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Résumé

Il n’est pas demandé de réaliser ’ensemble des exercices, je vous demande sim-
plement de faire ce que vous pouvez.
Ce devoir est composé de deux parties, une premiére porte sur I’étude des fonctions
a plusieurs variables et la deuxiéme partie porte sur la régression linéaire.

Fonctions a plusieurs variables et conditionnement d’une ma-
trice

Dans cette premiére partie, on va cherche & étudier une fonction de plusieurs va-
riables & valeurs réelles.
On commencera par étudier une telle fonction et on va ensuite regarder comment opti-
miser cette fonction & travers un algorithme que 'on appelle la descente de gradient.
Ce probléme s’inscrit dans un cadre général que I'on appelle, le conditionnement d’une
matrice, qui joue un role important dans la résolution de problémes de fagon numérique

Contexte Soit 7 un nombre réel. L’objectif de cet exercice est d’étudier la fonction
[ : R? = R définie par :

1
Fow,y) = 5 (@® +9y* + 2uy) + 20 + 2y,
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Etude de la fonction f,. Cette premiére partie est consacrée a I’étude de la fonction

fy-

1. Etudier la convexité de la fonction f,.

2. Donner les solutions de ' équation d’Euler, i.e., les solutions du systéme linéaire
V fy(x,y) = (0,0) pour toutes les valeurs de .

3. Donner la nature des extrema de la fonction f, en fonction de la valeur de 7.

4. Montrer que la fonction f, peut s’écrire sous la forme

1
fy(u) = QuTAu —b’u,

11 .
ol A = (1 7), b € R? est un vecteur & déterminer et u = (z,y)7.

Descente de gradient & pas optimal Dans cette section uniquement, on supposera
que v = 2.

1. Que peut-on dire de la convexité de la fonction fo et des extrema de cette
fonction ?

On cherche maintenant a trouver une procédure algorithmique qui permet d’at-
teindre le minimum de cette fonction en partant de n’importe quel point ug = (zo, yo)-
Une telle procédure s’appelle une descente de gradient. Dans les grandes lignes 1’idée est
de construire une suite (uy)ren qui converge vers u*, le minimum de notre fonction, en
utilisant le principe suivant :

e choisir une valeur ug : c’est le point de départ de notre algorithme d’optimisa-
tion.

® Uy — Uiy : on choisit une direction dy et on minimise la fonction objective f
le long de cette direction.

e on résout arg min f(ug—pdy) = pk : on cherche a quel point on doit se déplacer
p>0
dans la direction donnée pour minimiser la fonction f. Cette constante p est

souvent appelé pas d’apprentissage.
® Ui = ug — prdy : on met a jour la valeur de notre suite.

Dans toute cette procédure, la direction dj que l'on va choisir est V f(ug) et on
va d’abord se concentrer sur cet algorithme que 'on appelle descente de gradient & pas
constant.
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Définition: Descente de gradient a pas constant

gradcst Soit f défini sur un sous-ensemble D de R™ & valeurs dans R et soit p, e
des nombres réels positifs.
Alors la descente de gradient & pas constant est décrit par

e choisir ug pour initialiser notre algorithme,
o tant que ||V f(ug)|| > ¢

1. calculer V f(ug)
2. poser upy1 =u, — pVf(ug) ,p>0

J

On peut alors montrer que pour un bon choix de p, la suite des valeurs de ug, va se
rapprocher petit a petit du point qui minimise notre fonction (la solution de ’équation
d’Euler).

2. On suppose que p = 1 et on pose uy = (0,0). Calculer les valeurs de uy pour
k=1,2 et 3 al’aide d’'un algorithme de descente de gradient & pas constant.

Dans la suite, on va s’intéresser a une autre version dite & pas optimale ou de
plus profonde descente. L’idée est identique, la procédure est la méme, mais, cette
fois, le pas de descente p est choisi de fagon a minimiser f(u; — pV f(ug)).

Taux de convergence de la descente de gradient & pas optimal. A partir de
maintenant, on suppose que v > 1 de telle sorte que la fonction f soit bien strictement
convexe. L’objectif est d’étudier la vitesse de convergence de la descente de gradient & pas
optimal. Cette vitesse de convergence dépend de ce que I’'on appelle le conditionnement
de la matrice A, notée Cond(A), et il est défini par

Amax(A)

Cond(A) = Ao (A)”

Ol Amax(A) et Amin(A) sont respectivement la plus grande et la plus petite valeur
propre de la matrice A.

1. Déterminer les valeurs propres de la matrice A.

2. Donner une expression du conditionnement de la matrice A en fonction de v et
donner un équivalent asymptotique de ce conditionnement, i.e. pour de grandes
valeurs de 7.

Indice : on utilisera le fait que pour de grandes valeurs de v on a (y—1)%+4 ~
(v=1)%

3. Notons u* le point pour lequel la fonction f, atteint son minimum et ug le

point initial de notre algorithme de descente de gradient.

. R . Ef,"cf
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On définit le taux de convergence de notre algorithme par la nombre n = 1 —
Cond(A)~! et on

lugs1 = u*la < n*fluo — u*a. (1)

A l’aide de cette définition dire pour quelles valeurs de ~ la convergence de la
'algorithme est la plus rapide. !

4. On cherche maintenant & démontrer I'inégalité donnée en Equation (1). On note
pr. le pas optimal de notre algorithme a 'itération k.

(a) Montrer que

laprr —u*|fa < (11— prA)(uy —u*)lf3.

Indice : on se rappelle que si u* est un minimum de f, alors Au* =b o
A et b ont été définis dans la précédente partie.

(b) Maintenant, on admet que pour tout k& € N, nous avons :

g — w2 < 1T = peA)lI3] (ar, — u)]A.

Montrer que 1? est une borne supérieure de ||I — prAl|3, i.e.,

I-pp A<’ =(1-
It pealf <o = (1- e

(c¢) Conclure quant & la convergence.

Autour du modéle linéaire gaussien

On suppose que 'on dispose d’un échantillon S = {(y;, x;)};_; ot y; € Ret x; € RP,
ou p > 1 représente la dimension de notre jeu de données. Notre objectif est de déterminer
une relation linéaire entre les valeurs observées y; et les caractéristiques des individus x;.
Pour cela, on considére le modéle suivant :

y=XB+e,

ot X € R™*(+1) ogt la matrice de design, 3 € RP*! et ¢ € R™ est notre vecteur

des résidus ou erreurs du modéle. On suppose que les nos erreurs suivent une distribution

normale de moyenne nulle et de variance inconnue o?.

1. Le conditionnement d’une matrice joue également un roéle important dans la stabilité des so-
lutions numériques données par notre ordinateur lorsque la précision numérique est limitée. Pour des
problémes dits mal conditionnés, une faible perturbation des données peut engendrer une modification
radicale de la solution, i.e., une multiplication de ’erreur.

UER anTHropoLoGIe
ocroLocie
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On rappelle que le vecteur 8 est solution du probléme suivant :

i - X%
pin lly — X4

Variantes du modéles gaussien

Dans cette section on va regarder deux variantes du modéle linéaire gaussien : (i)
on remet en cause ’hypothése d’homoscédasticité et (ii) en supposant que les individus
x; n’ont pas le méme poids lors de 'estimation des paramétres du modéle.

(i) Remise en cause de ’homoscédasticité On suppose que I'hypothése Var[e] =
oI n’est plus vérifiée mais que I'on cette fois ci Varle] = 02X, ot la matrice ¥ € Rn x n
est connue.

6. Déterminer I'estimateur obtenu par MCO en tenant compte de cette nouvelle
hypothése.

(ii) Pondération des individus On suppose maintenant que chque individu a un
poids différent dans ’estimation des paramétres du modéle. On notera w; la pondération
de I'’exemple x;. Notre prolbéme de minimisation peut alors se réécrire

min Z wi(y; — x; B)2.
i=1

7. Déterminer 'estimateur obtenu par MCO en tenant compte de cette nouvelle
hypothése.
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