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Introduction

What is Machine Learning ? I

Machine Learning is a sub-field of artificial intelligence. It
belongs in the frontier of Computer and Applied Mathema-
tics (like Statistics and Optimization or Linear Algebra). This
topic is also part of the Data Science since it requires to col-
lect/clean et analyze a collection of data in order to extract
some important information for the task at end.
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Introduction

What is Machine Learning ? II

Thie definition show that several ingredients are important in Machine
Learning in order to solve a task

• The task : what is the problem that i want to solve using the
computer science tools ? It is very important to clearly identify the
task you are dealing with.

• The data : wich data are available and will be used to develop an
artificial intelligence that will help us to solve the task

• The algorithm : According to the task I want to solve, we have to find
the correct formulation of it using the mathematical tools, develop an
algorithm to find the solution.
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Introduction

What is Machine Learning ? III

What are for you

the two main phases

in Machine Learning ?
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Introduction

What is Machine Learning ? IV

Learning/Training

This first part consists it learning the parameters of the model previously
defined and which aims to solve our problem.

This phase requires a collection of data and, more precisely, a subset og
the available data.

Tasks can be very different, such as classifying documents, distinguish
between cats and dogs in a set of images or predict the value of stock
markets.

This can seen as a preparation phase where the model is learned and
tested before being delivered to the costumer.
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Introduction

What is Machine Learning ? V

Test

We can also see it as the phase of putting our model in production but ...
virtually ! Because we need to be sure of its performance.

The system has been previously developed, validated and tested and it can
then be deployed for practical usages.

During this phase, the model is constantly monitored to ensure that its
effectiveness remains in line with the observations made when it was first
trained. Sometimes, updates are necessary (re-training the model on more
recent data) in order to maintain its effectiveness (this is known as
learning by doing).
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Introduction

Data : cats and Dogs I

Let us have a look at a set of data
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Introduction

Data : cats and Dogs II

Images : these are matrices (one matrix with each entry corresponding to
a pixel value) of numbers where each matrix represents a color intensity
for a given pixel (superposition of three matrices for three color channels).

R =


1
1
0.9
0
..

 , G =


1
1
0.1
0.3
..

 , B =


1
1
0
0.7
..

 .
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Introduction

Data : cats and Dogs III

They are at the heart of learning algorithms and can therefore be of
different kinds :

• gross (non transformed)

• transformed or created

• learned

We will, however, see a major problem linked to these data and which is
specific to learning : these data come from an unknown distribution, which
opens up new avenues of research in Machine Learning !

Let us now have a look how they can be used in practice !
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Introduction

Data : cats and Dogs IV

Our image descriptors are not invariant and may depend on a number of
parameters or data collection conditions.

Exemples : shapes or patterns - size - colors

• the size varies with the notion of the distance to the image

• the shapes are complex to be represented

• the color can vary according to the light.

This means that the same image, taken under different conditions, can
have different characteristics. (There are, however, algorithms for
identifying identical elements in ”different” images, such as SIFT ).
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Introduction

Data : cats and Dogs V

It’s rarely enough, and this is even truer in an industrial context, to work
with raw data. We often seek to transform them in order to create new
variables or to transform basic variables :

• With the help of business knowledge and experts who know the
important information or discriminating factors.

• Using mathematical transformations or learning models : neural
networks, auto-encoders, metric learning, kernels, . . ..

Now let’s look at this data in practical terms, i.e. how to use it. If we
adopt an algorithmic presentation, we have : :

• Input : our images (represented as a vector)

• Output : the class of the image (dog or cat)

• Training set : the set of images + label
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Introduction

Data : cats and Dogs VI
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Introduction

Data : cats and Dogs VII

Once training is complete, it’s a good idea to find out what happens if our
model can be put into production. So we’re going to reproduce production
conditions.

We now want to know whether our model performs well on new data ? Is
it able to identify the kind of images not encountered during its training
phase ?
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Introduction

Data that be of diffrent variety
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Introduction

Different context in Machine Learning I
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Introduction

Different context in Machine Learning II

Machine Learning can be separated into three main categories

• Supervised Learning : includes a large number of classification
algorithms (SVM - k-NN, ...), as well as similarity learning (Metric
Learning, Transfer Learning) and regression tasks

• Unsupervised Learning : These include clustering algorithms
(K-means or HCA) as well as unsupervised transfer learning.

• reinforcement Learning : Learning by doing experiments.
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Introduction

Different context in Machine Learning III

Supervised Learning : Regression

The system has access to a set of data described both by descriptors and
by a label provided by an oracle. The aim will be to learn a ”rule” from the
descriptors, enabling the prediction of the value of the data and also that
of new data.
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Introduction

Different context in Machine Learning IV

Supervised Learning : Classification

The system has access to a set of data described both by descriptors and
by a label provided by an ”oracle”. The objective will be to learn a ”rule”
from the descriptors, allowing the prediction of the label of the data, but
also that of new data.
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Introduction

Different context in Machine Learning V

Unsupervised Learning : Clustering

No labels are available during the learning phase. The main idea is to
group together examples showing similarities or resemblances to create
groups (clustering). This can also be used for density estimation or to
learn a new data representation.
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Introduction

Different context in Machine Learning VI

Reinforcement Learning

The model must learn to perform the right actions according to the
context, i.e. it must make the right decisions according to the
observations made. This is done using a system of rewards. In this type
of learning, there’s no data to tell it which actions are optimal in any given
situation. It is left to discover for itself what it should do, using a
trial-and-error method.
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Introduction

Data and Representation I

The previous examples show that data is at the heart of machine learning
algorithms. Data can come in a variety of forms and formats, be structured
or unstructured, and sometimes contain anomalies or missing values...

In Machine Learning, it is customary to view this data as a set of m
examples of the same nature. The most natural representation chosen is in
the form of a vector x in dimension d : x = (x1, x2, ..., xd) where x ∈ Rd
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Introduction

Data and Representation II

the chosen representation, i.e. the meaning of the vector, will depend of
the nature of the data.

Images can be represented by vectors (after transformation, CNN and
vectorization).
genetic data for a gene sequence (dimension = length of the gene, vector
= encoding)
sounds as sequences of signals (dimension = frequency, vector of
amplitudes)
textual documents as a set of words (dimension = number of words in
the corpus, vector of occurrences)
metadata : authors, dates, ...

Real data can be very complex, with a high degree of redundancy and
variability.
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Introduction

Normalize the data I

In addition to the representation aspect, we also need to take an interest
in the values taken by each descriptor in our data, so as not to give casual
importance to a subset. This could prove particularly harmful for certain
algorithms based on the notion of distance !

Exemple : Let x = (x1, x2),x
′ = (x′1, x

′
2) where x1, x

′
1 ∈ [0, 1] and

x2, x
′
2 ∈ [500, 1000], the distance

d(x,x′) =
√

(x1 − x′1)
2 + (x2 − x′2)

2

is close to the distance between x2 and x′2.

One solution is to normalize the data, which in most cases increases
algorithm performance by giving the same weight to each variable.
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Introduction

Normalize the data II

There are several data normalization processes, the best known/used of
which are as follows :

• scaling or min-max normalization so that values lie within [0, 1] or
[−1, 1]

x =
x−min(x)

max(x)−min(x)
where x = 1− 2× x−min(x)

max(x)−min(x)
,

• standardization : we transform each variable such they follow a
normal distribution

x =
x− µ(x)

σ(x)
,
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Introduction

Normalize the data III

• normalization : divide each vector by its norm so that ∥x∥ = 1

x =
x

∥x∥
.
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Introduction

An important assumption

As mentioned earlier, we never have access to the whole distribution when
learning a model, but only to a small sample. To ensure that the model
learned on these data is capable of generalizing to new data, we need to
assume that the new data are i.i.d.

Définition 1.1: Distribution of the data

A training set S is said to be i.i.d. if all the examples come from
the same probability distribution unknown D and are mutually inde-
pendent.

→ A fundamental assumption in Machine Learning
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Introduction

Data and Dimension

If we have enough examples in a space of ”limited” dimension, we show
that our models are capable of generalization, since the data allow us to
correctly approximate the distribution.

Quid in the other case ? Curse of dimensionality !

This results in the appearance of phenomena that do not appear in
reasonable dimensions : such as volumes that become abnormally small,
which can have consequences for certain algorithms.

→ Reduce the space of representation of the data !
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Learning

Learning
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Learning

Learning I

Let D = X × Y the unknown distribution of the data. The space X is
called the input space or feature space, in general X ⊂ Rd. The space Y
is the label space or even the output space :

• Y = ∅ : unsupervised learning

• Y = R : regression

• Y = {0, 1} : binary classification

• Y = {1, . . ., C} : multi-class classification

• Y = {0, 1}C : multi-label classification

Objective : find an algorithm A, which generate an hypothesis hable to
solve the task.
Problem : in practise D is unknown.
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Learning

Learning II

We only have access to a finite sample S = {xi, yi}mi=1 ∼
i.i.d.

D = X × Y

where X ⊂ Rd and Y ⊂ Z (classification) or ⊂ R (regression).
In the following we suppose xi ∈ Rd and we denote

X = (x1, ...,xm) =

x11 · · · x1d
...

. . .
...

xm1 · · · xmd

 .

We aim to find an hypothesis h, such that h(x) = y, we want it to be
powerfull on our sample S but also on new instances. (x, y).

How to learn such an hypothesis ?
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Learning

Learning III

Let us come back to our classification task using images of cats and dogs.

The aim is to minimize the algorithm’s errors, or more generally, to
minimize what is known as a risk.
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Learning

Learning IV

In order to learn and find the best h⋆ hypothesis, we need to define a
criterion that quantifies the quality of the learned hypothesis. This criterion
will take the form of Performance measure (which we will then seek to
maximize) or, more traditionally, Risk (which we will seek to minimize).
Ideally, the aim is to minimize the risk over the entire data distribution,
known as the Real Risk.

The real risk R(h), also called risk in generalization of a
hypothesis h, corresponds to the average error (hence the
expectation) of the hypothesis h over the entire distribution.

R(h) = E
(x,y)∼D

[
1{h(x)̸=y}

]
.
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Learning

Learning V

In supervised learning, the aim is to learn a hypothesis h that will
minimize the real risk, i.e. the risk on our entire distribution. Unfortunately,
this real risk R(h) cannot be calculated, given the unknown nature of D.

We can only estimate it or measure it on our training set. This estimate is
called Empirical Risk, denoted RS(h).

From a practical point of view, it’s this quantity that we’re going to try to
minimize ... well ... not quite, as we’ll see later ! Let’s take a look at its
definition.
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Learning

Learning VI

In unsupervised learning : This notion of risk is also present, but no
longer refers to an error term.

It is simply used to refer to the quantity you wish to minimize in a
minimization problem, e.g. a sum of variances in the case of clustering, or
a distance between distributions in the case of unsupervised domain
adaptation.

Let us comme back to the definition of risk
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Learning

Learning VII

Définition 2.1: Empirical risk

Let S = {(xi, yi)}mi=1 be a training set. The empirical risk RS(h),
also known as the risk of error, of a hypothesis h corresponds to the
average error on our training set, or the expectation of this error on S.

RS(h) = E
(x,y)∼S

[
1{h(x)̸=y}

]
=

1

m

m∑
i=1

1{h(xi )̸=y} = P [h(x) ̸= y] .
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Learning

Learning VIII

In this case, this empirical risk measures the probability that the h
hypothesis is wrong in the prediction made for the x example.

But minimizing errors (in a binary way) is a difficult problem for (NP-hard)
algorithms. So we rarely try to minimize the error rate as is. In practice,
we’re more likely to seek to minimize a risk based on a surrogate for the
error rate, through the use of loss functions.
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Learning

Loss functions I

This notion of risk of error is specific to the so-called 0-1 loss (correct
prediction 0, prediction error 1). However, these are not the only losses
used, and the latter is only very rarely used in practice.

Définition 2.2: Loss function

A loss function ℓ is a function H×Z → R+ which is used to measure
the disagreement between the prediction made by the hypothesis h,
h(x) and the value to be predicted y. H is called hypothesis space.
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Learning

Loss functions II

Classification error or 0-1 loss

ℓ(h(x), y) =

{
1 if h(x)× y < 0,

0 else.

This loss has a number of drawbacks : it is not convex, it is not derivable,
and is therefore of little interest for optimization algorithms.

→ use of surrogate, so-called substitution functions, from 0-1 loss which
have the advantage of being convex and sometimes even differentiable..

Different surrogates will be used depending on the algorithm you wish to
use. These overrides are presented as upper bounds of the 0-1 loss.
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Learning

Loss functions III

Incorrect prediction Correct prediction
Value of yh(x)
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Learning

Loss functions IV

• the hinge loss : it is particularly useful for learning models such as
SVM (classification or regression)

ℓ(h(x), y) = max(0, 1− yh(x)),

• the logistic loss : encountered when using atextitlogistic regression
model (classification)

ℓ(h(x), y) =
1

ln(2)
ln (1 + exp(−yh(x))) ,

• the exponential loss : met in the context of boosting boosting

ℓ(h(x), y) = exp(−yh(x)).
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Learning

A new version of the risk

Définition 2.3: Empirical and real risk

The real risk of a hypothesis h according to a loss ℓ, noted RℓS(h)
is defined as the average value of the loss on the distribution. RS(h),

Rℓ
S(h) = E

(x,y)∼D
[ℓ(h(x) ̸= y)] .

Let S = {(xi, yi)}mi=1. The empirical risk RS(h) of a hypothesis h
corresponds to the average error of ℓ on S.

Rℓ
S(h) = E

(x,y)∼S
[ℓ(h(x) ̸= y)] =

1

m

m∑
i=1

ℓ(h(xi) ̸= y).
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Learning

What is a good model ?

Now that we have data S, a loss ℓ and an algorithm, how do we know if
our model is performing well ?
To do this, we’ll try to minimize the empirical risk RS(h)

RS(h) =
1

m

m∑
i=1

ℓ(h(xi), y).

and try to estimate the real risk R(h) or risk in generalization

R(h) = E
(x,y)∼D

[ℓ(h(x), y)] .

But we don’t know the distribution... so we’ll use a validation process !
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Learning

Cross validation I

It’s a question of conserving a part of the training set data that won’t be
used to learn the parameters of our model ; we’ll use them to make an
initial evaluation (training - validation) but we can do even better.

Définition 2.4: k-fold Cross-Validation

his is an algorithmic means of estimating the generalization perfor-
mance of a given algorithm on unknown data. The principle is simple :
we divide our data into k groups and use k − 1 groups to learn our
model, with the last group used to evaluate it.
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Learning

Cross validation II

We run a series of k experiments using classical validation, but we change
the training and validation for each run.

⏟
⏟

⋮ validation fold

validation fold

k fold cross-validation

Répéter le processus k fois

In the end, our algorithm will therefore be evaluated on all available data,
enabling a more reliable estimate.
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Learning

Cross validation III

Mean error in CV.

The evaluation of
1

k

∑k
j=1RSj (h), called the mean error in

cross-validation, quantifies how well our algorithm is able to generalize on
new data from the same distribution.
It’s therefore a good indicator of whether or not we can potentially put our
algorithm into production. We’ll see that this isn’t its only use... It would
also be good to be able to test our procedure on data not yet encountered
by the model.
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Learning

Leave and One Out

The principle remains the same, but this time we use a single example to
validate each run, so we have to perform a larger number of training runs
(m instead of k).

⏟
⏟

⋮

Leave and One Out

Répéter le processus m fois validation example

validation example

We retain the model with the best results on average over the m-folds
used for validation.
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Learning

And then... ?

We have S data, a ℓ loss and an algorithm and process for selecting the
best model... so, a priori, we have everything we need to get started
(modulo the presentation of the models).

Actually, no... but first there’s one last thing to look at/study ! What
happens if the error observed on the training set is significantly different
from the error observed in validation ?

• if the validation error is smaller than the training set error,

• or conversely, if the validation error is greater than the training set
error.
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Learning

Overfitting I

Définition 2.5: Overfitting

In statistics, overfitting occurs when the model focuses so much on
the data that it also tries to learn the noise present. This phenomenon
occurs when the learned model is too complex, or when the training
set is too small in relation to the number of model parameters (de-
grees of freedom).
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Learning

Overfitting II
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Learning

Underfitting I

Définition 2.6: Underfitting

Underfitting occurs when the model used is unable to capture the
trend present in the data. This occurs especially when the model
used is far too simple, such as using a linear model to approximate a
quadratic curve.
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Learning

Underfitting II
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Learning

Underfitting-Overfitting I

How to know when there is overfit-
ting or underfitting ?

if the training error is << then
the error in CV, overfitting

if the training error >>the
error in CV or is simply high,
underfitting
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Learning

Underfitting-Overfitting II

Let’s consider that our hypotheses come from a set H, called hypothesis
space
Overfitting : it comes into play when the hypothesis space is too rich, i.e.
if our hypothesis space is much too large and contains potentially
complex models.
Underfitting : it comes into play when the hypothesis space is poor, i.e. if
our hypothesis space is much too small and contains models that are
simple.
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Learning

What to do ?

To deal with underfitting, you can simply change the model class you’re
learning. For overfitting, on the other hand, we need to find a way to
simplify the learned model.

Occam Razor Also known as the principle of simplicity or parsimony, it
involves finding the simplest explanation (model) to explain the data :
no sunt multiplicanda entia praeter necessitatem” (William of Ockham)

It consists in adding a penality term in the optimization problem.
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Learning

Penalty

Introducing a penalty term into our optimization problem means finding a
solution that strikes a compromise between performance and simplicity :

h⋆ = arg min
h∈H

RS(h) + pen(n, d)

This penalty term depends on both the dimension d of the data and the
size of the dataset n. It is generally increasing with respect to n.

pen(n, d) ⇔ Hn

H1 ⊂ H2 ⊂ . . . ⊂ Hn

This notion is generally complex to determine, especially when it evolves
as a function of sample size. For this reason, this approach is rarely used
to find a model that is both simple and efficient.

Instead, we’ll try to consider a very large set of assumptions and restrict
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Learning

Regularization

Introducing a regularization term into our optimization problem

h⋆ = arg min
h∈H

RS(h).

Définition 2.7: Regularization

A regularization is a term used in statistics, and more particularly
in Machine Learning, which refers to the addition of an additional
term to an optimization problem to avoid overlearning. It takes the
form of a function that penalizes models that are too complex :
it will therefore seek to smooth models to make them smoother, or
restrict the values that a model’s parameters can take.
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Learning

Regularized Empirical Risk I

the new problem can be formulated as :

h⋆ = arg min
h∈H

RS(h) + λ∥h∥,

where

• λ is a regularization parameter (also called a hyper-parameter to
distinguish it from the h model parameters),

• ∥ · ∥ is a norm function.

So we’re going to return the hypothesis that is capable of achieving the
best compromise between performance and complexity.
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Learning

Regularized Empirical Risk II

This type of problem has already been encountered in the context of linear
models, more precisely when we tried to learn a linear model which is
parcimonious, i.e. whose solutions depend on only a small number of
variables, i.e.

min
β∈Rd+1

∥y −Xβ∥+ λ∥∥1
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Learning

Usual norms

Some examples of norms : ∥h∥p =
(∑d

i=1 |hi|p
)1
p .
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Learning

Choice of the parameter λ

Let us go back to the optimization problem :

h⋆ = arg min
h

m∑
i=1

ℓ(h(x), y) + λ∥h∥,

where λ : regularization parameter, controls the complexity of our
hypothesis, indirectly, it is also said to control the richness of our
hypothesis space H.

Complexity of the
Class Function
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Choose λ where the two
curves intersect ! But
how ?
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Choice of λ and... let us come back to the cross validation

Our training set can also be used to verify our model’s ability to generalize
for the choice of a particular hyper-parameter.

• Standard validation : we separate our learning sample into two sets
train/valid (2/3 - 1/3)

• k-fold cross validation : partition of the sample into k sets. k − 1 are
used for learning and 1 for validation.

• Leave and One Out : we learn from all examples except 1, which is
used to validate the model
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k-fold cross validation as a way to tune our model

It works as follows :

• we define a grid of values for the hyper-parameter to be optimized :
λ ∈ (λ1, λ2, ..., λp)

• for each value of λi we calculate our average cross-validation error

using a k-CV :
1

k

∑k
j=1RSj (h, λi)

⏟
⏟

⋮ validation fold

validation fold

k fold cross-validation

Répéter le processus k fois

• we retain the value of λi for which the average CV error is lowest.
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Few remarks

• To avoid the problem of overlearning, we use one (or more)
regularization terms in our optimization problem.

• This is combined with k-fold cross validation (we commonly take
k = 10) to ensure that the model generalizes well.

• Attention : these approaches are empirical ! To do the job properly,
you’d have to study generalization guarantees

| E
(x,y)∼D

ℓ(h(x), y)− E
(x,y)∼S

ℓ(h(x), y)| ≤ O(
√
1/m, λ−1)

• Sometimes you need to distinguish between the optimization problem
and the performance criterion you wish to optimize.
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Generalization Bounds I

As we have just seen, the aim of these limits is to measure the probability
of measuring a certain deviation between the empirical risk and the
generalized risk..

These studies are relatively old and stem from learning PAC (Probabibly
Approximately Correct) and in particular from the bounds
PAC [Valiant, 1984].

P(|R(·)−RS(·)| ≥ ε) ≤ δ,

where ε > 0 and δ ∈ [0, 1].
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Generalization Bounds II

Terminals are generally presented in the following format

|R(·)−RS(·)| ≤ ε(δ,m),

where 1− δ is interpreted as a level of confidence in your terminal.
The function ε is then decreasing in the number of examples m but
increasing in δ. You can show that the rate of convergence is generally in
O(ln(m)

√
m) or sometimes even in O(1

√
m).
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Generalization Bounds III

Uniform Deviation

The construction of such bounds is based on the convergence of empirical
risk towards generalized risk (see the strong law of large numbers).

lim
m→∞

1

m

m∑
i=1

ℓ(yi, h(xi)) = E
(y,x)∼D

[ℓ(y, h(x))].

We’ll refer to them as uniform bounds, since they are valid for all
hypotheses h ∈ H. {

sup
h∈H

∣∣∣Rℓ(h)−Rℓ
S(h)

∣∣∣ ≥ ε

}
.
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Generalization Bounds IV

These bounds are generally established with probabilistic results such as
concentration inequalities. In addition, some of these bounds may depend
on the complexity of the hypothesis space [Bousquet et al., 2004].

Théorème 2.1: Uniform Generalization Bound

Let H be a hypothesis space of finite size, S a learning set of size m
obtained i.i.d. from D, ℓ a loss taking its values in [0, 1] and δ > 0.
Then, for any h ∈ H, with probability at least 1− δ, we have :

Rℓ(h) ≤ Rℓ
S(h) +

√
ln |H|+ ln(2/δ)

2m
.
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Generalization Bounds V

In general, H is rarely of finite size. Just imagine the set of regression lines
in a plane, or the set of lines that could separate a collection of points
with two different labels.

There are measures for evaluating the complexity of hypothesis spaces,
such as the Vapnik-Chervonenkis dimension
(VC-dim) [Vapnik and Chervonenkis, 1971] or even theRademacher
Complexity [Koltchinskii and Panchenko, 2000].

These notions are rather difficult to handle, so we’ll concentrate on
another approach in this course.
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Generalization Bounds VI

Uniform Stability

This is a more recent approach to establishing these probabilistic bounds,
and does not involve assessing the complexity of the hypothesis space.

Instead, we focus solely on the value of the hyper-parameter that controls
the complexity of the hypothesis space. The disadvantage of this method
is that it only applies to convex optimization problems.

In a few words, we’re going to look at the impact of a change in the
learning sample on loss. More formally
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Generalization Bounds VII

Définition 2.8: Uniform Stability

A learning algorithm A has a uniform stability constant in β
m with

respect to the cost function ℓ and the set of parameters θ, where
β > 0 if :

∀S, ∀i, 1 ≤ i ≤ m, sup
x

|ℓ(θS ,x)− ℓ(θSi ,x)| ≤
β

m
,

where S is our training set of size m, θS the model parameters
learned with S, θSi the same parameters learned with Si where Si is
obtained by replacing the i-th example xi of S by another example
x′
i drawn according to D. ℓ(θS ,x) is the loss value evaluated in x.
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Generalization Bounds VIII

Théorème 2.2: Bound via Uniform Stability

Let δ > 0 and m > 1. Let an algorithm have a uniform stability
constant in β/m with respect to a cost function ℓ bounded by K.
Then, with probability at least 1− δ depending on the draw of S, we
have :

Rℓ(θS) ≤ Rℓ
S(θS) +

2β

m
+ (4β +K)

√
ln 1/δ

2m
,

where Rℓ(·) is the real risk Rℓ
S(·) is the empirical risk on S.
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