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What is Machine Learning?

Born from the ambitious goal of Artificial Intelligence:
Can Machines Think?

Step by step, the goal has changed:
Can machines do what we (as thinking entities) can do? (A. Turing)

Tom Mitchell provided a more formal definition (1998)

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E
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Definition

Machine Learning

Machine learning explores the construction and study of algorithms that
can learn from and make predictions on data.

→ Let’s take an example: Citrus Recognition

http://www.nature.com/nbt/journal/v32/n7/full/nbt.2906.html
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Example: Citrus Recognition

1/ Data Represetation

pictures: matrix of pixels, channels of colors (color intensity per pixel)

R =


1
1

0.9
0
..

 (1) G =


1
1

0.1
0.3
..

 (2) B =


1
1
0

0.7
..

 (3)
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Example: Citrus Recognition

2/ Hand-crafted Features

Example: Diameter, Shape, Color... but

1 diameter varies with the view distance

2 shapes are difficult to represent

3 color varies with light exposure

Another Example: Scale-Invariant Feature Transform (SIFT)

2/ Feature Learning

Discover useful features or representations from raw data.
Example: Neural Networks, Autoencoders, Matrix Factorization, ...
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3/ Learning as Training

Input: vectors of features
Output: classes

Training Data: set of input and output on which the model is learned.

training error = 1− training accuracy
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3/ Testing

Does the model generalize on new (unseen) data?

test error = 1− test accuracy
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Introduction

Other applications
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Introduction Machine Learning Settings

Machine Learning Settings

Machine learning tasks are typically classified into three broad categories:

Main references

Supervised learning

Unsupervised learning

Reinforcement learning
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Introduction Machine Learning Settings

Supervised Learning: Regression

Supervised learning

The computer has access to training input examples and their desired
outputs, given by a ”teacher” or an “oracle”. The aim is to learn a general
rule that maps inputs to outputs. Once learned, the rule can be deployed
on test data.

outputs = continuous values

Feet

$

2 Feet

$

2

Y=aX+b

Y=aX +bX+c
2
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Introduction Machine Learning Settings

Supervised Learning: Classification

Supervised learning

The computer has access to training input examples and their desired
outputs, given by a ”teacher” or an “oracle”. The aim is to learn a general
rule that maps inputs to outputs. Once learned, the rule can be deployed
on test data.

outputs = discrete values (labels)
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Introduction Machine Learning Settings

Unsupervised Learning: Clustering

Unsupervised learning

The output are not provided in the learning phase. The goal is to discover
groups of similar examples within the data (clustering), or to determine
the distribution of data within the input space (density estimation), or to
project the data from a high-dimensional space down to two or three
dimensions (dimensionality reduction).

Feet

$

2

Cheap houses

Expensive houses
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Introduction Machine Learning Settings

Popular Supervised Learning Algorithms

d is the number of dimensions of the input space and n is the number of
training instances.

1 Linear Regression (learn {θi}d0 )

2 Support Vector Machine (learn m weights)

3 Neural Networks (learn layers of input weights)

4 Decision Trees (learn the decision tree itself)

5 k-Nearest Neighbors (memorize the training data)
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Introduction Machine Learning Settings

Reinforcement Learning

What are talking about ?

Reinforcement learning is concerned with the problem of finding suitable
actions (decisions) to take in a given situation (observations) in order to
maximize a reward.

Here, the learning algorithm is not given examples of optimal outputs but
must instead discover them by a process of trial and error (example:
https://www.youtube.com/watch?v=CIF2SBVY-J0.)
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Introduction Input Data

Key Ingredient in Machine Learning

Machine Learning and Data

The key ingredient of machine learning is... DATA, stored in many forms
(and formats...), structured, unstructured, occasionally clean, usually
messy,...

In ML we like to view data as a list of n examples of the same nature,
preferably in the form of d-dimensional feature vectors x = (x1, x2, ..., xd)
with x ∈ Rd .
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Introduction Input Data

Data Representation

Choice of data representation is problem dependent.

pictures...but also
genetic samples as sequences of genes (dimension = gene, vectors of
occurrences)
sounds as time series of signals (dimension = frequency, vectors of
amplitudes)
text documents as set of words (dimension = word of vocabulary, vectors
of occurrences)
and Metadata: authors, date, ...

Real-world data is complex, redundant, and highly variable. It is necessary
to discover useful features or representations from raw data.
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Introduction Input Data

Example: SIFT descriptors + Bag Of Words
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Introduction Input Data

Feature Scaling

The range of values of raw data varies widely. When computing some
measures, few features can take over all the others.

Example: given two instances xi , xj with features x 1 ∈ [0, 5],
x 2 ∈ [100, 200], the Euclidean distance

√
(xi1 − xj1)2 + (xi2 − xj2)2 is

governed by feature x 2.

Solutions

1 scaling (each feature, usually in the range [−1, 1] or [0, 1])

2 standardization (each feature, µ = 0, σ = 1)

3 normalization (usually using l2 norm)
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Introduction Input Data

Independent and Identically Distributed instances

While learning, we usually don’t have access to the entire distribution of
the data, but only a sample. In order to guarantee that the model learned
on our limited sample can generalize on the entire distribution (and then
on unseen instances), we need to assume that the sample is i.i.d..

I.I.D. instances

A sample S of instances drawn from a distribution D is said i.i.d. if each
instance has the same probability distribution as the others and all are
mutually independent.
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Introduction Curse of Dimensionality

Curse of Dimensionality

Learning good generalizations is possible when n >> d .

Fundamental Properties of Probability

The curse of dimensionality refers to various phenomena that arise when
analyzing and organizing data in high-dimensional spaces (often with
hundreds or thousands of dimensions) that do not occur in
low-dimensional settings.

d > n?

As the number of features grows, the amount of data we need to
generalize accuratly grows exponentially .
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Introduction Curse of Dimensionality

Curse of Dimensionality

Corollary 1

When the dimensionality increases, the volume of the space increases so
fast that the available data become sparse.

Example: 102 = 100 evenly-spaced sample points suffice to sample a unit
interval (a ”1-dimensional cube”) with no more than 0.01 distance
between points; an equivalent sampling of a 10-dimensional unit
hypercube with a lattice that has a spacing of 0.01 between adjacent
points would require 1020 sample points!
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Introduction Curse of Dimensionality

Curse of Dimensionality

Corollary 2

When a measure such as a Euclidean distance is defined using many
coordinates, there is little difference in the distances between different pairs
of samples. This phenomenon can have a considerable impact on various
techniques for classification (including the k-NN classifier) and clustering.

Example: Let us compare the proportion of an inscribed hypersphere with
radius r and dimension d , to that of a hypercube with edges of length 2r .

The volume Vs of the hypersphere is Vs = 2rdπ(d/2)

dΓ(d/2) .

The volume Vc of the hypercube is Vc = (2r)d .

As the dimension d increases, the hypersphere becomes an insignificant
volume relative to that of the hypercube. Indeed,

lim
d→∞

Vs

Vc
= 0

.
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Introduction Curse of Dimensionality

Curse of Dimensionality

How to overcome it?

When facing the curse of dimensionality, a good solution can often be
found by pre-processing the data into a lower-dimensional space. We can
make use of dimensionality reduction methods such as Principal
Component Analysis. Note that there is a huge literature about feature
selection.
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Supervised Learning

Supervised Learning
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Supervised Learning

Notations

Let S be a set of m training examples {zi = (xi , yi )}mi=1 independently and
identically (i.i.d.) from an unknown joint distribution DZ over a space
Z = X × Y.

1 The xi values (xi ∈ X ) are typically vectors of the form
< xi1, ..., xid >, whose components are usually called features.

2 The y values (y ∈ Y ) are drawn from a discrete set of classes
(typically Y = {−1,+1} in binary classification) or are continuous
values (regression).

3 We assume that there exists a target function f such that y = f (x),
(x , y) ∈ Z.

Definition

A supervised learning algorithm L automatically outputs from S a classifier
(or a hypothesis) h ∈ H about the target function f .
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Supervised Learning Risk Minimization

True Risk and Empirical Risk

In order to pick the best hypothesis h*, we need a criterion to assess the
quality of any hypothesis h.

True Risk

The true risk R(h) (also called generalization error) of a hypothesis h
corresponds to the expected error made by h over the entire distribution
DZ :

R(h) = Ez=(x ,y)∼DZ1y 6=h(x)

where z ∼ DZ denotes that z is drawn i.i.d. from DZ .

The goal of supervised learning then becomes finding a hypothesis h that
achieves the smallest true risk. Unfortunately, R(h) cannot be computed
because DZ is unknown. We can only measure it on the training sample S.
This is called the empirical risk.
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Supervised Learning Risk Minimization

True Risk and Empirical Risk

Empirical Risk

Let S = {zi = (xi , yi )}mi=1 be a training sample. The empirical risk R̂(h)
(also called empirical error) of a hypothesis h ∈ H corresponds to the
expected error suffered by h on the instances in S .

R(h) = E{zi=(xi ,yi )}mi=1
1y 6=h(x)

where z ∼ DZ denotes that z is drawn i.i.d. from DZ .
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Supervised Learning Risk Minimization

True Risk and Empirical Risk

A loss function L : H ×Z → R+ measures the degree of agreement
between h(x) and y .

0\1 loss or Classification Error

L(h(x), y) = 1y 6=h(x)

corresponds to the proportion of time h(x) and y agree, i.e. the
proportion of correct predictions.

In binary classification,

L(h(x), y) =

{
1 if h(x)y < 0

0 otherwise
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Supervised Learning Risk Minimization

Surrogate Losses
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Supervised Learning Risk Minimization

Empirical Surrogate Risk Minimization

Minimize the empirical risk to choose the hypothesis h ∈ H:

h = arg min
hi∈H

R̂(hi )

with:

Empirical Surrogate Risk

R̂L(h(x), y) =
1

m

m∑
i=1

L(h(xi ), y)

.
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Supervised Learning Cross-Validation

Cross-Validation

How to estimate the performances/quality of a learned model?

Cross-Validation

A way to check if the learned model generalizes well on unseen data.
Split the training set into k folds and repeat k times the following steps:

train a model on k − 1 folds;

test the learn model on the 1 fold not used for training (validation
set).

10-fold cross-validation
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Supervised Learning Cross-Validation

Cross-Validation

How to estimate the performances/quality of a learned model?

Cross-validation error

R̂cv (h) = 1
k

∑k
j=1 R̂j(h) gives an idea of how well the hypothesis h is

suited for predictions on unseen data Su drawn from the same distribution
DZ as the available data.
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Supervised Learning Overfitting and Underfitting

Overfitting

In statistics, overfitting occurs when a model describes random error or
noise instead of the underlying relationship. Overfitting generally occurs
when a model is excessively complex or the size of the training
dataset is small, such as having too many degrees of freedom w.r.t. the
amount of available data.
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Supervised Learning Overfitting and Underfitting

Underfitting

Underfitting occurs when a statistical model or machine learning algorithm
cannot capture the underlying trend of the data. Underfitting generally
occurs when a model is excessively simple.
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Supervised Learning Overfitting and Underfitting

Underfitting-Overfitting

How can we know if the model is
underfitting or overfitting the data?

if training error << cv error,
overfitting

if training error > cv error or
high, underfitting
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Supervised Learning Regularization

Regularization

Occam’s Razor

Choose the simplest explanation consistent with past data:
“no sunt multiplicanda entia praeter necessitatem” (William of Ockham)

(Entities are not to be multiplied beyond necessity)

W. Ockham: Born around 1285, he was an English philosopher and monk.
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Supervised Learning Regularization

Regularization

A way of avoiding overfitting

Regularization

Regularization, in mathematics and statistics and particularly in the fields
of machine learning, refers to a process of introducing additional
information in order to solve an ill-posed problem or to prevent overfitting.
This information is usually of the form of a penalty for complexity, such
as restrictions for smoothness or bounds on the vector space norm.
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Supervised Learning Regularization

Regularized Risk Minimization

New optimization problem:

h = arg min
hi∈H

R̂(hi ) + λ||hi ||

where

λ is the regularization parameter (or hyper-parameter)

||.|| is a norm function

We select a hypothesis h that achieves the best trade-off between
empirical risk minimization and regularization.
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Supervised Learning Regularization

Common Norms

||h||p =
( d∑
i=1

hpi
)1/p
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Supervised Learning HyperParameter Tuning

Tuning

How to choose λ?

Hyper-Parameter Tuning

1 Bad idea: choose the one with the lowest training error (problem of
overfitting).

2 Good idea: hold-out k cross-validation and select the value for
hyper-parameter with the lowest cross-validation errror.
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Supervised Learning HyperParameter Tuning

Tuning

Grid Search

A way to choose the combinations of values for multiple hyper-parameter
tuning (p):

1 fix the set sz of possible values per hyper-parameter λz (ex.
s1 = {0.001, 0.01, 0.1, 1, 10, 100});

2 compute a cross-validation for each combination of values (λ1, λ2, ...);

3 select the combination of values (λ1, λ2, ...) that gives the best error.

Total number of cross-validations:
∏p

z=1 |sz |.

Guillaume Metzler (LabHC) Machine Learning 42 / 44



Conclusions

Conclusions

Supervised Learning Process

Given a training sample Strain and a test sample Stest :
1 pre-processing of Strain and Stest separately

1 feature scaling
2 dimensional reduction
3 etc...

2 learning best model on Strain
1 tuning hyper-parameters on training set by cross-validation (split

training/validation sets)
2 select best values for hyper-parameters
3 train the algorithm on the entire training set using the learned

values for the hyper-parameters

3 get algorithm performances as the test error
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Conclusions

Conclusions

Supervised Learning Process

Given a sample S :
1 pre-processing of S

1 data standardization
2 dimensional reduction
3 etc...

2 k-fold cross-validation on S (split training/test sets)
1 tuning hyper-parameters on training set by cross-validation (split

training/validation sets)
2 select best values for hyper-parameters
3 train the model on the training set using the learned values for the

hyper-parameters
4 get model performances on test set

3 get algorithm performances as the cross-validation error

Guillaume Metzler (LabHC) Machine Learning 44 / 44


	Introduction
	Machine Learning Settings
	Input Data
	Curse of Dimensionality

	Supervised Learning
	Risk Minimization
	Cross-Validation
	Overfitting and Underfitting
	Regularization
	HyperParameter Tuning

	Conclusions

