. Gautheron et al.

5 Conclusion and Perspectives

In this paper, we take advantages of two machine learning approaches, gradient
boosting and random Fourier features, to derive a novel algorithm that jointly
learns a compact representation and a model based on random features. Building
on a recent work [7], we learn a kernel by approximating it as a weighted sum of
RFF [12]. The originality is that we learn such kernels so that the representation
and the classifier are jointly optimized. We show that we can benefit from a
performance boost in terms of accuracy and computation time by considering
each weak learner as a single trigonometric feature and learning the random part
of the RFF. The experimental study shows the competitiveness of our method
with state-of-the-art boosting and kernel learning methods.

So far, the random features have been learned with a simple L2 regulariza-
tion. A promising future line of research is to add a regularization on the random
feature to foster diversity. In addition, the optimization of the random feature
and of the landmark at each iteration can be computationally expensive when
the number of iterations is large. A possibility to speed-up the learning proce-
dure is to derive other kernel approximations where these two parameters can
be computed with a closed-form solution. Other perspectives regarding the scal-
ability include the use of standard gradient boosting tricks [5] such as sampling
or learning the kernels in parallel.

References

1. Agrawal, R., Campbell, T., Huggins, J., Broderick, T.: Data-dependent compres-
sion of random features for large-scale kernel approximation. In: AISTATS (2019)

2. Balcan, M., Blum, A., Srebro, N.: Improved guarantees for learning via similarity
functions. In: COLT (2008)

3. Drineas, P., Mahoney, M.: On the nyström method for approximating a gram
matrix for improved kernel-based learning. JMLR 6, 2153–2175 (2005)

4. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann.
Statist. pp. 1189–1232 (2001)

5. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.:
Lightgbm: A highly efficient gradient boosting decision tree. In: NeurIPS (2017)

6. Le, Q., Sarlós, T., Smola, A.: Fastfood-computing hilbert space expansions in log-
linear time. In: ICML (2013)

7. Letarte, G., Morvant, E., Germain, P.: Pseudo-bayesian learning with kernel fourier
transform as prior. In: AISTATS (2019)

8. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Functional gradient techniques for
combining hypotheses. In: NeurIPS (1999)

9. Oglic, D., Gärtner, T.: Greedy feature construction. In: NeurIPS (2016)
10. Oliva, J., Dubey, A., Wilson, A., Póczos, B., Schneider, J., Xing, E.: Bayesian

nonparametric kernel-learning. In: AISTATS (2016)
11. Pedregosa, F.et al..: Scikit-learn: Machine learning in Python. JMLR 12, 2825–

2830 (2011)
12. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In:

NeurIPS (2008)



Learning Landmark-based Ensembles with RFF & Gradient Boosting 17

13. Sinha, A., Duchi, J.: Learning kernels with random features. In: NeurIPS (2016)
14. Vincent, P., Bengio, Y.: Kernel matching pursuit. Mach. Learn. 48(1-3), 165–187

(2002)
15. Williams, C., Seeger, M.: Using the nyström method to speed up kernel machines.

In: NeurIPS (2001)
16. Wu, D., Wang, B., Precup, D., Boulet, B.: Boosting based multiple kernel learning

and transfer regression for electricity load forecasting. In: ECML-PKDD (2017)
17. Yang, Z., Wilson, A., Smola, A., Song, L.: A la carte–learning fast kernels. In:

AISTATS (2015)
18. Zantedeschi, V., Emonet, R., Sebban, M.: Fast and provably effective multi-view

classification with landmark-based svm. In: ECML-PKDD (2018)


