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Part I

Introduction

The aim of linear (or non-linear) modeling is to describe phenomena using an equation
linking random variables. More precisely, it seeks to predict or explain the values of a
random variable Y using several explanatory variables X1, X2, . . . , Xp.

To establish this link, we rely on observations to estimate the parameters of the
model describing the phenomenon. However, the process of collecting or processing data
is subject to error, which can induce a bias in the learned model. This error is often
modeled by a random variable ε, the nature of which will depend on the type of model
considered.

Finally, modelling will consist of determining the unknown function f which will
link the variable to be explained Y to the explanatory variables X1, . . . , Xp, taking into
account any noise (our error) in the data, i.e.,

Y = f(X) + ε,

where X = (X1, X2, . . . , Xp) and f is the function we’re trying to determine, which
will depend on parameters.

This modeling work is often accompanied by a data exploration phase.

Statistics

Exploration + Modeling −→ Data Mining

Some problems

The nature of the modeling changes according to the nature of the Y :

• if Y is qualitative, this is called a classification problem.

• if Y is quantitative, it’s called a regression problem.

These are classic modeling contexts. There is a final case, not dealt with here, in
which we have no Y variable, but only explanatory variables, and we want to construct
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groups. This is known as clustering, a method often applied in high-dimensional statis-
tics.

Choose the model

There are several ways of estimating the f function, which can lead to different
estimates. The latter may also depend on the amount of information used, i.e. the
number of explanatory variables employed.
The aim of the regression problems we’ll be studying is to strike a balance between

• a large number of explanatory variables: this will enable the model to ex-
plain the data better, but with weaker predictive power, i.e. a higher risk of poor
predictions.

• few explanatory variables: the model will have low variance, and therefore
potentially weaker predictions. On the other hand, it will have greater difficulty in
explaining the data.

This notion will later refer to the bias - variance trade-off of the model, a
very important notion that you will find in a statistical learning context and which will
be linked to the notion of complexity of the model. The latter is closely linked to the
amount of information, and therefore variables, used.

Model Selection Technique

These are often divided into two categories

Variable Selection

It is based on statistical criteria to
measure the quality of a model, tak-
ing into account the number of pa-
rameters used. Statistical tests are
then used to determine whether the
difference in results is significant or
not.

Regularization or Penalization

A process often used in high-
dimensional statistics to automat-
ically select the most relevant vari-
ables. This is done by adding
so-called penalities terms to the
problem we are trying to solve.

Studied model.
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We will be looking at several models in this course. The simplest is the linear
Gaussian model in the form

Y = f(X) + ε,

where we will assume that X are deterministic and that ε ∼ N (0, σ2), where σ2

denotes the variance or noise present in our data.

The function f will then have a very specific form in this context. We will take an
affine function of the form

f(x) = β0 + β1x1 + β2x2 + . . .+ βpxp =

p∑
j=0

βjxj .

Using logistic regression, we will also see how to deal with a classification prob-
lem using a so-called regression model. In this context, the variable we are seeking to
explain.

In the following class, i.e., in the data science class, we we will go a little bit further
and try to study more general models used in Machine Learning for prediction tasks.
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Part II

Gaussian Linear Models

We now place ourselves in a well-defined framework, where we seek to explain the values
taken by a quantitative random variable Y as a function of the values taken by a set of
quantitative or qualitative variables X1, X2, . . . , Xp such that

Y = f(X) + ε,

where X = (X1, X2, . . . , Xp) and where, hence the name Gaussian, ε ∼ N (0, σ2)
where σ2 is unknown.
We will also assume that the function f considered is a linear function, i.e., our model
can be written as

Y = β0 + β1X1 + β2X2 + . . . βpXp + ε.

The values of the vector β = (β0, β1, β2, . . . , βp) are then to be determined.

To do this, we have a dataset that will allow us to obtain an estimate of these
parameters using a criterion that we will define and seek to minimize. This will take the
form of an optimization problem

min
β∈Rp+1

φ(β).

We will seek to solve this problem with a sample of data S = {(xi, yi)}ni=1 and
xi ∈ Rp such that

y1 = β0 + β1X1,1 + β2X1,2 + . . .+ βpX1,p + ε1,

y2 = β0 + β1X2,1 + β2X2,2 + . . .+ βpX2,p + ε2,

. . . = . . .

yn−1 = β0 + β1Xn−1,1 + β2Xn−1,2 + . . .+ βpXn−1,p + εn−1,

yn = β0 + β1Xn,1 + β2Xn,2 + . . .+ βpXn,p + εn,
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where Xi,j indicates the j-th feature of individual i.

Let us look at an example where we want to predict the score obtained on a second
exam, based on the score obtained on a first exam for a set of 10 students.

Our data is presented as follows

Y : Score exam 2 3.5 4 5 1 2 1.5 2.5 5.5 6 6.5
X : Score exam 1 4 3 3.5 1 1.5 1 1.5 4 3.5 4.5

The objective here will be to learn the coefficients of the regression line. We can
graphically represent the data in the graph below, as well as the obtained line
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Data
Linear Regression: y = 1.32 · x+ 0.13

L’objectif sera d’étudier comment nous pouvons déterminer ces coefficients à l’aide
notre jeu de données.
The objective will be to study how we can determine these coefficients using our dataset.

We will also extend our study by examining the statistical properties of the esti-
mators β̂ obtained from β, this will be used to build appropriate statistical tests in order
to check if the avaiable informations are important for the prediction task.
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1 Simple Linear and Gaussian Model

In this first part, we will focus on the simple linear model, meaning the model where
we aim to predict the values of the variable Y based solely on a single variable X.

Our model is therefore written as

Y = β0 + β1X + ε,

where β0 represents the intercept of the model and β1 represents the slope of our
line.
It is this coefficient β1 that describes the impact of the variable X on the variable Y .

Mathematically speaking, we should more precisely use the term affine rather than
linear, since the learned line does not necessarily pass through the origin, except in the
case where β0 = 0.

From now on, we will also assume that the explanatory variable X follows a normal
distribution.
Let is now try to understand how we can estimate these parameters.

1.1 Assumptions of the Gaussian Linear Model

Our simple Gaussian model (since we use only one variable) aims to explain the rela-
tionship between two quantitative variables, X and Y , through an affine relation

Y = β0 + β1X + ε,

where Y ∈ R denotes the dependent variable, X ∈ R the explanatory variable,
β = (β0, β1) the model parameters we seek to estimate, and ε an independent random
error term.

We stated that to estimate the model parameters, we use a dataset S = {(xi, yi)}ni=1,
i.e.,

∀i ∈ J1, nK, Yi = β0 + β1Xi,1 + εi.
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Gaussian Model Assumptions

We formulate the following assumptions for our Gaussian linear model:

1. (Yi, Xi)
n
i=1 must be i.i.d., i.e., independently and identically distributed,

2. Yi ∼ N (β0 + β1Xi, σ
2),

3. εi ∼
i.i.d

N (0, σ2): homoscedasticity assumption.

The first and second assumptions specify that the values Yi are observed and
random, whereas the values Xi are observed and non-random (also referred to as
deterministic). The third assumption states that the errors are random and follow a
Gaussian distribution that is (i) centered, (ii) of unknown variance σ2, and (iii) inde-
pendent. This last point means that the covariance between the errors associated with
individuals i and j is zero, i.e.,

Cov(εi, εj) = 0, ∀ i ̸= j.

1.2 Optimization

Our objective is to determine the values of the model parameters such that the predicted
value

ŷi = β̂0 + β̂1xi

is as close as possible to the actual value yi for the different individuals xi, with
i = 1, . . . , n.
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We could be tempted to evaluate this difference yi − ŷi = εi over all individuals,
i.e., we could try to solve the problem

min
β0,β1∈R

n∑
i=1

εi = min
β0,β1∈R

n∑
i=1

yi − ŷi = min
β0,β1∈R

n∑
i=1

yi − (β0 + β1xi).

However, this would not be a good definition of the model errors, also called resid-
uals. In fact, errors should be counted positively, but here εi = yi − ŷi can be either
positive or negative, leading to compensatory effects. Moreover, by definition, these er-
rors are centered, so the sum of the errors, as defined here, would be equal to 0.

We could take the absolute value of the difference between the observation yi
and the prediction ŷi, i.e.,

min
β0,β1∈R

n∑
i=1

|yi − (β0 + β1xi)| ,

but this problem remains difficult to solve mathematically. Therefore, we prefer
to minimize the squared distance between yi and ŷi. This approach is known as the
least squares method. This method has a considerable advantage, compared to the
maximum likelihood method we will see later, because it does not require any assumptions
about the distribution of the errors.
We will thus solve the problem
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min
β0,β1∈R

n∑
i=1

ε2i = min
β0,β1∈R

n∑
i=1

(yi − ŷi)
2 = min

β0,β1∈R

n∑
i=1

(yi − (β0 + β1xi))
2 .

1.3 Expression of the Solutions

Before presenting the expression for the solutions to our optimization problem, we recall
the following probability result.

Recap of Probability. We recall the following results from probability theory.

Lemma 1.1: Variance of Random Variables

Consider X and Y as random variables with second-order moments, i.e., they have
a variance. Then,

(i) For the variance of a random variable, we have the Koenig-Huygens For-
mula:

Var[X] = E[X2]− (E[X])2 .

(ii) The covariance between two random variables is also given by

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

Proof. We prove the two points separately.

(i) Koenig-Huygens Formula. Starting from the definition of variance:

Var[X] = E
[
(X − E[X])2

]
↓ by expanding the expression

= E
[
X2 − 2X E[X]− E[X]2

]
,

↓ by the linearity of expectation

= E[X2]− 2E[X]2 + E[X]2,

Var[X] = E[X2]− E[X]2.
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(ii) Covariance Equality. Similarly, starting from the definition of covariance:

Cov(X,Y ) = E [(X − E[X])(Y − E[Y ])] ,

↓ by expanding

= E [XY − E[X]Y − Y E[X] + E[X]E[Y ]] ,

↓ by the linearity of expectation

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[X]E[Y ],

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

The previous lemma will allow us to provide a simpler proof for the expression of
the optimal parameters of our regression model.

Proposition 1.1: Linear Regression Problem

Consider the Gaussian linear regression problem of the form

Y = β0 + β1X + ε.

The parameters a and b are solutions to the optimization problem

min
β0,β1∈R

n∑
i=1

ε2i = min
β0,β1∈R

n∑
i=1

(yi − ŷi)
2 = min

β0,β1∈R

n∑
i=1

(yi − (β0 + β1xi))
2.

The solutions are given by

β̂1 =
Cov[X,Y ]

Var[X]
=

1

n

∑n
i=1(xi − x̄)(yi − ȳ)

1

n

∑n
i=1(xi − x̄)2

and β̂0 = E[Y ]−E[X]×β̂1 = ȳ−β̂1×x̄.

Proof. The function L that we seek to optimize, defined by

L(β0, β1) =

n∑
i=1

(yi − (β0 + β1xi))
2

is a convex function in the variables β0 and β1, so it has a unique solution. This
solution is obtained by solving the Euler equation, which takes the form of a linear
system
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∂L

∂β1
= 0 ⇐⇒ −2

n∑
i=1

(yi − β1xi − β0)xi = 0, (1)

∂L

∂β0
= 0 ⇐⇒ −2

n∑
i=1

(yi − β1xi − β0) = 0. (2)

To finish the proof, it remains to solve the linear system.

Exercise

Finish the above proof by solving the linear system in order to find the results
presented in Proposition 1.1, i.e., find the expression of the estimated β̂0 and β̂1.

1.4 Estimation of the Variance σ2

In the case of the simple linear model, we can obtain two estimates of this variance by
focusing on the model’s residuals.

If we estimate σ2 using the traditional definition of the variance, we can show that
one estimator is given by

σ̂2 =
1

n

n∑
i=1

(
yi − (β̂0 + β̂1xi)

)2
.

However, this estimator is biased. A debiased version of this estimator is given by
the expression

σ̂2 =
1

n− 2

n∑
i=1

(
yi − (β̂0 + β̂1xi)

)2
.

Thus, we need to divide the sum of the squared residuals εi by n− 2 rather than
by n. Although the reasoning behind dividing by n − 2 is not explained here, we can
note that the 2 refers to the number of parameters in our regression model, β0 and β1.

Determining the expectation and variance of these estimators will allow us to as-
sess whether the learned model is meaningful, i.e. whether we are able to correctly
predict the values of the variable Y using the values of X and this linear
relationship.
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However, we postpone this analysis to the Section 2.

1.5 Measuring the Relationship Between the Explanatory and Re-
sponse Variables

We have already introduced a measure to study the relationship between two random
variables, X and Y , called the covariance. However, the value of this covariance depends
on the scale of the values taken by the different random variables. Thus, to measure
the relationship between two random variables, we calculate the linear correlation
coefficient.

Definition 1.1: Linear Correlation Coefficient

Let X and Y be two random variables with second-order moments. The linear
correlation coefficient between the variables X and Y is the quantity ρ defined by

ρ =
Cov[X,Y ]√
Var[X] Var[Y ]

.

If |ρ| is close to 1, we say that the correlation between the two variables is strong.
Conversely, if it is close to 0, the correlation is weak.
Furthermore, a negative value of ρ means that, generally, increasing values of X lead
to decreasing values of Y (and vice versa), i.e., the slope of the regression line will be
negative. Similarly, a positive value of ρ means that increasing values of X lead to in-
creasing values of Y (and vice versa), i.e., the slope of the regression line will be positive.

Exercise

Consider to random variables X and Y and let us denote by ρ their Linear Corre-
lation Coefficient. Draw a of a set of points for which we have:

1. a positive correlation, i.e. ρ > 0,

2. a negative correlation, i.e. ρ < 0,

3. a correlation close to 0, i.e. ρ ≃ 0.

Using the definition of β1, i.e. the slope, and ρ, show that these two quantities are
linked.
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1.6 Significance of the Model

Given the remark made earlier, we can therefore focus on either of the two quantities.

Significance of the Slope β1 We perform the test to determine whether the slope is
significantly different from 0. The hypotheses are as follows:

H0 : β1 = 0 vs. H1 = β1 ̸= 0

Our estimator of the slope, β̂1, follows a normal distribution, just like the random
variable Y . The parameters of this distribution allow us to write that

β̂1 ∼ N
(
β1,

σ2∑n
i=1(xi − x̄)2

)
.

We thus consider the following statistical test ttest:

ttest =
under H0

β̂1√
σ̂2∑n

i=1(xi − x̄)2

∼ Tn−2.

Recall that we reject H0 at the significance level α ∈ [0, 1] if the test statistic ttest
lies outside the confidence interval at the 1− α level, i.e. if

ttest /∈ [tα/2,n−2, t1−α/2,n−2].

Alternatively, we could compare the p-value = 2P[T ≥ |ttest|] to the significance
level α and reject H0 if the p-value is smaller than this threshold.

Significance of the Correlation Now, we seek to perform the same analysis but this
time study the significance of the correlation coefficient ρ.

The test leads us to pose the following hypotheses:

H0 : ρ = 0 vs. H1 : ρ ̸= 0.

It relies on a test statistic similar to the one for the slope:

ttest =
ρ̂− ρ√
1− ρ̂2

n− 2

=
under H0

ρ̂√
1− ρ̂2

n− 2

∼ Tn−2.
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We proceed in the same way as before to conclude on the significance of the slope,
given a significance level α.

Exercise

Show that the two statistical test introduced in this section are equal, using the
relation between β̂1 and ρ̂.

1.7 Writing the Model in Matrix Form

Finally, note that we could have written our simple linear regression model in the follow-
ing matrix form:

y = Xβ + ε,

where

y =


y1
y2
...

yn−1

yn

 , X =


1 x1
1 x2
...

...
1 xn−1

1 xn

 and ε =


ε1
ε2
...

εn−1

εn

 ,

We will use this form when presenting the multiple linear model, i.e. when the
model employed uses multiple descriptors (or covariates) X1, X2, . . . , Xp, which is the
subject of Section 2.
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2 Multiple Linear Regression Model

In this section, we will assume that the number of examples n is always greater than the
number of descriptors (or variables) p+ 11.

The multiple linear regression model is written in the form

y = Xβ + ε,

where

y =


y1
y2
...

yn−1

yn

 , X =


1 x1,1 x1,2 . . . x1,p
1 x2,1 x2,2 . . . x2,p
...

...
...

. . .
...

1 xn−1,1 xn−1,2 . . . xn−1,p

1 xn,1 xn,2 . . . xn,p

 and ε =


ε1
ε2
...

εn−1

εn

 ,

and β = (β0, β1, . . . , βp−1, βp) ∈ Rp+1 is our vector of model parameters. The
vector y ∈ Rn is the vector whose values we aim to explain, the matrix X ∈ Rn×(p+1) is
the explanatory matrix, also called the design matrix, and ε ∈ Rn is the vector of errors
associated with each example, which are assumed to be Gaussian.

Hypotheses . The following hypotheses are typically made for the study of the Gaus-
sian linear model:

1. The model is assumed to be identifiable, i.e., there exists a unique vector β ∈ Rp+1

such that E[y] = Xβ. This is equivalent to the condition that the columns of the
matrix X are linearly independent, i.e., the rank of the matrix X is p+ 1.

2. Our data are i.i.d., as in the case of simple linear regression.

3. The errors are assumed to be centered, so E[ε] = 0.

4. The errors have the same variance and are independent, thus Var[ε] = σ2In, or
equivalently Var[y] = σ2In.

2.1 Estimation by the Least Squares Method

Let us now look at the expression for the least squares estimator.
1The case where p + 1 is much larger than n would lead us to perform high-dimensional statistics,

which is not the focus of this course, especially since it would make the study of models more complex.
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Proposition 2.1: Solution of Multiple Regression

Consider the model

y = Xβ + ε,

with the same meaning as before. If the model is identifiable, i.e., if the matrix X
has rank p+1, then the matrix X⊤X is invertible, and the least squares estimator
of β, the solution to the problem

min
β∈Rp+1

∥y −Xβ∥22

is given by

β̂ =
(
X⊤X

)−1
X⊤y.

Proof. To determine the expression of the estimator β̂, we will differentiate our prob-
lem and look for critical points, then determine their nature by studying the associated
Hessian.
The extrema of the function β 7→ ∥y−Xβ∥22 are found by looking for the point where
the gradient of this function is zero. We will thus seek the values of β such that

∂

∂β
∥y −Xβ∥22 = 0 ⇐⇒ −2X⊤(y −Xβ) = 0 (3)

By differentiating the function again, we obtain

∂2

∂β2
∥y −Xβ∥22 = 2X⊤X ≻ 0,

i.e. the Hessian matrix is positive definite, which is the case here since it is the
variance-covariance matrix of the data. This convexity allows us to conclude that the
vector β satisfying equation (3) is indeed the solution to our minimization problem.
Now, we have

∂

∂β
∥y −Xβ∥22 = 0 ⇐⇒ −2X⊤(y −Xβ) = 0,

↓ (we can divide by −2)

⇐⇒ X⊤(y −Xβ) = 0,

⇐⇒ X⊤y −X⊤Xβ = 0,

⇐⇒ X⊤Xβ = X⊤y,
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↓ (since the model is identifiable, the matrix X⊤X is invertible)
∂

∂β
∥y −Xβ∥22 = 0 ⇐⇒ β = (X⊤X)−1X⊤y.

Exercise

Use the expression of the solution presented in Proposition 2.1 in order to find
the expression of the estimated slope and intercept presented in Proposition 1.1.
Saying differently, find the expression of β when p = 1.

Tout comme dans le cas du modèle linéaire simple, les prédictions ŷ sur les données
X utilisées pour estimer β sont définies par

ŷ = Xβ̂ = X(X⊤X)−1X⊤y.

Or, equivalently for a single instance x = (x1, . . . , xp)

ŷ = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂pxp.

We now study the properties of the solution that are going to be used to study the
significance of the variables.

Proposition 2.2: Properties of the estimator β̂

The ordinary least squares estimator β̂ has the following properties:

(i) It is an unbiased estimator of the parameter β, i.e. E[β̂] = β

(ii) Its variance is equal to Var[β̂] = σ2(X⊤X)−1.

(iii) Moreover, β̂ is the unbiased estimator with minimum variance among
all unbiased linear estimators of β.

We will just use the to first point of the proposition which provide information
about the expectation the variance of the estimated parameter β̂.

2.2 Estimation of the variance σ2

The parameter σ2, which is simply the variance of our residuals, is defined by
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σ2 = Var[ε] = Var[Y ] = E[(Y − E[Y ])2].

Recall that in a linear model, the expectation of the random variable Y is estimated
by Xβ̂. We will then estimate the value of σ2 using the residuals ε̂i from our model.
The estimator σ̂2 of the variance of our residuals is defined by

σ̂2 =
1

n− p− 1

n∑
i=1

ε̂2i .

This used to complete the point (ii) of Proposition 2.2, where the value σ2 so that
an estimated is required.

2.3 Test of Nullity of a Regression Coefficient

We wish to determine whether the j-th coefficient of the regression is significantly dif-
ferent from 0 or not. In other words, we will try to determine whether the j-th variable
helps to explain, in part, the values taken by the random variable Y .
We therefore state the following hypotheses:

H0 : βj = 0 vs. H1 : βj ̸= 0.

To construct this test, we need to know the distribution of β̂j in order to deduce
the distribution of our test statistic under H0.

We have previously seen that the estimator β̂ follows a multivariate Gaussian
distribution with mean β and variance matrix (X⊤X)−1, i.e.,

β̂ ∼ N (β, σ2(X⊤X)−1).

Without going into deeper details on how to build the statistical test, we will just
present it in the following proposition.
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Corollary 2.1: Test Statistics

For all j ∈ J0, pK, consider βj as the coefficient of the regression associated with
the variable Xj and β̂j as its estimator.
Then

ttest =
β̂j − βj
σβ̂j

= =
under H0

β̂j
σβ̂j

∼ Tn−(p+1),

where σ2
β̂j

denotes the square root of the value located at position (j +1, j +1) in

the matrix σ̂2(X⊤X)−1.

In the context of a two-tailed test, where we aim to check if the coefficient βj
is significantly different from 0, we will reject the null hypothesis, with a risk of error
α ∈ (0, 1), if the test statistic

|ttest| =

∣∣∣∣∣∣ β̂jσ2
β̂j

∣∣∣∣∣∣ ≥ t1−α/2,n−p−1.

This result also allows for constructing confidence intervals for the estimators of
the model’s parameters.

2.4 Model Quality

Recall that we aim to estimate the parameters of the model in order to minimize the
squared difference between the observed values yi and the values predicted by the model
ŷi, i.e. to solve the problem

min
β0,β1∈R

n∑
i=1

ε2i = min
β0,β1∈R

n∑
i=1

(yi − ŷi)
2 = min

β0,β1∈R

n∑
i=1

(yi − (β0 + β1xi))
2 .
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Linear regression: y = 1.32 · x+ 0.13

The sum of squared differences between yi and ŷi is also called the Residual Sum
of Squares (SSR), i.e.;

SSR =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

ε̂2i .

It is closely related to the variance initially present in our data. In fact, we can
show that the following relationship holds between the variance of our observations and
the SSR:

n∑
i=1

(yi − ȳ)2︸ ︷︷ ︸
SST

=

n∑
i=1

(ŷi − ȳ)2︸ ︷︷ ︸
SSE

+

n∑
i=1

(yi − ŷi)
2

︸ ︷︷ ︸
SSR

,

where ȳ denotes the mean value of y ∈ Rn.

The term SST can be seen as the variation (or amount of information) present in
the data, ESS represents the variation explained by the model, and RSS represents the
variation not explained by the model (or residual variance).

Using these different quantities, we can again construct a statistical test to test the
overall significance of the model, i.e., we perform the following test:

H0 : β1 = β2 = . . . = βp vs. ∃ j ∈ J1, pK βj ̸= 0.
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In other words, testing the significance of the model involves testing the hypothesis
that none of the covariates explain the observed values of y. Let’s look at how this test
is constructed.

Analysis of Variance and Model Significance Since the previous terms represent
variances, we often summarize the information from our model in an analysis of variance
table

Analysis of Variance Table

Source of Variation Sum of Squares Degrees of Freedom Mean Squares

Model (SSE)
∑n

i=1(ŷi − ȳ)2 p MSE =
SSE
p

Residual (SSR)
∑n

i=1(yi − ŷi)
2 n− p− 1 MSR =

SSR
n− p− 1

Total (SST)
∑n

i=1(yi − ȳ)2 n− 1 MST =
SST
n− 1

Note that the different sums of squares can also be written using the norm of two
vectors, as was done for the residual part.

We can then define the following test statistic Ftest to test the overall significance
of the model:

Ftest =
MSA
MSW

Fp,n−p−1.

This test statistic follows a Fisher distribution with p and n − p − 1 degrees of
freedom. We then reject the hypothesis H0 with a risk of error α ∈ (0, 1) if

Ftest > fp,n−p−1,1−α,

i.e. if the test statistic takes a value greater than the (1− α) quantile of a Fisher
distribution with p and n− p− 1 degrees of freedom.
We note that this is a variance ratio test, and it is a one-tailed upper test.

Model Quality and Fit In the case of simple linear models, we could assess the quality
of the model’s fit to the data by evaluating the correlation between the two variables X
and Y . However, it becomes more difficult to do this in higher dimensions, but it is still
possible to assess the fit using the coefficient of determination R2, which studies
the proportion of variance explained by the model (SCE) relative to the total variance
(SCT). More precisely:
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R2 =
SCE
SCT

=
∥ŷ − ȳ∥2

∥y − ȳ∥2
.

This coefficient of determination is a value between 0 and 1. The closer this value
is to 1, the more the model explains the observed data.
Note: One might think that having a value close to 1 is very interesting in practice,
but it is not always a guarantee that the learned model is reliable and performs well. It
is possible that the model memorizes the data, which is known as overfitting. We will
discuss this later in the Machine Learning course.

This criterion unfortunately has a disadvantage: its value naturally increases with
the number p of explanatory variables in the model. Therefore, it is sometimes common
to consider another criterion, called the adjusted coefficient of determination, the
adjusted R2, which takes into account the number of variables in the model. This quantity
is defined by:

R2-adjusted = 1− n− 1

n− p− 1
(1−R2).

In addition to evaluating the quality of models, these criteria will help us in model
selection.

2.5 Model Construction and Selection

Several questions arise when constructing a prediction model using the available infor-
mation:

1. Is the learned model of good quality? This is a point we have already studied.

2. Do the variables used to build the model provide different information? This is the
question of information redundancy.

3. Do all these variables contribute significantly to the model’s performance? Here,
we are more concerned with the importance of the information.

Information Redundancy The answer to the second question is important to ensure
the validity of the model. Indeed, we recall that in order to estimate the parameters β,
the matrix X must be of full rank so that the matrix X⊤X is invertible. If there exists a
variable Xj that can be expressed as a linear combination of all the other variables Xk,
then our matrix will no longer be invertible, i.e. if there exist coefficients αk such that
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Xj =

p∑
k=1, k ̸=j

αkXk.

This relation also means that we can predict the value of Xj given the values of
Xk using a linear model! From this observation, we could also estimate that variables Xj

are only weakly useful (or even harmful to the model quality) if there is a strong linear
relationship with the other variables Xk.
To evaluate this in practice, we will construct a linear model between Xj and the other
variables Xk and assess the goodness of fit, the R2. If this value is too high, we will
consider the variable Xj redundant.
This criterion is called the VIF or Variance Inflation Factor and is defined by:

V IF (Xj) =
1

1−R2
j

,

where R2
j is the coefficient of determination associated with the model Xj =∑p

k=1, k ̸=j αkXk.
The variable is then excluded from the data if its V IF is greater than 10 (some authors
may choose 5).

Thus, before attempting to build a model, we first aim to remove redundant infor-
mation by applying the following procedure:

1. Calculate the VIFs for all the variables Xj by evaluating the R2
j associated with

the models

Xj =

p∑
k=1, k ̸=j

αkXk.

2. If only one variable has a VIF greater than 10, exclude this variable from the
dataset and stop the procedure.

3. If several variables have a VIF greater than 10, remove the variable with the highest
VIF and return to step 1, until all variables have a VIF less than 10.

Now, we need to consider which information is essential to build the best model.

Model Selection We will now look at how to select models in general, i.e., what
criterion(ia) we can use to compare models. We will then consider the specific case of
nested models.
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We have already seen the adjusted R2 criterion earlier, but we can also use criteria
based on the likelihood of our data.

(i) Mallows’ Cp coefficient [Gilmour, 1996].

For a model Ωq containing q < p variables, this criterion is defined by:

Cp(Ωq) =
∥y − ŷ(Ωq)∥2

∥y − ŷ∥2
2(q + 1)− n,

where ŷ represents the predictions made with the full model and ŷ(Ωq) represents
the predictions made with the reduced model Ωq.

(ii) Akaike Information Criterion (AIC) [Akaike, 1974].

This criterion was primarily motivated by the study of Gaussian models and is
defined for a model Ωq, containing q < p variables:

AIC(Ωq) = n (ln(2π) + 1) + n ln

(
∥y − ŷ(Ωq)∥2

n

)
+ 2(q + 2),

where ŷ(Ωq) represents the predictions made by the model with q variables.

In the Gaussian case, it can be shown that the AIC and Cp criteria are equivalent.
The following criterion is the most commonly used in statistics.

(iii)Bayesian Information Criterion (BIC) [Schwarz, 1978].

Using the same notation as before, we have:

BIC(Ωq) = n (ln(2π) + 1) + n ln

(
∥y − ŷ(Ωq)∥2

n

)
+ ln(n)(q + 2).

It can be shown that when n > 7, we have ln(n) > 2, so the BIC criterion tends
to select smaller models than the AIC criterion. The goal is to select the model Ωq that
minimizes one of these three criteria.

There is a procedure to test whether a variable significantly increases or not the
performance of a model. We say we are comparing nested models.

To do this, consider an integer q < p and consider the models Ωq and Ωq+1 where
Ωq is a model containing q variables from the q + 1 variables in the model Ωq. To test
whether adding or removing this variable significantly affects the model’s performance,
we can perform the statistical test with the following hypotheses:

H0 : the model Ωq is valid v.s. the model Ωq+1 is valid.
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To see if the addition of the new variable is significant or not, we compare the
adjusted R2-adjusted and if there is an improvement, we assume that the new information
is important.

2.6 Residual Analysis and Outlier Detection

We now want to check whether the assumptions of the Gaussian linear model are valid
or not. This is a step we perform a posteriori after selecting the best model according
to the statistical criteria defined in the previous section.

We have already checked the assumption of identifiability of the model (for ob-
taining the solutions) when we introduced the VIF for detecting potential collinearities
between the variables. But we must also check the assumptions listed below:

Gaussian Model Assumptions

We formulate the following assumptions for our linear Gaussian model:

1. (Yi, Xi)
n
i=1 must be i.i.d., i.e. independent and identically distributed,

2. Yi ∼ N (β0 + β1Xi+, σ2),

3. εi ∼
i.i.d

N (0, σ2): homoscedasticity assumption.

It is essentially a matter of verifying the assumptions related to the residuals ε̂i
of the model.

Residual Analysis Recall that the residuals are defined, for any integer i ∈ J1, nK, by

ε̂i = yi − ŷi.

The validation of the assumptions will primarily be done using graphs.

(i) Homoscedasticity of the residuals. To verify this first assumption, we will study the
so-called normalized residuals.

Recall that we have:

Var[ε̂] = σ2(I−H),

where H is the orthogonal projection matrix onto the space spanned by X. In
particular, we thus have
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Var[ε̂] = σ2(I−Hi,i),

Again, we need to use an estimate σ̂2 of σ2 to perform our analysis. Let

Var[ε̂] = σ̂2(I−Hi,i).

The residuals may have different variances (this depends on the value of Hi,i), so
we will normalize them:

ri =
ε̂i

σ̂
√

1−Hi,i

.

These residuals ri are called standardized residuals, where σ̂2 =
1

n− (p+ 1)

∑n
i=1 ε̂

2
i .

However, there is an issue with the definition of these residuals: the value ε̂i appears
both in the numerator and denominator, making these two quantities dependent, which
may hinder the analysis of the homoscedasticity assumption.

We will therefore consider the so-called studentized residuals r̃i =
ε̂i

σ̂(i)
√
1−Hi,i

,

where σ̂(i) =
1

n− p− 2

∑n
j ̸=i ε̂

2
j .

We will thus create a plot of the studentized residuals versus the predicted
values. This choice is explained by Cochran’s Theorem, which guarantees that the
predicted values ŷi and the associated residuals ε̂i are independent. This is preferable
compared to the graphs (ε̂i, Xi) or (ε̂i, Yi).
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For large values of n, we know that 95% of the values of the Student’s t distribution
should lie within the interval [−2, 2]. If too many values lie outside this interval, we can-
not say that σ2 is independent of Xi, thus contradicting the homoscedasticity assumption.

(ii) Normality of the residuals. We will now look at how to test the normality of the
residuals. We can do this in two ways: (i) using a statistical test or (ii) using a graphical
method.

For the first approach (i), we perform a Shapiro-Wilk test. The test takes the fol-
lowing form:

H0 : the residuals are normally distributed vs. H1 : they are not

This test is extremely powerful but also extremely rigid, making it less useful in
practice because it will tend to reject the normality hypothesis very often.

We therefore prefer to use a graphical method (ii) based on comparing the em-
pirical quantiles of the residuals with the theoretical quantiles of the standard normal
distribution.
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We will assume that the normality hypothesis will not be contradicted if the points
are generally aligned.

(iii) Independence of the residuals. This is to check that no patterns emerge when graph-
ing the residuals.
Below, we represent residuals where the independence assumption is verified.
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In contrast, the graph below shows that the independence assumption is not veri-
fied.
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Indeed, we observe a cyclic pattern in the residual values, which is a sign of the
presence of autocorrelation in the data. This is typical in the context of time series/data
analysis, a topic not covered in this course.
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The study of potential outliers involves measuring the impact of each observation
in the regression. This measurement can be done in two different ways: (i) by calculating
the hat values or Cook’s distance.

2.7 Take into account Categorical Variables in the Model

A last thing to study is how to take into account categorical variables in the model, such
as the gender of the person. It is very important to study this point because the linear
model is only able to work with numerical/quantitative variables and not categorical
ones which can be seen as text.
Let us consider two different settings.

(i) Case of two modalities

Suppose that our variable X is categorical variable that takes two different values.
Let us assume that X ∈ {M,F}. The usual thing to do is to encode this new variable
into 0− 1 by choosing one modility (i.e., M or F) as a reference.

For instance, if you choose F as the reference, than X will take the value 0 if it is
equal to "F" and 1 otherwise.

Assume that we are working with a model that has two variables X1 and X2, X1

is a quantitative variable and X2 a categorical variables which takes to values. thus it
can be written as

Y = β0 + β1X1 + β2X2 + ε

If we apply the process described before, this will lead, indirectly, to two different
models: (i) when X2 = 0 :

Y = β0 + β1X1ε

and (ii) when X2 = 1

Y = β0 + β2 + β1X1 + ε.

When looking at these two models, we can see that the categorical variables may
only impact the intercept of the model.
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But it is also possible to go a little bit further by including an interaction term:
X1X2 ad thus study the following model:

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

by adding this term β3X1X2, we aim to study if the categorical variable has also
on impact on the slope of the model, the one associated to the variable X1.

(ii) Case of more than two modalities

Imagine that we have a variable a categorical variable X which has, for instance,
4 modalities, such as summer, automn, winter and spring.

If we follow the same idea as in the two modalities setting, we have to assign
different figures to each season. However, by replacing each category with numerical
values such as 0, 1, 2, and 3, we implicitly impose an ordinal structure on the seasons,
which can bias the analysis. This would mean, for example, that summer (coded as 3) is
more important than winter (coded as 0), which has no statistical justification in itself.

This is why, in linear regression, categorical variables are encoded using indicator
variables (one-hot encoding). Each season is thus represented by a binary variable, and
it is the model that determines, based on the data, the relative effect of each season on
the target variable. This approach avoids the implicit assumption of an order among
categories and ensures a better interpretation of the results.

Thus, a categorical variable S with p modalities will be replaced by p− 1 variable
that have a binary output.

X ∈ {winter, summer, spring, automn}

↓

Xspring ∈ {0, 1}, Xautomn ∈ {0, 1}, Xsummer ∈ {0, 1}
And in this scenario, winter is the reference, i.e. it means that ifXspring, Xautomn

and Xsummer are all equal to 0, then the studied is associated to the group winter.
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