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Résumé

Il n’est pas demandé de réaliser l’ensemble des exercices, je vous demande sim-
plement de faire ce que vous pouvez.
Ce devoir est composé de deux parties, une première porte sur l’étude des fonctions
à plusieurs variables et la deuxième partie porte sur la régression linéaire.

Fonctions à plusieurs variables et conditionnement d’une ma-
trice

Dans cette première partie, on va cherche à étudier une fonction de plusieurs va-
riables à valeurs réelles.
On commencera par étudier une telle fonction et on va ensuite regarder comment opti-
miser cette fonction à travers un algorithme que l’on appelle la descente de gradient.
Ce problème s’inscrit dans un cadre général que l’on appelle, le conditionnement d’une
matrice, qui joue un rôle important dans la résolution de problèmes de façon numérique

Contexte Soit γ un nombre réel. L’objectif de cet exercice est d’étudier la fonction
fγ : R2 → R définie par :

fγ(x, y) =
1

2
(x2 + γy2 + 2xy) + 2x+ 2y.
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Etude de la fonction fγ. Cette première partie est consacrée à l’étude de la fonction
fγ .

1. Etudier la convexité de la fonction fγ .

2. Donner les solutions de l’équation d’Euler, i.e., les solutions du système linéaire
∇fγ(x, y) = (0, 0) pour toutes les valeurs de γ.

3. Donner la nature des extrema de la fonction fγ en fonction de la valeur de γ.

4. Montrer que la fonction fγ peut s’écrire sous la forme

fγ(u) =
1

2
uTAu− bTu,

où A =

(
1 1
1 γ

)
, b ∈ R2 est un vecteur à déterminer et u = (x, y)T .

Descente de gradient à pas optimal Dans cette section uniquement, on supposera
que γ = 2.

1. Que peut-on dire de la convexité de la fonction f2 et des extrema de cette
fonction ?

On cherche maintenant à trouver une procédure algorithmique qui permet d’at-
teindre le minimum de cette fonction en partant de n’importe quel point u0 = (x0, y0).
Une telle procédure s’appelle une descente de gradient. Dans les grandes lignes l’idée est
de construire une suite (uk)k∈N qui converge vers u⋆, le minimum de notre fonction, en
utilisant le principe suivant :

• choisir une valeur u0 : c’est le point de départ de notre algorithme d’optimisa-
tion.

• uk → uk+1 : on choisit une direction dk et on minimise la fonction objective f
le long de cette direction.

• on résout arg min
ρ>0

f(uk−ρdk) = ρk : on cherche à quel point on doit se déplacer

dans la direction donnée pour minimiser la fonction f . Cette constante ρ est
souvent appelé pas d’apprentissage.

• uk+1 = uk − ρkdk : on met à jour la valeur de notre suite.

Dans toute cette procédure, la direction dk que l’on va choisir est ∇f(uk) et on
va d’abord se concentrer sur cet algorithme que l’on appelle descente de gradient à pas
constant.
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Définition: Descente de gradient à pas constant

gradcst Soit f défini sur un sous-ensemble D de Rn à valeurs dans R et soit ρ, ε
des nombres réels positifs.
Alors la descente de gradient à pas constant est décrit par

• choisir u0 pour initialiser notre algorithme,
• tant que ∥∇f(uk)∥ ≥ ε

1. calculer ∇f(uk)

2. poser uk+1 = uk − ρ∇f(uk) , ρ > 0

On peut alors montrer que pour un bon choix de ρ, la suite des valeurs de uk va se
rapprocher petit à petit du point qui minimise notre fonction (la solution de l’équation
d’Euler).

2. On suppose que ρ = 1 et on pose u0 = (0, 0). Calculer les valeurs de uk pour
k = 1, 2 et 3 à l’aide d’un algorithme de descente de gradient à pas constant.

Dans la suite, on va s’intéresser à une autre version dite à pas optimale ou de
plus profonde descente. L’idée est identique, la procédure est la même, mais, cette
fois, le pas de descente ρ est choisi de façon à minimiser f(uk − ρ∇f(uk)).

Taux de convergence de la descente de gradient à pas optimal. A partir de
maintenant, on suppose que γ > 1 de telle sorte que la fonction f soit bien strictement
convexe. L’objectif est d’étudier la vitesse de convergence de la descente de gradient à pas
optimal. Cette vitesse de convergence dépend de ce que l’on appelle le conditionnement
de la matrice A, notée Cond(A), et il est défini par

Cond(A) =
λmax(A)

λmin(A)
,

où λmax(A) et λmin(A) sont respectivement la plus grande et la plus petite valeur
propre de la matrice A.

1. Déterminer les valeurs propres de la matrice A.

2. Donner une expression du conditionnement de la matrice A en fonction de γ et
donner un équivalent asymptotique de ce conditionnement, i.e. pour de grandes
valeurs de γ.
Indice : on utilisera le fait que pour de grandes valeurs de γ on a (γ−1)2+4 ≃
(γ − 1)2.

3. Notons u⋆ le point pour lequel la fonction fγ atteint son minimum et u0 le
point initial de notre algorithme de descente de gradient.
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On définit le taux de convergence de notre algorithme par la nombre η = 1 −
Cond(A)−1 et on

∥uk+1 − u⋆∥A ≤ ηk∥u0 − u⋆∥A. (1)

A l’aide de cette définition dire pour quelles valeurs de γ la convergence de la
l’algorithme est la plus rapide. 1

4. On cherche maintenant à démontrer l’inégalité donnée en Equation (1). On note
ρk le pas optimal de notre algorithme à l’itération k.

(a) Montrer que

∥uk+1 − u⋆∥2A ≤ ∥(I− ρkA)(uk − u⋆)∥2A.

Indice : on se rappelle que si u⋆ est un minimum de fγ, alors Au⋆ = b où
A et b ont été définis dans la précédente partie.

(b) Maintenant, on admet que pour tout k ∈ N, nous avons :

∥uk+1 − u⋆∥2A ≤ ∥(I− ρkA)∥22∥(uk − u⋆)∥2A.

Montrer que η2 est une borne supérieure de ∥I− ρkA∥22, i.e.,

∥I− ρkA∥22 ≤ η2 =

(
1− λmin(A)

λmax(A)

)2

.

(c) Conclure quant à la convergence.

Autour du modèle linéaire gaussien

On suppose que l’on dispose d’un échantillon S = {(yi,xi)}ni=1 où yi ∈ R et xi ∈ Rp,
où p > 1 représente la dimension de notre jeu de données. Notre objectif est de déterminer
une relation linéaire entre les valeurs observées yi et les caractéristiques des individus xi.
Pour cela, on considère le modèle suivant :

y = Xβ + ε,

où X ∈ Rn×(p+1) est la matrice de design, β ∈ Rp+1 et ε ∈ Rn est notre vecteur
des résidus ou erreurs du modèle. On suppose que les nos erreurs suivent une distribution
normale de moyenne nulle et de variance inconnue σ2.

1. Le conditionnement d’une matrice joue également un rôle important dans la stabilité des so-
lutions numériques données par notre ordinateur lorsque la précision numérique est limitée. Pour des
problèmes dits mal conditionnés, une faible perturbation des données peut engendrer une modification
radicale de la solution, i.e., une multiplication de l’erreur.
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On rappelle que le vecteur β est solution du problème suivant :

min
β∈Rp+1

∥y −Xβ∥2.

Variantes du modèles gaussien

Dans cette section on va regarder deux variantes du modèle linéaire gaussien : (i)
on remet en cause l’hypothèse d’homoscédasticité et (ii) en supposant que les individus
xi n’ont pas le même poids lors de l’estimation des paramètres du modèle.

(i) Remise en cause de l’homoscédasticité On suppose que l’hypothèse Var[ε] =
σ2I n’est plus vérifiée mais que l’on cette fois ci Var[ε] = σ2Σ, où la matrice Σ ∈ Rn× n
est connue.

6. Déterminer l’estimateur obtenu par MCO en tenant compte de cette nouvelle
hypothèse.

(ii) Pondération des individus On suppose maintenant que chque individu a un
poids différent dans l’estimation des paramètres du modèle. On notera wi la pondération
de l’exemple xi. Notre prolbème de minimisation peut alors se réécrire

min
β∈Rp+1

n∑
i=1

wi(yi − x⊤
i β)

2.

7. Déterminer l’estimateur obtenu par MCO en tenant compte de cette nouvelle
hypothèse.
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