
Mathematics for Supply Chain
Msc Supply Chain & Purchasing (2023-2024)

Guillaume Metzler
Institut de Communication (ICOM)

Université de Lyon, Université Lumière Lyon 2
Laboratoire ERIC UR 3083, Lyon, France

guillaume.metzler@univ-lyon2.fr

guillaume.metzler@univ-lyon2.fr

x1 w1

x2 w2 Σ fact

Activation
function

yout

Output

x3 w3

Weights

Bias
b

Inputs

Figure 1: Illustration of a Perceptron with an input space of dimension 3. Each feature
is multiplied by a parameter w and a bias b is added. When the sum is computed, the
value pass through an activation function f to give the output.

1 Neural Networks : pressentation and concepts

The model presented here is a model that can be used for both classification and regres-
sion but also in some unsupervised learning algorithms.

Foundations This algorithm is very freely inspired by nature and more precisely by
neurosciences on synaptic models. The first traces of neural networks can be found in
works dating from the middle of the 20th century [McCulloch and Pitts, 1943]. This
is the first mathematical modeling of a neuron, which is currently known as a percep-
tron [Rosenblatt, 1958], a representation of which is given in Figure 1.

This type of model takes a vector x ∈ Rd as an input and depends on one parameter
(w, b) ∈ Rd+1. The output h(x) is historically computed the as the sign of the inner
product of vectors x and w to which a constant value b is added, i.e.

h(x) = sign (⟨w,x⟩+ b) = sign

 d∑
j=1

wjxj + b

 .

Thus, this first model was initially intended to do binary classification. The model
that is used is affine (or linear if b is equal to 0) and an activation function is then applied
to the outpout to return the predicted class:

h(x) =

{
0 if⟨w,x⟩+ b < 0,

1 otherwise.

Note that the rule that is used to predict the class is the same as the one that we
have seen with the SVM classifier. The activation function that is used here is called the
heavyside function, illustrated in Figure 2 (left).

2 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

−4 −2 0 2 4

0

1

−4 −2 0 2 4

−1

0

1

Figure 2: Illustration of two activation functions. On the left, the heavyside function, it
takes the value 1 when x is positive and 0 otherwise. On the right, the function tanh,

defined by tanh(x) =
ex − e−x

ex − e−x
, takes its values in the range [−1, 1].

The first algorithm that has been used to learn the parameters w and b is known
as the Hebb algorithm and the process is quite simple but it only converges for linearly
separable data. The parameters are updated as follows: let us denote I the set of
missclassified instances. Then, for all (xi, yi) such that i ∈ I compute:

w = w + αyixi and b = b+ αyi,

where α is the learning rate. The update rule is repeated as long as I is not empty
or it stops after a given number of iteration.

Another rule to learn the perceptron parameters, called law of Widrow-Hoff, works
in a similar manner, but it also takes into account the error observed at the current state:

w = w + (yi − h(xi))xi and b = b+ yi − h(xi).

This second update rule can be used with the sign function but we usually use it
with the tanh function which can be seen as smoother version of the heavyside function
with a little offset (see Figure 2 (right)), the sigmoid can also be used. The later has the
advantage to be smooth compared the heavyside function where the derivative is equal
to 0 almost everywhere and thus more suited for gradient descent algorithm.

Neural Networks The previously presented algorithms are interesting when we are
dealing with problems that are linearly separable. But this situation is rarely met in

3 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

x1

x2

x1

x2

x1

x2

?

Figure 3: Representation, in a two dimensional space, of the OR, AND and XOR
classification datasets respectively. A value xi equal to 0 means that entry is FALSE, it
is equal to 1 if it is TRUE. The color of the point is used to denote the label of the data
which is determined by the logical operator: TRUE and FALSE.

practice and we need to develop more flexible and complex models to achieve perfor-
mance for non linear classification problems.

For instance, the perceptron algrorithm is able to achieve good performances on
the OR or AND dataset, i.e. a linear model is enough to classify the data, but it cannot
solve the XOR problem. The problems are illustrated in Figure 3 using a two dimen-
sional dataset and we effectively see that cannot separate the third dataset perfectly
using a simple linear classifier, we need a more complex model, i.e. to learn another
representation of data where the problem is linearly separable.

To do so, we are still inspired by neurosciences and the brain architecture where
several neurons are connected between them, this what we call a Neural Network. But
before going on with the architecture, let us go back to our example and see how can
solve the XOR problem.

To solve this problem we can perform the following transformations and the x1 and
x2 axes:

• x1 ← x1 ∧ x2

• x2 ← x1 ∨ x2

to have the following new representation:

4 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

x1

x2

?

x1

x2

With this transformation, the two initial red points are projected at the same
place in the new space because only one of their two entries was in the TRUE state. The
representation of the blue points is the same since their two entries are the same. In this
new representation, the problem is linearly separable and such a representation can be
learned by a neural network, more precisely, using a multi layer perceptron.

To find the architecture, we first to do some logical reasoning and write the XOR
function differently. This function is true if and only if exactly one of the input is true.
In other words

XOR(x1, x2) = (x1 ∨ x2) ∧ (x1 ∧ x2) .

It is now enough to translate this expression using several perceptron. For the
XOR problem, we just how to combine the several perceptron given below. We leave
it to the reader to represent the solution of the problem by combining these different
perceptrons.

The AND perceptron:

x1 w1 = 1

x2 w2 = 1 Σ f

Activation
function

y
Output

Bias
b = −1.5

Inputs

The OR perceptron:

5 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

x1 w1 = 1

x2 w2 = 1 Σ f

Activation
function

y
Output

Bias
b = −0.5

Inputs

The NOT perceptron:

x w = −1 Σ f

Activation
function

y
Output

Bias
b = 0.5

The activation function that is used is always the heavyside function.

A multiple layer perceptron is represented in Figure 4. The first layer is called
input layer. Its size is equal to the dimension of the input space and we also add an
other neuron for which the entry s always equal to 1 and which represents the bias term
b.
The intermediate layers are called hidden layers. The number of layers and their sizes
are defined by the user according to his needs and the problem he is facing. Again, to
each hidden layer, we can associate a bias parameter that will be used to evaluate the
output at the next layer.
The last layer is called the output layer, and its size also depends on the size of the output
space. For a binary regression or classification problem, the output is of dimension 1.
On the other hand, for a multi-class classification problem, the output layer will have as
many neurons as there are classes in the data set.

The neural network presented in Figure 4 is said to be fully connected, i.e. all the
inputs are connected to all of the outputs. However, it is possible to remove some of
the connections, by cutting or setting the respective weights equal to 0. We could also
imagine connections between two non successive layers.

We will finish this generalization on networks by evoking the number of parameters
of a multi-layer neural network.

In the example given in Figure 4, we can see the number that the input is of
dimension 3, the two hidden layers are respectively of dimension 3 and 2 and the output
layer is of dimension 1. Further, at each hidden layers and at the input layer is associated

6 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

x0

x1

x2

x3

Input
layer

y
(1)
1

y
(1)
2

y
(1)
3

Hidden
layer 1

y
(2)
1

y
(2)
2

Hidden
layer 2

y

Output
layer

Figure 4: Representation of a multi layer perceptron. On this particular example, the
input space is of dimension 3, there are two hidden layers of size 3 and 2 respectively.
The output space is of dimension 1.

a bias term.

So, in our example, the number of links, which is equal to the number of parame-
ter to learn, is the dimension of input layer plus one multiplied by the dimension of the
hidden layer, thus 12 parameters. We also have 8 parameters between the second and
the third layer and 3 parameters between the third and the fourth layer. Thus a total of
23 parameters for this network.

More generally, the number of parameters to learn in neural network with K hidden
layers

K−1∑
k=1

(
d(k+1)

)
×
(
d(k) + 1

)
,

where the d(k) denotes the dimension/number of units the k-th layer. In the ex-
ample below, the neural network has 48 parameters.

x0

x1

x2

x3

Input
layer

y
(1)
1

y
(1)
2

y
(1)
3

Hidden
layer 1

y
(2)
1

y
(2)
2

y
(2)
3

Hidden
layer 2

y

y

y

Output
layer

7 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

This last example shows a multi-layer perceptron than be used for multi-class
classification. But we will give more precision about how it works when will present
different losses we can use in neural networks and after providing information about how
to learn the parameters in the next paragraph.

Training and losses (Back-Propagation algorithm) We will consider, for the sake
of simplicity, the following network with only two hidden layers with a single unit, with
a one dimensional input1.

Where wi, fi denote respectively the parameters and the activation function of the
i-th layer and yi the output. The parameters of the network are updated standard gra-
dient descent algorithm using a Forward - Backward procedure.

The Forward consists in giving data to the network one by one (stochastic) or using
mini-batch (subset of the data) in order to compute the loss value. The second step is
the Backward one, where the parameters update using the data and the loss value. The
main difficulty will be to trace the error along the entire network in order to update all
the parameters. Indeed, if the weights of the last layer are directly linked to the output
value, the same cannot be said for the weights of the first hidden layer or the input layer.
The gradient of the parameters of the first layers will directly depend on the gradient of
the parameters of the layers further downstream.

2 Neural Network in practice

Training a neural network might be hard in practice since it requires to play with several
parameters. In this section we will first try to have in insight of the power of neural
networks (only for the multi-layer perceptron) for both classification and regression tasks.
We will then use to train our own network.

1This example has been extracted from the Thesis of Damien Fourure.

8 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

https://tel.archives-ouvertes.fr/tel-02111472/document

2.1 A first insight: complexity of networks

You can first study the following link to try to play a little with neural networks

Link to an illustration with Tensorflow

We will now have a loon on how we can train a neural network using our software.

2.2 Training its own network

.

For regression task. We are going to work with the Boston dataset which is available
on directly to predict median value of owner-occupied homes in $1000s (you can find
more information on the dataset, and the meaning of each variable here).

Import Required packages
set.seed(500)
library(neuralnet)
library(MASS)

Boston dataset from MASS
data <- Boston

Before feeding the data into a neural network, it is good practice to perform normal-
ization. There is a number of ways to perform normalization. We will use the min-max
method and scale the data in the interval [0,1]. The data is then split into training (75%)
and testing (25%) set.

Normalize the data
maxs <- apply(data, 2, max)
mins <- apply(data, 2, min)
scaled <- as.data.frame(scale(data, center = mins,

scale = maxs - mins))

Split the data into training and testing set
index <- sample(1:nrow(data), round(0.75 * nrow(data)))
train_ <- scaled[index,]
test_ <- scaled[-index,]

9 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

https://playground.tensorflow.org/##activation=tanh®ularization=L2&batchSize=15&dataset=spiral®Dataset=reg-plane&learningRate=0.1®ularizationRate=0&noise=5&networkShape=4,3,2&seed=0.60222&showTestData=false&discretize=true&percTrainData=70&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://www.rdocumentation.org/packages/MASS/versions/7.3-53/topics/Boston

Now, we can create a neural network using the neuralnet library. Modify the pa-
rameters and calculate the mean squared error (MSE). Use the parameters with the least
MSE. We will use two hidden layers having 5 and 3 neurons. The number of neurons
should be between the input layer size and the output layer size, usually 2/3 of the input
size. However, modifying and testing the neural network, again and again, is the best
way to find the parameters that best fit your model. When this neural network is trained,
it will perform gradient descent to find coefficients that fit the data until it arrives at the
optimal weights (in this case regression coefficients) for the model.

Build Neural Network
nn <- neuralnet(medv ~ crim + zn + indus + chas + nox

+ rm + age + dis + rad + tax +
ptratio + black + lstat,
data = train_, hidden = c(5, 3),
linear.output = TRUE)

Predict on test data
pr.nn <- compute(nn, test_[,1:13])

Compute mean squared error
pr.nn_ <- pr.nn$net.result * (max(data$medv) - min(data$medv))

+ min(data$medv)
test.r <- (test_$medv) * (max(data$medv) - min(data$medv)) +

min(data$medv)
MSE.nn <- sum((test.r - pr.nn_)^2) / nrow(test_)

We can also have a look at the structure of our network.

Plot the neural network
plot(nn)

We can finally try to detect study if the predictions are good using the following
code which aims to plot a graph which compares predicited and observed values.

Plot regression line
plot(test$medv, pr.nn_, col = "red",

main = 'Real vs Predicted')
abline(0, 1, lwd = 2)

10 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

For classification task. We will first download the required packages as in the previ-
ous task. We also convert the type of flowers into factors.

library(tidyverse)
library(neuralnet)

iris <- iris %>% mutate_if(is.character, as.factor)
summary(iris)

We will set seed for reproducibility and split the data into train and test datasets
for model training and evaluation.

set.seed(245)

sample(1:nrow(data), round(0.75 * nrow(data)))
train_indices <- sample(c(1:nrow(iris)), floor(0.75*nrow(iris)))
train_data <- iris[train_indices,]
test_data <- iris[-train_indices,]

We create two hidden layers, the first layer with four neurons and the second with
two neurons.

model = neuralnet(
Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,
data=train_data,
hidden=c(4,2),
linear.output = FALSE
)

To view our model architecture, we will use the ‘plot‘ function. It requires a model
object and ‘rep‘ argument.

plot(model,rep = "best")

We can now compute the performance of our model on the test data and compute
the accuracy.

11 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

pred <- predict(model, test_data)
labels <- c("setosa", "versicolor", "virginca")
prediction_label <- data.frame(max.col(pred)) %>%
mutate(pred=labels[max.col.pred.]) %>%
select(2) %>%
unlist()

table(test_data$Species, prediction_label)

References

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical calculus
of the ideas immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: a probabilistic model for
information storage and organization in the brain. Psychological review, 65(6):386.

12 - Mathematics for Supply Chain - Msc Supply Chain & Purchasing

	Neural Networks : pressentation and concepts
	Neural Network in practice
	A first insight: complexity of networks
	Training its own network

	Bibliography

