NSTITUT
E’K: pe La
municarion

ENTREPOTS, REPRESENTATION
INGENIERIE 2 CONNAISSANCES

Algébre Linéaire et Analyse de Données

Corrections des TD
Licence 2 MIASHS

Guillaume Metzler

Institut de Communication (ICOM)
Université de Lyon, Université Lumiére Lyon 2
Laboratoire ERIC UR 3083, Lyon, France

guillaume.metzler@univ-lyon2.fr

Résumé
Ce document contient la correction des exercices proposées pour la premiére partie de ce

cours,i.e. sur la partie relative a ’algébre linéaire et a la géométrique euclidienne.
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1 Espaces vectoriels et Applications linéaires

1.1 Applications du cours

Exercice 1.1. Soit E un ensemble, typiquement E = R? muni d’une loi interne, notée + et d’une loi
externe notée - définies pour tout X,y € E et pour tout A € R par

x+y=(z1,22) + (W1,92) = (x1 +y1, 22 +y2) et A-x=X\-(1,22) = (0, Ax2).

L’ensemble (E,+,-) a-t-il une structure d’espace vectoriel sur R ¢

Correction

On peut montrer qu’il ne s’agit pas d’un espace vectoriel. En effet, rappelons que nous devons
montrer que les différents points

. (E,+) est un groupe abélien (i.e. commutatif)
.VxeFE 1-x=x.

Y(,B)ER? VX € E, (a+ ) x=a-x+ 3 x
NVaeR, Vx,xX' €F, a-(x+x)=a -x+a-x.
VY(a,B) ER? Vx€EE, a-(8-x)) = (af) - x.

1. (
(

T o= W N =

a) Il est clair que la somme de deux éléments de R? reste un élément de R2.
b) La loi + est associative, nous avons bien x + (y +z) = (x +y) + z.
(c) Elle admet un élément neutre qui est le vecteur (0, 0).

)

(d) L’existence d'un inverse pour tout élément x défini par —x pour lequel on a —x + x =
x—x=0.
(e) La loi 4 est bien commutative, on a bien x +y =y + x.

2. L’existence d’'un élément neutre pour la loi externe, noté 1, pour lequel nous devons avoir
1-x =x Or, pour tout x, nous avons 1x = 1- (z1,z2) = (0,22) # x sauf lorsque z; = 0. Ce
qui met en défaut ce point la.

3. La distributivité par rapport a la loi interne : V(a, 3) € R?, Vx € E

(a+pB)-x= (a+p)-(21,12),
= (0, (a + B)m2),

(0, awg) + (0, Ba),
= a-x+0-x

4. On vérifie aisément la distributivité par rapport a la loi externe. Pour cela VA € R, Vx,x' € F,

A (x+x)= X (21 + 2,02 +2h),
(@2 + 25)),

, AT + ATh),

0, Az2) + (0, Axh),

A (z1,22) + X - (2], 2h),
= A-x+AX.

(0
= (0
(
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5. On vérifie I'associativitié par rapport a la loi externe V(o 3) € R?, Vx € E

a-(6-x)) = a-(0,bz),

L’espace ainsi étudié n’est donc pas un espace vectoriel.

Exercice 1.2. Soit E = R,[X] l’espace des polynomes de degré n, i.e. si P est un élément de E, alors
il existe des coefficients ag, ...,a, € R et a, # 0 tels que

P(X)=ap+ a1 X +as X’ +... +a,X" = Zaka-

L’ensemble E muni des lois internes et externes, respectivement définies, pour tout P,Q € E et
A €R par

P(X = (ax +b)X* et A-P(X)=> AgpX*
k=0 k=0

a-t-il une structure d’espace vectoriel sur R ¢ Sans chercher a justifier votre réponse, quelle est
une base de cet espace vectoriel et quelle est sa dimension ?

Correction

On refait exactement les mémes vérifications que pour l'exercice précédent

1. (a) Il est clair que la somme de deux éléments de E reste un élément de F, i.e. la somme de
deux polynéme reste un polynéme.

(b) La loi + est associative nous avons bien P + (Q + R) = (P + Q) + R. En effet

PUX) + (QUX) + R(X)) = Y0 + 3 bx e

k=0

= ialeJrib XHLZCZXl

= (Z a; X"+ sz’Xi) + ZCiXi,
k=0 k=0 k=0
= (P(X) + Q(X)) + R(X).

(c¢) Elle admet un élément neutre qui est le polynéme nul P = 0.

(d) L’existence d’un inverse pour tout élément P défini par —P pour lequel on a —P + P =
P—-P=0.

(e) La loi + est bien commutative, on a bien P+ Q = @Q + P.

2. L’existence d’un élément neutre pour la loi externe, noté 1, pour lequel nous devons avoir
1- P = P Or, pour tout P, nous avons 1 - P(X) = > 7_layX* = 3}_ arX* = P(X).
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3. La distributivité par rapport a la loi interne : V(a, 8) € R?, VP € E

(@+8)-P=> (a+pB)aX’

= Xn:aaiXi + Xn:ﬁaiXi,

k=0 k=0

I

Q

8
3
_l’_
@
L[]

&
g

I
Q
Y
+
=
)

4. On vérifie aisément la distributivité par rapport a la loi externe. Pour cela VA € R, VP, Q € F,

A (P+Q)= XD (ai+b)X"),

k=0

n .
=3 Mai + bi) X,
k=0

= Xn: a; X'+ zn: b X
k=0 k=0

=AY aiX' A biX
k=0 k=0
= A P+AQ.

5. On vérifie I'associativitié par rapport a la loi externe ¥(a, 3) € R?, ¥x € E

a-(8-P) = a- (3 Bax?),
k=0

= Za(ﬂaiXi)a

k
= (ap)- P
Exercice 1.3. Montrer que la famille de vecteurs vi = (1,1) et vo = (2,0) forme une famille généra-

trice de R2.

Correction

Pour cet exercice, on se rappelle simplement qu’une famille de E est dite génératrice si tout
élément x de E peut s’exprimer comme une combinaison linéaire des éléments de cette famille.

Considérons x = (1, 72) un élément de R? et exprimons x comme une combinaison linéaire de
vy et vo, i.e. trouver des valeurs a1 et as telles que

1 = o1 + 209

X = a1V] + agvy  Soit
T = (1
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La deuxiéme équation nous conduit & a; = x9 et avec la premiére équation on a

T = 200 + a1,

1
Qo = 5(.231—.%2).
Exercice 1.4. Montrer que la famille de vecteurs vi = (1,1,1), vo = (0,0,1) et vz = (1,—1,2) forme
une famille libre de R3.

Correction

On rappelle qu’une famille est dite libre si la seule combinaison linéaire de ces vecteurs conduisant
au vecteur nul est la combinaison triviale.

Nous devons donc vérifier que 1’équation

AV 4+ Agve + Azvs =0

admet pour une unique solution Ay = Ao = A3 = 0.
On remarque que vy est un vecteur de la base canonique de R3. On va donc se concentrer sur les
vecteurs vy et vg et montrer qu’ils forment une famille libre. Plus précisément, on va se concentrer sur
les deux premiéres composantes de ces vecteurs.
Il est trés facile de voir qu’ils forment deux "vecteurs" linéairement indépendants.

Exercice 1.5. Montrer que la famille 8 = (v1,v2,v3) forme une base de l'espace R3 ou
vi=(1,3,2), vy=1(2,5,2) et vz3=(-2,-21).

Correction

La famille 2 = (v1,va,v3) forme une base de I'espace R3. En effet, il nous suffit de montrer
qu’elle forme une famille libre et /ou génératrice de R? (on pourra alors conclure a I’aide d’un argument
portant la dimension de I'espace étudié).

On décide de montrer qu’il s’agit d’'une famille libre. Soient A1, Ao, A3 des nombres réels tels que
A1V1 + Aovo + A3vs = 0. Montrons alors alors que A\ = A9 = A3 = 0.

A +2X =223 = 0 AM+2X =223 = 0
3A\1 +5X—2)\3 = 0 — —Ag +4)3 = 0 Lo+ Ly—3I4
2M\1 +2X2+1X3 = 0 —2Xo + 53 = 0 L3« L3—2L;
M+2X—-223 = 0
— —Ao + 43 =0
*3)\3 = 0 L3 — L3 — 2L2

En remontant de bas en haut dans le systéme, on montre bien que \; = A2 = A3 = 0, la familleest
donc libre.
Ayant une famille libre de trois vecteurs de R3, cette famille constitue bien une base de R3.

5 - Algebre Linéaire et Analyse de Données - L2-MIASHS



Exercice 1.6. On considére une famille de vecteurs de R* définies par

vi=(1,1,1,0), vo = (0,0,1,1) et vs=(—1,0—1,-2).

Cette famille est-elle une famille libre de R* 2 Compléter cette famille en une base de l’espace
R?.

Correction

On procéde comme a 'exercice précédent, considére A1, Ay et Az tels que

A1Vi + Aovo + A3vy = 0.

Montrons alors alors que A\; = Ao = A3 = 0.

AL — A3
A1 =
A+ A2 — A3
Ao — 2)3 =

o O OO

La deuxiéme équation implique que A\; = 0, la premiére équation va alors montrer que A3 = 0 et
la derniére équation (ou la troisiéme) permettra de conclure que Az est nul.

Regardons comment compléter cette famille en une base de R*. Pour cela, on va représenter la
famille de vecteurs sous forme de matrice et appliquer la méthode du pivot de gauss pour obtenir une
matrice triangulaire supérieure (I'ordre des vecteurs importe peu).

1 1 1 0 1 11 0
_1 0 _1 —2 — 0 1 0 -2 Lo+ Lo+1L4
0 0 1 1 001 1

Pour compléter cette forme triangulaire, on peut donc prendre un vecteur v4 de la forme

(0,0,0,a) ot @ # 0.

Exercice 1.7. Montrer que le noyau d’une application linéaire ¢ de E forme un sous-espace de E, i.e.

Ker(¢) ={x € E: ¢(x) =0}

muni des lois internes et externes de E (addition et multiplication) est un sous-espace vectoriel

de E.

Correction

Ker(¢) est un sous-espace vectoriel de E. En effet, pour montrer qu'un ensemble est un sous-
espace vectoriel, il suffit de montrer deux choses :

— que cet ensemble est non vide
— qu’il est stable par combinaison linéaire
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11 est clair que Ker(¢) est non vide car nous avons 0 € Ker(¢) car ¢ est une application linéaire.
Il nous reste alors & montrer que Ker(¢) est stable par combinaison linéiare. Pour cela, considérons x
et x" deux éléments du noyau de ¢ et a € R, nous devons montrer que x + ax’ € Ker(¢).

d(x + ax’) = ¢(x) + p(ax’),
= ¢(x) + ad(x),

=0.

Donc Ker(¢) est bien un sous-espace de F.

Exercice 1.8. On considére E [’espace vectoriel des fonctions continues de R dans R. On note P
l’ensemble des fonctions paires de E et I l’ensemble des fonctions impaires de E.

Montrer que les ensembles P et I, munis des structures induites par celle de E sont des sous-
espaces vectoriels de E. Que peut-on dire de l'intersection de ces deux sous-espaces.
Correction

On commence par rappeler qu’une fonction paire est une fonction f qui vérifie

v e R, f(z)=f(—x).

De méme, une fonction g est dite impaire si elle vérifie

Ve eR, g(—z)=—g(z).

Pour montrer que P et I sont des sous espaces de E, il faut a nouveau montrer que les ensembles
sont non vides et qu’ils sont stables par combinaisons linéaires.

e Espace P : cet espace est clairement non vide car la fonction nulle, f = 0, vérifie bien
f(x) = f(—x) pour tout réel x. Soient maintenant f,g € P et A € R, alors

(f +Ag)(@) = f(z) + Ag(=),

= f(—2) + Ag(—),
= (f+Ag)(—=)

Donc P est bien un sous-espace de E.

e Espace I : cet espace est clairement non vide car la fonction nulle, f = 0, vérifie bien
—f(z) = f(—=z) pour tout réel x. Soient maintenant f,g € P et A € R, alors

(f +29) (=) = f(=2) + Ag(—x),

= — f(z) — \g(x),
= (f+2g9) (=)

Donc I est bien un sous-espace de E.

uuuuuuuuuuuuuuu
ooooooooo
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Il est aussi évident que l'intersection de ces deux sous-espaces est nul. En effet, soit h € PN I,
alors la fonction h vérifie les relations suivantes

h(z) —h(—x) =0 Vzcarh€ P,
h(—z)+h(z) =0 Vzcarhel.

En sommant les deux relations, nous avons 2h(x) = 0 pour tout réel z, donc h = 0.

On pourrait aller plus loin dans cet exercice en montrant que P et I sont en somme directe, il
nous resterait & montrer que toute fonction h de E peut s’écrire de fagcon unique comme la somme
d’une fonction paire et d’'une fonction impaire. Ce que 'on peut vérifier facilement en écrivant :

h(z) = h(z) —|—2h(—ac) n h(z) —2h(—x) .
fep gel

Exercice 1.9. Montrer que Uapplication ¢ : R? — R? définie par

¢(x1,x2) = (3:81 + 629, —21‘1)

est une application linéaire de R? dans R%. Est-ce que cette application est injective ? Est-elle
surjective ?

Correction

Commengons par montrer qu’il s’agit d’une application linéaire. Considérons x = (x1,z2) et
y = (y1,2) deux éléments de R? et \ € R, alors

d(x + Ay) =p(z1 Y1, w2 + Ay2),

= (3x1 + 6x2 + A(By1 + 6y2), —2x1 — Ay1),
= (3x1 + 622, —2x1) + A(3y1 + 6y2, —2y1),
= ¢(x) + Ap(y).

Etudions maintenant le noyau de cette application. Considérons x un élément du noyau de ¢,
nous avons alors ¢(x) = 0, ce qui nous conduit au systéme

—21’1 0.

{3$1+6$2 = 0,

La deuxiéme équation implique z; = 0, ce qui, répercuter dans la premiére, implique zo = 0.
L’application ¢ est donc bien injective.

Pour voir si elle est surjective, considérons un élément y et montrons qu’il existe x € E tel que
¢(x) = y. Cela nous ameéne a considérer le systéme

1 Y2
{3m1 +6z0 = 1, . T2 = 6(3/1 + Z)v
—2x = . _ Y2
1 Y2 T = -5
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qui admet une solution, 'application est donc bien surjective. L’application ¢ est donc bijective !

Exercice 1.10. On considére Uapplication ¢ : K[X] — K[X], i.e. une application de l'espace des
polynomes dans espace des polynomes (de degré quelconque), définie par

¢(P(X)) = XP(X).

Montrer que cette application définie un endormorphisme injectif mais non surjectif de K[X].

Correction

1l faut d’abord montrer que l’application ¢ est linéaire.

Soient P et ) deux polynomes et « et S deux éléments de K, alors

P(aP(X) + QX)) = X (aP(X) + SQ(X)),
= aXP(X) + XQ(X),

= ap(P(X)) + Bo(Q(X)),

L’application ¢ est donc linéaire et on vérifie facilement qu’elle transforme tout polynéme en
polynéme. c’est donc un endomorphisme.

Pour montrer que 'endomorphisme est injectif, on va montrer que ¢(P(X)) = 0 implique que P
est le polynome nul.

Soit P un élément de K[X] tel que ¢(P(X)) = 0, on a alors XP(X) = 0 pour tout X. Or X
n’est pas nul pour tout X, nécessairement

Pour montrer que lapplication n’est pas surjective, il suffit d’observer que le polynéme constant
n’appartient pas & limage de ¢.

Pour cela, considérons a € R* et supposons qu'il existe un polynéome P € K[X] tel que
¢(P(X)) = a pour tout X Pour tout X nous aurions donc X P(X) = a. En particulier, pour X = 0
nous aurons 0 = a, or a # 0, donc ¢ n’est pas surjective.

Exercice 1.11. On considére Uapplication ¢ : K[X] — K[X], i.e. une application de l’espace des
polynomes dans espace des polynomes (de degré quelconque), définie par

¢(P(X)) = P'(X),

ot P'(X) désigne le polynéme dérivé. Montrer que cette application définie un endormorphisme
surjectif mais non injectif de K[X].

Correction

1l faut d’abord montrer que l’application ¢ est linéaire.

Soient P et @ deux polynomes et « et S deux éléments de K, alors

¢(aP(X) + BQ(X)) = (aP(X) + fQ(X))’,

9 - Algebre Linéaire et Analyse de Données - L2-MIASHS =5



= aP'(X) + BQ(X),

= ag(P(X)) + Bo(Q(X)),

L’application ¢ est donc linéaire et on vérifie facilement qu’elle transforme tout polynéme en
polynoéme. C’est donc un endormorphisme.

Pour montrer que l’endomorphisme est surjectif, on va montrer que tout polynoéme appartient a
limage de ¢ a l'aide d’une construction explicite

Soit @ un élément de K[X], alors @) peut s’écrire sous la forme

QX)=> aX'.

=0

Considérons maintenant le polynéme P défini par

n
a; i
PX)=>" T:lX +
=0

On vérifie immédiatement que l'on a bien ¢(P) = P = Q.

Pour montrer que l'application n’est pas injective, on va montrer que son noyau n’est pas réduit
au polynome nul, mais plutot aux polynomes constants.

Supposons que l'on a ¢(P(X)) = P/(X) = 0. Donc P est un polyndéme dont la premiere dérivée
est nulle, or les seuls polynémes dont la dérivée est nulle sont les polynémes constants qui ne se limitent
donc pas au polynéme nul (pour tout réel a, ¢(a) = 0). ¢ n’est donc pas injective.

Exercice 1.12. On considére Uapplication ¢ : R? — R3 définie par

d(x) = (221 + x9 — x3, 221 — @2 + 223, 821 + 223).

Déterminer le noyau de lapplication linéaire ¢. Quelle est sa dimension ¢

Correction

Le noyau de Vapplication linéaire ¢ est défini comme l’ensemble des vecteurs x de E = R3

vérifiant ¢(x) = 0.

On va donc chercher a résoudre un systéme linéaire homogéne de trois équations a trois inconnues.

21 + x93 —x3 = O, —4xq = x3 L1+ L1+ Lo
p(x)=0 <= {2x1 —x2+223 = 0, > < 2x1 —29+2x3 = 0
8x1 + 2z3 = 0 0 = 0 L3¢+ L3—2Ls—2I4
r3 = —43;1
< xT9 = —06x7
0 = 0
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t
Le noyau de ¢ est donc déterminé par ’ensemble des vecteurs x de la forme | —6t |, out € R
—4t
Le noyau de ¢ est donc engendré par un vecteur, il forme donc une droite vectorielle de R?. C’est donc
un espace de dimension 1.

Exercice 1.13. Déterminer une base du noyau de application linéaire ¢ dont la représentation ma-
tricielle est donnée par

[
W N =
DN W =
— s =

Correction

Pour déterminer une base du noyau de cette matrice, on considére un élément x = (x1, z9, X3, 24)
de ce noyau, ce dernier doit vérifier

1+ T2+ 23+ x4 = 0, r1+ax2+x3+2x4 = 0,
r] + 2200 +3x3+42x4y = 0, — To + 2x3 + 314 = 0,
dr1+ 39+ 223+ 24 = 0 —x9 —2x3—3x4 = 0

Les deux derniéres équations sont identiques, cela nous raméne donc a un systéme a deux équa-
tions

Ty +T2o+ a3+ 24 = 0,% T, = T3 + 214,
To + 2x3 + 314 = 0, Ty = —2x;3— 314,

On en déduit que le systéme admet pour solutions les éléments suivants

X1 1 2
X9 _ —2 -3
ey | T [T o
T4 0 1
1 2
o -2 -3 . L
Ainsi les vecteurs 1 et 0 constituent une base du noyau de cette application.
0 1

Exercice 1.14. Déterminer une base de l’image de l’application linéaire ¢ dont la représentation
matricielle est donnée par

I
W N =
N W o=
Ll S

Correction

On rappelle que I'image d’une application est engendrée par les vecteurs colonnes de la matrice
représentant cette application.

11 - Algebre Linéaire et Analyse de Données - L2-MIASHS



On peut déja se douter, a l'aide du théoréme du rang, de la dimension de [’espace image étant
donné l’exercice précédent ot l’on a a travaillé sur le noyau.

Ainsi déterminer une base de 'image de cette application, revient & déterminer une famille libre
des vecteurs colonnes de la matrice.

1111 il

Si les vecteurs étaient linéairement indépendants, alors le systéme |1 2 3 4 x2 =0
43 21 8
T4

admettrait x = 0 comme unique solution, i.e.

1 1 1 1
1 [1] +xo (2] +23 |3 +x4(4]| =0.
4 3 2 1

Ici on va chercher a exploiter le travail effectué sur le noyau en exploitant les relations obtenues
a l'exercice précédent :

T = 13+ 214,
Ty = —2x3 — 324,
Posons 3 = —1 et 4 = 0 dans notre relation principale, on en déduit, en utilisant notre systéme
précédent que 1 = —1 et x9 = 2. D’out :
1 1 1
—|1]1+212| =13
4 3 2
Ce qui permet d’exprimer la troisiéme colonne de notre matrice comme une combinaison linéaire
des deux premiéres. De la méme fagon, posons 3 = 0 et x4 = —1 dans notre relation principale, on
en déduit, en utilisant notre systéme précédent que z1 = —2 et 9 = 3. D’ou :
1 1 1
—211)+3[2] =14
4 3 1

On a exprimé la quatriéme colonne de notre matrice comme une combinaison linéaire des deux
premicres. De plus, les deux premiéres colonnes sont linéairement indépendantes (cela se voir trés fa-

1 1
cilement), donc une base de I'image de notre application est donnée par les vecteurs [ 1| et | 2
4 3

Nous aurions également pu faire cela uniquement en nous ramenant & une matrice échelonnée
réduite en travaillant sur les colonnes de la matrice, ce qui aurait été beaucoup plus rapide ! Je vous le
laisse a titre d’entrainement

Exercice 1.15. On considére Uapplication ¢ : R? — R3 définie par

o(x1, 22, 23) = (da1 + 202 — 23,21 + 22 + 23, —21 + T2 — T3).

Déterminer le noyau de cette application. Peut-on dire que ¢ est un automorphisme de R> 2
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Correction

Pour la premiére question, on procédera de la méme maniére que les fois précédentes.

4xy + 229 —x3 = O, T4+ x0+2x3 = 0 LiLo
Pp(x) =0 < T +xot+r3 = 0, =< —x1+220—23 = 0 LocLy
—x1+ax9—23 = 0 4dr1+ 29— 23 = 0
T1+2x0+2x3 = 0 r1+ax0+x3 = 0
— T9 = 0 Lo+Lot+L; — T2 = 0
—2x9 —bx3 = 0 LzeLz—aL, —bzx3 = 0 Ly+L3+2L

On en déduit que la solution de ce systéme est le vecteur nul. Ainsi 'application ¢ est injective.
Or il s’agit d’un endomorphisme (c’est une application linéaire de R* dans R?) de R3, elle est donc
aussi surjective. In fine, I'application ¢ est un automorphisme de R3.

Exercice 1.16. Considérons une application linéaire ¢ : R® — R? définie par

d(x1, 9, x3) = (221 — w2 + X3, —T1 + T2 — X3).
Supposons que R? est muni de sa base canonique (ey,es) et R? de sa base canonique (€}, €, e}).

1. Déterminer la représentation matricielle de ’application ¢.

2. Déterminer l'image du vecteur u = 2¢| — 2el, — e} avec et sans laide de la représentation
matricielle.

Correction

1. La représentation matricielle de cette application nous donnera une une matrice A de 2 lignes
et 3 colonnes, dont les colonnes correspondent aux images des vecteurs de bases dans cette

méme base, i.e.
2 -1 1
A= (1 1 1>

2. Commengons par la forme algébrique, c’est-a-dire en passant par la définition de la fonction
On commence par noter que les image des vecteurs de base €], €}, €5 sont données par les
relations

p(e]) = 2e; —ey,
d)(e/Q) = —e] + 627
dlez) = e —ey,

On peut alors calculer 'image du vecteur u = 2e} — 2e}, — e} par lapplication ¢

¢(u) = p(2€] — 2e) —e3),

= 20(e}) — 26(e}) — B(e}),
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= 2(261 — 62) — 2(—61 + eg) — (e1 — eg),
=4e; — 2e3 + 2e; — 2e2 — €1 + ea,
= be; — 3es.

Avec la représente matricielle il suffit de faire le calcul suivant :
2

2 -1 1 5
Au-(_1 1 _1> :? —(_3>—5e13e2.

On retrouve le méme résultat que précédemment.
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1.2 Pour aller plus loin

Exercice 1.17 (Images et Noyaux). Soit E un espace vectoriel sur un corps R. Soit f un endomor-
phisme de E. Montrer que les équivalence suivantes sont vraies' :

1. Ker(f?) = Ker(f) < Ker(f)nIm(f) = {0}.
2. Im(f%) = Im(f) <= Ker(f) +Im(f) =E.

Correction

L’exercice ne suppose pas de grandes connaissances, il suffit simplement de se rappeler des défi-
nitions d’image et de noyau :

x € Ker(f) < f(x)=0

et

x€Im(f) < 3ze€ E,x= f(z).

Il faudra ensuite traiter chaque égalité entre les ensembles en montrant les inclusions réciproques,
i.e. pour montrer que deux ensembles A et B sont égaux, il nous faut montrer que A C B et B C A.

1. Comme il s’agit d’une équivalence, il va falloir démontrer I'implication dans les deux sens.

e On suppose que Ker(f?) = Ker(f)

(i) Il est clair que le vecteur nul O est un élément de Im(f) et de Ker(f) car ce sont des
sous-espaces vectoriels de E. On en déduit que 0 € Ker(f) NIm(f).

(ii) Soit maintenant x un élément de Ker(f) N Im(f), on a donc f(x) = 0 et on sait
qu’il existe z € E tel que f(z) = x. On en déduit que f(f(z)) = f(x) = 0. Ainsi
z € Ker(f?) = Ker(f), ce qui signifie que x = f(z) = 0.

e On suppose que Ker(f)NIm(f)=0

(i) Il est a nouveau évident que Ker(f) C Ker(f?). En effet, soit x € Ker(f), alors
f(x)=0cet f(f(x)) = f(0) = 0. Donc x € Ker(f?).

(ii) Soit x € Ker(f?), on a alors f(f(x)) = 0. Cela signifie que f(x) € Ker(f) N Im(f),
alors cette intersection est réduite au vecteur nul, donc f(x) = 0. Cette derniére égalité
montre bien que x est un élément du noyau de f, i.e. x € Ker(f).

2. Comme précédemment, nous devons démontrer I'implication dans les deux sens
e Supposons que Im(f?) = Im(f)

(i) L’inclusion Im(f) + Ker(f) C E est évidente car ce sont des sous-espaces vectoriels

de E.

(ii) Soit x un élément de E, par hypothése on sait que f(x) € Im(f?), donc il existe

un vecteur z € E tel que f(x) = f(f(z)). On en déduit que f(f(z) —x) = 0, donc

x—f(z) € Ker(f). En écrivant x = x — f(z) + f(z) , nous obtenons le résultat demandé.
—_— <~

eKer(f) eIm(f)

1. Pour montrer que deux ensembles A et B sont égaux, il nous faut montrer que A C B et B C A.
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e Supposons que Ker(f) +Im(f) =E

(i) L'inclusion Im(f?) C Im(f) est évidente. En effet, soit x € Im(f?), alors il existe
z € F tel que f(f(z)) = x, par conséquente x = f(y) oty = f(z). On a bien écrit x
comme 'image par f d'un vecteur de E.

(ii) Considérons maintenant x € I'm(f), alors il existe z € F tel que f(z) = x. On doit
maintenant utiliser notre hypothése, on peut donc écrire z = a+ b ot a € Ker(f) et
b € Im(f). Or comme b € I'm(f), on sait qu’il existe ¢ € E tel que f(c) = b. Ainsi

x = f(z) = f(a+ f(c) = f(a) + f(f(c)) = f(f(c)) € Im(f?),

ce qui termine la démonstration.

Exercice 1.18 (Images et noyaux en dimension finie). Soit E un R-espace vectoriel de dimension finie
n. Soit f un endomorphisme de E. Démontrer les équivalences suivantes

Ker(f)® Im(f) = E < Im(f?) = Im(f) < Ker(f) = Ker(f?)

Correction

Cela fonctionne comme pour 'exercice précédent, mais certaines démonstrations seront grande-
ment simplifiées. On va ici démontrer les implications de gauche & droite : (1) = (2), (2) = (3)
et (3) = (1)

e Montrons que (1) = (2)

Aucune spécificité liée a I’étude d’un espace de dimension finie, on procédera donc comme &
I’exercice précédent.

e Montrons que (2) = (3)

(i) On a bien Ker(f) € Ker(f?). En effet, soit x € Ker(f), alors f(x) = 0 et donc f(f(x)) =
f(0) =0.

(ii) Comme Ker(f) C Ker(f?), pour que les deux ensembles soient égaux, il suffit de montrer
qu’ils ont la méme dimension! Pour cela, on va utiliser le théoréme du rang

dim(Ker(f?)) = n — dim(Im(f?) =n — dim(Im(f)) = dim(Ker(f)).
On en déduit que Ker(f) = Kerf(?).

e Montrons que (3) = (1)
1 s’agit de démontrer que les espaces Im(f) et Ker(f) sont supplémentaires dans F.
(i) Soit x € Ker(f)NIm(f), il existe z € E tel que f(z) = x d’ou f(x) = f(f(z)) = 0. Donc
z € Ker(f?) = Ker(f), ainsi x = f(z) = 0. Finalement

Ker(f) N Im(f) ={0}.

(ii) Il suffit maintenant de démontrer que la somme des dimensions de ces deux sous-espaces
est égale a n. Mais c’est une conséquence directe du théoréme du rang, qui énonce

dim(Ker(f)) + dim(Im(f)) = dim(E) = n.

Exercice 1.19 (Homothéties). Soit E un espace vectoriel sur R de dimension finie n. On appelle
homothétie, une application linéaire h, de la forme
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he: E—F,

X — ax,

ot a est un nombre réel.

1. Soit f un endomorphisme de E. Supposons que, quelque soit x € E, il eziste ax € R tel que :

f(x) = axx.

(a) Soient x,y € E deux vecteurs linéairements indépendants. Montrer que ax = ay. On
pourra chercher & calculer f(x +y) de deuz fagons différentes.

(b) Montrer que f est une homothétie.

2. On appelle centre de L (E) (i.e. centre de l'ensemble des endomorphismes de E) l’ensemble
des éléments [ € L (E) vérifiant
Vg€ Z(E), fog=golf,

1.e. il s’agit des endomorphismes de E qui commutent avec tous les autres.

(a) Soit x € E. Montrer qu’il existe un projecteur px de E dont l’image est égale & Vect(x) =
(x).
(b) Déterminer le centre de £ (E).

Correction

1. Soit f un endomorphisme de E. Supposons que, quelque soit x € F, il existe ax € R tel que :

f(x) = axx.

(a) Soient x,y € E deux vecteurs linéairements indépendants. On va utiliser le fait que f est
linéaire pour écrire : f(x +y) = f(x) + f(y).
Ce qui nous donne

fx+y)=axiy(x+y) = f(x) + f(y) = axx + ayy.

Ce qui nous donne :

(ax+y — ax)x + (axty —ay)y =0

Or les vecteurs x et y forment une famille libre, ce qui signifie que ax4y —ax = 0 et
ax4+y — ay = 0. Par suite, on déduit que ax = ay.

(b) Pour montrer que f est une homothétie il faut montrer que pour tout x, f peut s’écrire
sous la forme f(x) = ax pour un certain réel a.
Dans la définition actuelle de f, le rapport de ’homothétie dépend du vecteur x considéreé,
lobjectif de est montrer que ax = a quel que soit x.

Pour cela on va considérer deux vecteur x et y et montrer que l'on a ax = ay dans tous
les cas.
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La question précédente nous a permis de montrer que si x et y sont indépendants, alors
ax = ay. Il reste & étudier le cas ol les deux vecteurs sont liés. Deux vecteurs sont liés s’il
existe un réel A tel que y = Ax (on va considérer x non nul). On alors

ayy = f(y)
= f(Ax)
=Af(x)
= \axX
= axAX

= axy-

On a donc ayy = axy, ce qui montre que ax = ay quels que soient x,y.

2. On appelle centre de .Z(FE) (i.e. centre de 'ensemble des endomorphismes de E) ’ensemble
des éléments f € Z(E) vérifiant

Vge Z(E), fog=gof,

t.e. il s’agit des endomorphismes de E qui commutent avec tous les autres.

(a) Pour cela il suffit de définir le projecteur px qui projette sur la droite vectorielle engendrée
par x, notée D, parallélement & un supplémentaire de D.

(b) On doit maintenant déterminer ’ensemble des endomorphismes qui commutent avec tous
les autres. La question précédente suggére qu’il s’agit des homothéties. On peut donc
commencer par montrer que ce sont bien des éléments du centre de £ (E).

Soit f une homothétie de E. f est donc de la forme h, = ald pour un certain réel a.
Considérons maintenant g un endomorphisme de E, alors pour tout x € E nous avons

(go f)(x) =g(f(x))
= g(ax)
= ag(x)
= f(9(x))
= (fog)(x).

Il faut maintenant montrer qu’il n'y pas d’autres endomorphimes qui appartiennent au
centre de .Z(F) que les homothéties.

Pour cela, considérons f un élément du centre de Z(FE) et soit x € E. D’aprés la ques-
tion a) il existe un projecteur px qui projette sur la droite vectorielle D = Vect(x) et
paralléglement & un supplémentaire de D. Comme f appartient au centre de .Z(FE), on a

(f opx)(x) = (px o f)(x).

Ce qui montre que f laisse stable 'image du projecteur px. Donc 'image d’un vecteur de
Vect(x) par Papplication f est de la forme axx ot @ € R*. La question 1.b) permet de
conclure que f est une homothétie. Ce qui achéve la démonstration de cette question.
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