
Algèbre Linéaire et Analyse de Données

Corrections des TD

Licence 2 MIASHS

Guillaume Metzler

Institut de Communication (ICOM)

Université de Lyon, Université Lumière Lyon 2

Laboratoire ERIC UR 3083, Lyon, France

guillaume.metzler@univ-lyon2.fr

Résumé

Ce document contient la correction des exercices proposées pour la première partie de ce
cours,i.e. sur la partie relative à l’algèbre linéaire et à la géométrique euclidienne.

Il est uniquement à destination des enseignants pour cet enseignement. Merci de ne pas le
diffuser aux étudiants.
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1 Espaces vectoriels et Applications linéaires

1.1 Applications du cours

Exercice 1.1. Soit E un ensemble, typiquement E = R2
muni d’une loi interne, notée + et d’une loi

externe notée · définies pour tout x,y 2 E et pour tout � 2 R par

x+ y = (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) et � · x = � · (x1, x2) = (0,�x2).

L’ensemble (E,+, ·) a-t-il une structure d’espace vectoriel sur R ?

Correction

On peut montrer qu’il ne s’agit pas d’un espace vectoriel. En effet, rappelons que nous devons
montrer que les différents points

1. (E,+) est un groupe abélien (i.e. commutatif)
2. 8x 2 E, 1 · x = x.

3. 8(↵,�) 2 R2
, 8x 2 E, (↵+ �) · x = ↵ · x+ � · x.

4. 8↵ 2 R, 8x,x0 2 E, ↵ · (x+ x0) = ↵ · x+ ↵ · x0.
5. 8(↵,�) 2 R2

, 8x 2 E, ↵ · (� · x)) = (↵�) · x.

1. (a) Il est clair que la somme de deux éléments de R2 reste un élément de R2.
(b) La loi + est associative, nous avons bien x+ (y + z) = (x+ y) + z.
(c) Elle admet un élément neutre qui est le vecteur (0, 0).
(d) L’existence d’un inverse pour tout élément x défini par �x pour lequel on a �x + x =

x� x = 0.
(e) La loi + est bien commutative, on a bien x+ y = y + x.

2. L’existence d’un élément neutre pour la loi externe, noté 1, pour lequel nous devons avoir
1 · x = x Or, pour tout x, nous avons 1x = 1 · (x1, x2) = (0, x2) 6= x sauf lorsque x1 = 0. Ce
qui met en défaut ce point là.

3. La distributivité par rapport à la loi interne : 8(↵,�) 2 R2
, 8x 2 E

(↵+ �) · x = (↵+ �) · (x1, x2),
= (0, (↵+ �)x2),

= (0,↵x2) + (0,�x2),

= ↵ · x+ � · x

4. On vérifie aisément la distributivité par rapport à la loi externe. Pour cela 8� 2 R, 8x,x0 2 E,

� · (x+ x0) = � · (x1 + x
0
1, x2 + x

0
2),

= (0,�(x2 + x
0
2)),

= (0,�x2 + �x
0
2),

= (0,�x2) + (0,�x02),

= � · (x1, x2) + � · (x01, x02),
= � · x+ � · x0.
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5. On vérifie l’associativitié par rapport à la loi externe 8(↵,�) 2 R2
, 8x 2 E

↵ · (� · x)) = ↵ · (0,�x2),
= (0, (↵�)x2),

= (↵�) · x

L’espace ainsi étudié n’est donc pas un espace vectoriel.

Exercice 1.2. Soit E = Rn[X] l’espace des polynômes de degré n, i.e. si P est un élément de E, alors

il existe des coefficients a0, . . . , an 2 R et an 6= 0 tels que

P (X) = a0 + a1X + a2X
2 + . . .+ anX

n =
nX

k=0

akX
k
.

L’ensemble E muni des lois internes et externes, respectivement définies, pour tout P,Q 2 E et

� 2 R par

P (X) +Q(X) =
nX

k=0

(ak + bk)X
k

et � · P (X) =
nX

k=0

�akX
k

a-t-il une structure d’espace vectoriel sur R ? Sans chercher à justifier votre réponse, quelle est

une base de cet espace vectoriel et quelle est sa dimension ?

Correction

On refait exactement les mêmes vérifications que pour l’exercice précédent

1. (a) Il est clair que la somme de deux éléments de E reste un élément de E, i.e. la somme de
deux polynôme reste un polynôme.

(b) La loi + est associative nous avons bien P + (Q+R) = (P +Q) +R. En effet

P (X) + (Q(X) +R(X)) =
nX

k=0

aiX
i + (

nX

k=0

biX
i +

nX

k=0

ciX
i),

=
nX

k=0

aiX
i +

nX

k=0

biX
i +

nX

k=0

ciX
i
,

= (
nX

k=0

aiX
i +

nX

k=0

biX
i) +

nX

k=0

ciX
i
,

= (P (X) +Q(X)) +R(X).

(c) Elle admet un élément neutre qui est le polynôme nul P = 0.
(d) L’existence d’un inverse pour tout élément P défini par �P pour lequel on a �P + P =

P � P = 0.
(e) La loi + est bien commutative, on a bien P +Q = Q+ P .

2. L’existence d’un élément neutre pour la loi externe, noté 1, pour lequel nous devons avoir
1 · P = P Or, pour tout P , nous avons 1 · P (X) =

Pn
k=0 1akX

k =
Pn

k=0 akX
k = P (X).
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3. La distributivité par rapport à la loi interne : 8(↵,�) 2 R2
, 8P 2 E

(↵+ �) · P =
nX

k=0

(↵+ �)aiX
i
,

=
nX

k=0

↵aiX
i +

nX

k=0

�aiX
i
,

= ↵

nX

k=0

aiX
i + �

nX

k=0

aiX
i
,

= ↵ · P + � · P

4. On vérifie aisément la distributivité par rapport à la loi externe. Pour cela 8� 2 R, 8P,Q 2 E,

� · (P +Q) = � · (
nX

k=0

(ai + bi)X
i),

=
nX

k=0

�(ai + bi)X
i
,

=
nX

k=0

�aiX
i +

nX

k=0

�biX
i
,

= �

nX

k=0

aiX
i + �

nX

k=0

biX
i
,

= � · P + �Q.

5. On vérifie l’associativitié par rapport à la loi externe 8(↵,�) 2 R2
, 8x 2 E

↵ · (� · P )) = ↵ · (
nX

k=0

�aiX
i),

=
nX

k=0

↵(�aiX
i),

=
nX

k=0

(↵�)aiX
i
,

= (↵�) · P

Exercice 1.3. Montrer que la famille de vecteurs v1 = (1, 1) et v2 = (2, 0) forme une famille généra-

trice de R2
.

Correction

Pour cet exercice, on se rappelle simplement qu’une famille de E est dite génératrice si tout

élément x de E peut s’exprimer comme une combinaison linéaire des éléments de cette famille.

Considérons x = (x1, x2) un élément de R2 et exprimons x comme une combinaison linéaire de
v1 et v2, i.e. trouver des valeurs ↵1 et ↵2 telles que

x = ↵1v1 + ↵2v2 soit
⇢
x1 = ↵1 + 2↵2

x2 = ↵1
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La deuxième équation nous conduit à ↵1 = x2 et avec la première équation on a

x1 = 2↵2 + ↵1,

# en isolant ↵2

↵2 =
1

2
(x1 � x2) .

Exercice 1.4. Montrer que la famille de vecteurs v1 = (1, 1, 1), v2 = (0, 0, 1) et v3 = (1,�1, 2) forme

une famille libre de R3
.

Correction

On rappelle qu’une famille est dite libre si la seule combinaison linéaire de ces vecteurs conduisant

au vecteur nul est la combinaison triviale.

Nous devons donc vérifier que l’équation

�1v1 + �2v2 + �3v3 = 0

admet pour une unique solution �1 = �2 = �3 = 0.
On remarque que v2 est un vecteur de la base canonique de R3. On va donc se concentrer sur les
vecteurs v1 et v3 et montrer qu’ils forment une famille libre. Plus précisément, on va se concentrer sur
les deux premières composantes de ces vecteurs.
Il est très facile de voir qu’ils forment deux "vecteurs" linéairement indépendants.

Exercice 1.5. Montrer que la famille B = (v1,v2,v3) forme une base de l’espace R3
où

v1 = (1, 3, 2), v2 = (2, 5, 2) et v3 = (�2,�2, 1).

Correction

La famille B = (v1,v2,v3) forme une base de l’espace R3. En effet, il nous suffit de montrer
qu’elle forme une famille libre et/ou génératrice de R3 (on pourra alors conclure à l’aide d’un argument
portant la dimension de l’espace étudié).
On décide de montrer qu’il s’agit d’une famille libre. Soient �1,�2,�3 des nombres réels tels que
�1v1 + �2v2 + �3v3 = 0. Montrons alors alors que �1 = �2 = �3 = 0.

8
<

:

�1 + 2�2 � 2�3 = 0
3�1 + 5�2 � 2�3 = 0
2�1 + 2�2 + 1�3 = 0

!

8
<

:

�1 + 2�2 � 2�3 = 0
��2 + 4�3 = 0 L2  L2 � 3L1

�2�2 + 5�3 = 0 L3  L3 � 2L1

!

8
<

:

�1 + 2�2 � 2�3 = 0
��2 + 4�3 = 0
�3�3 = 0 L3  L3 � 2L2

En remontant de bas en haut dans le système, on montre bien que �1 = �2 = �3 = 0, la familleest
donc libre.
Ayant une famille libre de trois vecteurs de R3, cette famille constitue bien une base de R3.
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Exercice 1.6. On considère une famille de vecteurs de R4
définies par

v1 = (1, 1, 1, 0), v2 = (0, 0, 1, 1) et v3 = (�1, 0� 1,�2).

Cette famille est-elle une famille libre de R4
? Compléter cette famille en une base de l’espace

R4
.

Correction

On procède comme à l’exercice précédent, considère �1,�2 et �3 tels que

�1v1 + �2v2 + �3v3 = 0.

Montrons alors alors que �1 = �2 = �3 = 0.

8
>><

>>:

�1 � �3 = 0
�1 = 0

�1 + �2 � �3 = 0
�2 � 2�3 = 0

La deuxième équation implique que �1 = 0, la première équation va alors montrer que �3 = 0 et
la dernière équation (ou la troisième) permettra de conclure que �3 est nul.

Regardons comment compléter cette famille en une base de R4. Pour cela, on va représenter la
famille de vecteurs sous forme de matrice et appliquer la méthode du pivot de gauss pour obtenir une
matrice triangulaire supérieure (l’ordre des vecteurs importe peu).

0

@
1 1 1 0
�1 0 �1 �2
0 0 1 1

1

A!

0

@
1 1 1 0
0 1 0 �2 L2 L2+L1

0 0 1 1

1

A

Pour compléter cette forme triangulaire, on peut donc prendre un vecteur v4 de la forme
(0, 0, 0,↵) où ↵ 6= 0.

Exercice 1.7. Montrer que le noyau d’une application linéaire � de E forme un sous-espace de E, i.e.

Ker(�) = {x 2 E : �(x) = 0}

muni des lois internes et externes de E (addition et multiplication) est un sous-espace vectoriel

de E.

Correction

Ker(�) est un sous-espace vectoriel de E. En effet, pour montrer qu’un ensemble est un sous-
espace vectoriel, il suffit de montrer deux choses :

— que cet ensemble est non vide
— qu’il est stable par combinaison linéaire
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Il est clair que Ker(�) est non vide car nous avons 0 2 Ker(�) car � est une application linéaire.
Il nous reste alors à montrer que Ker(�) est stable par combinaison linéiare. Pour cela, considérons x
et x0 deux éléments du noyau de � et ↵ 2 R, nous devons montrer que x+ ↵x0 2 Ker(�).

�(x+ ↵x0) = �(x) + �(↵x0),

# linéarité de �

= �(x) + ↵�(x0),

# x 2 Ker(�) et x0 2 Ker(�)

= 0.

Donc Ker(�) est bien un sous-espace de E.

Exercice 1.8. On considère E l’espace vectoriel des fonctions continues de R dans R. On note P

l’ensemble des fonctions paires de E et I l’ensemble des fonctions impaires de E.

Montrer que les ensembles P et I, munis des structures induites par celle de E sont des sous-

espaces vectoriels de E. Que peut-on dire de l’intersection de ces deux sous-espaces.

Correction

On commence par rappeler qu’une fonction paire est une fonction f qui vérifie

8x 2 R, f(x) = f(�x).

De même, une fonction g est dite impaire si elle vérifie

8x 2 R, g(�x) = �g(x).

Pour montrer que P et I sont des sous espaces de E, il faut à nouveau montrer que les ensembles

sont non vides et qu’ils sont stables par combinaisons linéaires.

• Espace P : cet espace est clairement non vide car la fonction nulle, f = 0, vérifie bien
f(x) = f(�x) pour tout réel x. Soient maintenant f, g 2 P et � 2 R, alors

(f + �g)(x) = f(x) + �g(x),

# f et g appartiennent à P

= f(�x) + �g(�x),
= (f + �g)(�x)

Donc P est bien un sous-espace de E.

• Espace I : cet espace est clairement non vide car la fonction nulle, f = 0, vérifie bien
�f(x) = f(�x) pour tout réel x. Soient maintenant f, g 2 P et � 2 R, alors

(f + �g)(�x) = f(�x) + �g(�x),
# f et g appartiennent à I

= � f(x)� �g(x),

= � (f + �g)(x)

Donc I est bien un sous-espace de E.
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Il est aussi évident que l’intersection de ces deux sous-espaces est nul. En effet, soit h 2 P \ I,
alors la fonction h vérifie les relations suivantes

h(x)� h(�x) = 0 8x car h 2 P,

h(�x) + h(x) = 0 8x car h 2 I.

En sommant les deux relations, nous avons 2h(x) = 0 pour tout réel x, donc h = 0.

On pourrait aller plus loin dans cet exercice en montrant que P et I sont en somme directe, il
nous resterait à montrer que toute fonction h de E peut s’écrire de façon unique comme la somme
d’une fonction paire et d’une fonction impaire. Ce que l’on peut vérifier facilement en écrivant :

h(x) =
h(x) + h(�x)

2| {z }
f2P

+
h(x)� h(�x)

2| {z }
g2I

.

Exercice 1.9. Montrer que l’application � : R2 ! R2
définie par

�(x1, x2) = (3x1 + 6x2,�2x1)

est une application linéaire de R2
dans R2

. Est-ce que cette application est injective ? Est-elle

surjective ?

Correction

Commençons par montrer qu’il s’agit d’une application linéaire. Considérons x = (x1, x2) et
y = (y1, y2) deux éléments de R2 et � 2 R, alors

�(x+ �y) =�(x1�y1, x2 + �y2),

# définition de �

= (3x1 + 6x2 + �(3y1 + 6y2),�2x1 � �y1),

= (3x1 + 6x2,�2x1) + �(3y1 + 6y2,�2y1),
= �(x) + ��(y).

Etudions maintenant le noyau de cette application. Considérons x un élément du noyau de �,
nous avons alors �(x) = 0, ce qui nous conduit au système

⇢
3x1 + 6x2 = 0,
�2x1 = 0.

La deuxième équation implique x1 = 0, ce qui, répercuter dans la première, implique x2 = 0.
L’application � est donc bien injective.

Pour voir si elle est surjective, considérons un élément y et montrons qu’il existe x 2 E tel que
�(x) = y. Cela nous amène à considérer le système

⇢
3x1 + 6x2 = y1,

�2x1 = y2.
!

8
<

:
x2 =

1

6
(y1 +

y2

4
),

x1 = �y2

2
.
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qui admet une solution, l’application est donc bien surjective. L’application � est donc bijective !

Exercice 1.10. On considère l’application � : K[X] ! K[X], i.e. une application de l’espace des

polynômes dans l’espace des polynômes (de degré quelconque), définie par

�(P (X)) = XP (X).

Montrer que cette application définie un endormorphisme injectif mais non surjectif de K[X].

Correction

Il faut d’abord montrer que l’application � est linéaire.

Soient P et Q deux polynômes et ↵ et � deux éléments de K, alors

�(↵P (X) + �Q(X)) = X(↵P (X) + �Q(X)),

# on développe

= ↵XP (X) + �XQ(X),

# on applique la définition de �

= ↵�(P (X)) + ��(Q(X)),

L’application � est donc linéaire et on vérifie facilement qu’elle transforme tout polynôme en
polynôme. c’est donc un endomorphisme.

Pour montrer que l’endomorphisme est injectif, on va montrer que �(P (X)) = 0 implique que P

est le polynôme nul.

Soit P un élément de K[X] tel que �(P (X)) = 0, on a alors XP (X) = 0 pour tout X. Or X

n’est pas nul pour tout X, nécessairement
Pour montrer que l’application n’est pas surjective, il suffit d’observer que le polynôme constant

n’appartient pas à l’image de �.
Pour cela, considérons a 2 R? et supposons qu’il existe un polynôme P 2 K[X] tel que

�(P (X)) = a pour tout X Pour tout X nous aurions donc XP (X) = a. En particulier, pour X = 0
nous aurons 0 = a, or a 6= 0, donc � n’est pas surjective.

Exercice 1.11. On considère l’application � : K[X] ! K[X], i.e. une application de l’espace des

polynômes dans l’espace des polynômes (de degré quelconque), définie par

�(P (X)) = P
0(X),

où P
0(X) désigne le polynôme dérivé. Montrer que cette application définie un endormorphisme

surjectif mais non injectif de K[X].

Correction

Il faut d’abord montrer que l’application � est linéaire.

Soient P et Q deux polynômes et ↵ et � deux éléments de K, alors

�(↵P (X) + �Q(X)) = (↵P (X) + �Q(X))0,
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# la dérivation est linéaire

= ↵P
0(X) + �Q

0(X),

# on applique la définition de �

= ↵�(P (X)) + ��(Q(X)),

L’application � est donc linéaire et on vérifie facilement qu’elle transforme tout polynôme en
polynôme. C’est donc un endormorphisme.

Pour montrer que l’endomorphisme est surjectif, on va montrer que tout polynôme appartient à

l’image de � à l’aide d’une construction explicite

Soit Q un élément de K[X], alors Q peut s’écrire sous la forme

Q(X) =
nX

i=0

aiX
i
.

Considérons maintenant le polynôme P défini par

P (X) =
nX

i=0

ai

i+ 1
X

i+1
.

On vérifie immédiatement que l’on a bien �(P ) = P
0 = Q.

Pour montrer que l’application n’est pas injective, on va montrer que son noyau n’est pas réduit

au polynôme nul, mais plutôt aux polynômes constants.

Supposons que l’on a �(P (X)) = P
0(X) = 0. Donc P est un polynôme dont la première dérivée

est nulle, or les seuls polynômes dont la dérivée est nulle sont les polynômes constants qui ne se limitent
donc pas au polynôme nul (pour tout réel a, �(a) = 0). � n’est donc pas injective.

Exercice 1.12. On considère l’application � : R3 ! R3
définie par

�(x) = (2x1 + x2 � x3, 2x1 � x2 + 2x3, 8x1 + 2x3).

Déterminer le noyau de l’application linéaire �. Quelle est sa dimension ?

Correction

Le noyau de l’application linéaire � est défini comme l’ensemble des vecteurs x de E = R3

vérifiant �(x) = 0.

On va donc chercher à résoudre un système linéaire homogène de trois équations à trois inconnues.

�(x) = 0 ()

8
<

:

2x1 + x2 � x3 = 0,
2x1 � x2 + 2x3 = 0,

8x1 + 2x3 = 0
!

8
<

:

�4x1 = x3 L1  L1 + L2

2x1 � x2 + 2x3 = 0
0 = 0 L3  L3 � 2L2 � 2L1

!

8
<

:

x3 = �4x1
x2 = �6x1
0 = 0
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Le noyau de � est donc déterminé par l’ensemble des vecteurs x de la forme

0

@
t

�6t
�4t

1

A, où t 2 R

Le noyau de � est donc engendré par un vecteur, il forme donc une droite vectorielle de R3. C’est donc
un espace de dimension 1.

Exercice 1.13. Déterminer une base du noyau de l’application linéaire � dont la représentation ma-

tricielle est donnée par

0

@
1 1 1 1
1 2 3 4
4 3 2 1

1

A

Correction

Pour déterminer une base du noyau de cette matrice, on considère un élément x = (x1, x2, x3, x4)
de ce noyau, ce dernier doit vérifier

8
<

:

x1 + x2 + x3 + x4 = 0,
x1 + 2x2 + 3x3 + 4x4 = 0,
4x1 + 3x2 + 2x3 + x4 = 0

!

8
<

:

x1 + x2 + x3 + x4 = 0,
x2 + 2x3 + 3x4 = 0,
�x2 � 2x3 � 3x4 = 0

Les deux dernières équations sont identiques, cela nous ramène donc à un système à deux équa-
tions

⇢
x1 + x2 + x3 + x4 = 0,
x2 + 2x3 + 3x4 = 0,

!
⇢
x1 = x3 + 2x4,
x2 = �2x3 � 3x4,

On en déduit que le système admet pour solutions les éléments suivants

0

BB@

x1

x2

x3

x4

1

CCA = x3

0

BB@

1
�2
1
0

1

CCA+ x4

0

BB@

2
�3
0
1

1

CCA

Ainsi les vecteurs

0

BB@

1
�2
1
0

1

CCA et

0

BB@

2
�3
0
1

1

CCA constituent une base du noyau de cette application.

Exercice 1.14. Déterminer une base de l’image de l’application linéaire � dont la représentation

matricielle est donnée par

0

@
1 1 1 1
1 2 3 4
4 3 2 1

1

A

Correction

On rappelle que l’image d’une application est engendrée par les vecteurs colonnes de la matrice
représentant cette application.
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On peut déjà se douter, à l’aide du théorème du rang, de la dimension de l’espace image étant

donné l’exercice précédent où l’on a a travaillé sur le noyau.

Ainsi déterminer une base de l’image de cette application, revient à déterminer une famille libre
des vecteurs colonnes de la matrice.

Si les vecteurs étaient linéairement indépendants, alors le système

0

@
1 1 1 1
1 2 3 4
4 3 2 1

1

A

0

BB@

x1

x2

x3

x4

1

CCA = 0

admettrait x = 0 comme unique solution, i.e.

x1

0

@
1
1
4

1

A+ x2

0

@
1
2
3

1

A+ x3

0

@
1
3
2

1

A+ x4

0

@
1
4
1

1

A = 0.

Ici on va chercher à exploiter le travail effectué sur le noyau en exploitant les relations obtenues
à l’exercice précédent :

⇢
x1 = x3 + 2x4,
x2 = �2x3 � 3x4,

Posons x3 = �1 et x4 = 0 dans notre relation principale, on en déduit, en utilisant notre système
précédent que x1 = �1 et x2 = 2. D’où :

�

0

@
1
1
4

1

A+ 2

0

@
1
2
3

1

A =

0

@
1
3
2

1

A .

Ce qui permet d’exprimer la troisième colonne de notre matrice comme une combinaison linéaire
des deux premières. De la même façon, posons x3 = 0 et x4 = �1 dans notre relation principale, on
en déduit, en utilisant notre système précédent que x1 = �2 et x2 = 3. D’où :

�2

0

@
1
1
4

1

A+ 3

0

@
1
2
3

1

A =

0

@
1
4
1

1

A .

On a exprimé la quatrième colonne de notre matrice comme une combinaison linéaire des deux
premières. De plus, les deux premières colonnes sont linéairement indépendantes (cela se voir très fa-

cilement), donc une base de l’image de notre application est donnée par les vecteurs

0

@
1
1
4

1

A et

0

@
1
2
3

1

A.

Nous aurions également pu faire cela uniquement en nous ramenant à une matrice échelonnée

réduite en travaillant sur les colonnes de la matrice, ce qui aurait été beaucoup plus rapide ! Je vous le

laisse à titre d’entraînement

Exercice 1.15. On considère l’application � : R3 ! R3
définie par

�(x1, x2, x3) = (4x1 + 2x2 � x3, x1 + x2 + x3,�x1 + x2 � x3).

Déterminer le noyau de cette application. Peut-on dire que � est un automorphisme de R3
?
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Correction

Pour la première question, on procédera de la même manière que les fois précédentes.

�(x) = 0 ()

8
<

:

4x1 + 2x2 � x3 = 0,
x1 + x2 + x3 = 0,
�x1 + x2 � x3 = 0

!

8
<

:

x1 + x2 + x3 = 0 L1 L2

�x1 + x2 � x3 = 0 L2 L3

4x1 + 2x2 � x3 = 0

!

8
<

:

x1 + x2 + x3 = 0
x2 = 0 L2 L2+L1

�2x2 � 5x3 = 0 L3 L3�4L1

!

8
<

:

x1 + x2 + x3 = 0
x2 = 0
�5x3 = 0 L3 L3+2L2

On en déduit que la solution de ce système est le vecteur nul. Ainsi l’application � est injective.
Or il s’agit d’un endomorphisme (c’est une application linéaire de R3 dans R3) de R3, elle est donc
aussi surjective. In fine, l’application � est un automorphisme de R3.

Exercice 1.16. Considérons une application linéaire � : R3 ! R2
définie par

�(x1, x2, x3) = (2x1 � x2 + x3,�x1 + x2 � x3).

Supposons que R2
est muni de sa base canonique (e1, e2) et R3

de sa base canonique (e01, e
0
2, e
0
3).

1. Déterminer la représentation matricielle de l’application �.

2. Déterminer l’image du vecteur u = 2e01 � 2e02 � e03 avec et sans l’aide de la représentation

matricielle.

Correction

1. La représentation matricielle de cette application nous donnera une une matrice A de 2 lignes
et 3 colonnes, dont les colonnes correspondent aux images des vecteurs de bases dans cette
même base, i.e.

A =

✓
2 �1 1
�1 1 �1

◆

2. Commençons par la forme algébrique, c’est-à-dire en passant par la définition de la fonction
�.
On commence par noter que les image des vecteurs de base e01, e

0
2, e
0
3 sont données par les

relations

�(e01) = 2e1 � e2,

�(e02) = �e1 + e2,

�(e03) = e1 � e2,

On peut alors calculer l’image du vecteur u = 2e01 � 2e02 � e03 par l’application �

�(u) = �(2e01 � 2e02 � e03),

# � est une application linéaire

= 2�(e01)� 2�(e02)� �(e03),
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# on calcule les images des vecteurs de base

= 2(2e1 � e2)� 2(�e1 + e2)� (e1 � e2),

= 4e1 � 2e2 + 2e1 � 2e2 � e1 + e2,

= 5e1 � 3e2.

Avec la représente matricielle il suffit de faire le calcul suivant :

Au =

✓
2 �1 1
�1 1 �1

◆0

@
2
�2
�1

1

A =

✓
5
�3

◆
= 5e1 � 3e2.

On retrouve le même résultat que précédemment.
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1.2 Pour aller plus loin

Exercice 1.17 (Images et Noyaux). Soit E un espace vectoriel sur un corps R. Soit f un endomor-

phisme de E. Montrer que les équivalence suivantes sont vraies
1

:

1. Ker(f2) = Ker(f) () Ker(f) \ Im(f) = {0}.
2. Im(f2) = Im(f) () Ker(f) + Im(f) = E.

Correction

L’exercice ne suppose pas de grandes connaissances, il suffit simplement de se rappeler des défi-
nitions d’image et de noyau :

x 2 Ker(f) () f(x) = 0

et

x 2 Im(f) () 9z 2 E,x = f(z).

Il faudra ensuite traiter chaque égalité entre les ensembles en montrant les inclusions réciproques,
i.e. pour montrer que deux ensembles A et B sont égaux, il nous faut montrer que A ⇢ B et B ⇢ A.

1. Comme il s’agit d’une équivalence, il va falloir démontrer l’implication dans les deux sens.

• On suppose que Ker(f2) = Ker(f)

(i) Il est clair que le vecteur nul 0 est un élément de Im(f) et de Ker(f) car ce sont des
sous-espaces vectoriels de E. On en déduit que 0 2 Ker(f) \ Im(f).
(ii) Soit maintenant x un élément de Ker(f) \ Im(f), on a donc f(x) = 0 et on sait
qu’il existe z 2 E tel que f(z) = x. On en déduit que f(f(z)) = f(x) = 0. Ainsi
z 2 Ker(f2) = Ker(f), ce qui signifie que x = f(z) = 0.

• On suppose que Ker(f) \ Im(f) = 0

(i) Il est à nouveau évident que Ker(f) ⇢ Ker(f2). En effet, soit x 2 Ker(f), alors
f(x) = 0 et f(f(x)) = f(0) = 0. Donc x 2 Ker(f2).
(ii) Soit x 2 Ker(f2), on a alors f(f(x)) = 0. Cela signifie que f(x) 2 Ker(f) \ Im(f),
alors cette intersection est réduite au vecteur nul, donc f(x) = 0. Cette dernière égalité
montre bien que x est un élément du noyau de f , i.e. x 2 Ker(f).

2. Comme précédemment, nous devons démontrer l’implication dans les deux sens
• Supposons que Im(f2) = Im(f)

(i) L’inclusion Im(f) +Ker(f) ⇢ E est évidente car ce sont des sous-espaces vectoriels
de E.
(ii) Soit x un élément de E, par hypothèse on sait que f(x) 2 Im(f2), donc il existe
un vecteur z 2 E tel que f(x) = f(f(z)). On en déduit que f(f(z) � x) = 0, donc
x�f(z) 2 Ker(f). En écrivant x = x� f(z)| {z }

2Ker(f)

+ f(z)|{z}
2Im(f)

, nous obtenons le résultat demandé.

1. Pour montrer que deux ensembles A et B sont égaux, il nous faut montrer que A ⇢ B et B ⇢ A.
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• Supposons que Ker(f) + Im(f) = E

(i) L’inclusion Im(f2) ⇢ Im(f) est évidente. En effet, soit x 2 Im(f2), alors il existe
z 2 E tel que f(f(z)) = x, par conséquente x = f(y) où y = f(z). On a bien écrit x
comme l’image par f d’un vecteur de E.
(ii) Considérons maintenant x 2 Im(f), alors il existe z 2 E tel que f(z) = x. On doit
maintenant utiliser notre hypothèse, on peut donc écrire z = a + b où a 2 Ker(f) et
b 2 Im(f). Or comme b 2 Im(f), on sait qu’il existe c 2 E tel que f(c) = b. Ainsi

x = f(z) = f(a+ f(c)) = f(a) + f(f(c)) = f(f(c)) 2 Im(f2),

ce qui termine la démonstration.

Exercice 1.18 (Images et noyaux en dimension finie). Soit E un R-espace vectoriel de dimension finie

n. Soit f un endomorphisme de E. Démontrer les équivalences suivantes

Ker(f)� Im(f) = E () Im(f2) = Im(f) () Ker(f) = Ker(f2)

Correction

Cela fonctionne comme pour l’exercice précédent, mais certaines démonstrations seront grande-
ment simplifiées. On va ici démontrer les implications de gauche à droite : (1) =) (2), (2) =) (3)
et (3) =) (1)

• Montrons que (1) =) (2)

Aucune spécificité liée à l’étude d’un espace de dimension finie, on procèdera donc comme à
l’exercice précédent.

• Montrons que (2) =) (3)

(i) On a bien Ker(f) ⇢ Ker(f2). En effet, soit x 2 Ker(f), alors f(x) = 0 et donc f(f(x)) =
f(0) = 0.
(ii) Comme Ker(f) ⇢ Ker(f2), pour que les deux ensembles soient égaux, il suffit de montrer
qu’ils ont la même dimension ! Pour cela, on va utiliser le théorème du rang

dim(Ker(f2)) = n� dim(Im(f2)) = n� dim(Im(f)) = dim(Ker(f)).

On en déduit que Ker(f) = Kerf(2).

• Montrons que (3) =) (1)
Il s’agit de démontrer que les espaces Im(f) et Ker(f) sont supplémentaires dans E.
(i) Soit x 2 Ker(f)\ Im(f), il existe z 2 E tel que f(z) = x d’où f(x) = f(f(z)) = 0. Donc
z 2 Ker(f2) = Ker(f), ainsi x = f(z) = 0. Finalement

Ker(f) \ Im(f) = {0}.

(ii) Il suffit maintenant de démontrer que la somme des dimensions de ces deux sous-espaces
est égale à n. Mais c’est une conséquence directe du théorème du rang, qui énonce

dim(Ker(f)) + dim(Im(f)) = dim(E) = n.

Exercice 1.19 (Homothéties). Soit E un espace vectoriel sur R de dimension finie n. On appelle

homothétie, une application linéaire ha de la forme
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ha : E ! E,

x 7! ax,

où a est un nombre réel.

1. Soit f un endomorphisme de E. Supposons que, quelque soit x 2 E, il existe ax 2 R tel que :

f(x) = axx.

(a) Soient x,y 2 E deux vecteurs linéairements indépendants. Montrer que ax = ay. On

pourra chercher à calculer f(x+ y) de deux façons différentes.

(b) Montrer que f est une homothétie.

2. On appelle centre de L (E) (i.e. centre de l’ensemble des endomorphismes de E) l’ensemble

des éléments f 2 L (E) vérifiant

8g 2 L (E), f � g = g � f,

i.e. il s’agit des endomorphismes de E qui commutent avec tous les autres.

(a) Soit x 2 E. Montrer qu’il existe un projecteur px de E dont l’image est égale à V ect(x) =
hxi.

(b) Déterminer le centre de L (E).

Correction

1. Soit f un endomorphisme de E. Supposons que, quelque soit x 2 E, il existe ax 2 R tel que :

f(x) = axx.

(a) Soient x,y 2 E deux vecteurs linéairements indépendants. On va utiliser le fait que f est
linéaire pour écrire : f(x+ y) = f(x) + f(y).
Ce qui nous donne

f(x+ y) = ax+y(x+ y) = f(x) + f(y) = axx+ ayy.

Ce qui nous donne :

(ax+y � ax)x+ (ax+y � ay)y = 0

Or les vecteurs x et y forment une famille libre, ce qui signifie que ax+y � ax = 0 et
ax+y � ay = 0. Par suite, on déduit que ax = ay.

(b) Pour montrer que f est une homothétie il faut montrer que pour tout x, f peut s’écrire
sous la forme f(x) = ax pour un certain réel a.
Dans la définition actuelle de f , le rapport de l’homothétie dépend du vecteur x considéré,
l’objectif de est montrer que ax = a quel que soit x.

Pour cela on va considérer deux vecteur x et y et montrer que l’on a ax = ay dans tous
les cas.
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La question précédente nous a permis de montrer que si x et y sont indépendants, alors
ax = ay. Il reste à étudier le cas où les deux vecteurs sont liés. Deux vecteurs sont liés s’il
existe un réel � tel que y = �x (on va considérer x non nul). On alors

ayy = f(y)

= f(�x)

= �f(x)

= �axx

= ax�x

= axy.

On a donc ayy = axy, ce qui montre que ax = ay quels que soient x,y.

2. On appelle centre de L (E) (i.e. centre de l’ensemble des endomorphismes de E) l’ensemble
des éléments f 2 L (E) vérifiant

8g 2 L (E), f � g = g � f,

i.e. il s’agit des endomorphismes de E qui commutent avec tous les autres.

(a) Pour cela il suffit de définir le projecteur px qui projette sur la droite vectorielle engendrée
par x, notée D, parallèlement à un supplémentaire de D.

(b) On doit maintenant déterminer l’ensemble des endomorphismes qui commutent avec tous
les autres. La question précédente suggère qu’il s’agit des homothéties. On peut donc
commencer par montrer que ce sont bien des éléments du centre de L (E).

Soit f une homothétie de E. f est donc de la forme ha = aId pour un certain réel a.
Considérons maintenant g un endomorphisme de E, alors pour tout x 2 E nous avons

(g � f)(x) = g(f(x))

= g(ax)

= ag(x)

= f(g(x))

= (f � g)(x).

Il faut maintenant montrer qu’il n’y pas d’autres endomorphimes qui appartiennent au
centre de L (E) que les homothéties.

Pour cela, considérons f un élément du centre de L (E) et soit x 2 E. D’après la ques-
tion a) il existe un projecteur px qui projette sur la droite vectorielle D = V ect(x) et
parallèlement à un supplémentaire de D. Comme f appartient au centre de L (E), on a

(f � px)(x) = (px � f)(x).

Ce qui montre que f laisse stable l’image du projecteur px. Donc l’image d’un vecteur de
V ect(x) par l’application f est de la forme ↵xx où ↵ 2 R?. La question 1.b) permet de
conclure que f est une homothétie. Ce qui achève la démonstration de cette question.
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