
Optimization and Optimal Research
Correction

Résumé

During the exam, I just want you to pay attention to the redaction of you copy. I’m giving you an example
of redaction in this correction. You don’t need to write as much as I’m doing but i don’t want to see only
calculous on your copy.

Inner product and norms

Exercise 1 :

To proove that the following functions de�ne an inner product, you have to check that they bilinear, sy-
metric, positive and de�nite form. In other words, you have to check that :

• f(x,x) ≥ 0,
• f(x,x) = 0 ⇐⇒ x = 0,
• f(x,y) = f(y,x),
• f(x+ λy, z) = f(x, z) + λf(y, z).

• This �rst fonction de�ne an inner product by de�nition
• This second function do not satisfy the positive de�nite character. Indeed, if we take x = (0, 0, 1), we

have f(x,x) = 0 but x 6= 0.
• You can easily check that this function is bilinear positive and de�nite.
• This last function is not bilinear due to the presence of the quadratic and cubc terms.

Exercise 2 : Frobenius’ Norm

We set A = (aij) and B = (bij)

• In this question, we need to check the four points as it was done in the previous exercise. Remember
that 〈A,B〉 =

∑n
i=1

∑m
j=1 aijbij .

〈A,A〉 =
∑n

i=1

∑m
j=1 a

2
ij ≥ 0 and this sum is equal to 0 if and only if A = 0.

It is clearly symetric and for all λ ∈ R and C ∈Mn,m(R), we have :

〈A+ λC,B〉 =
n∑
i=1

m∑
j=1

(aij + λcij)(bij) = λ
n∑
i=1

m∑
j=1

aijcij +
n∑
i=1

m∑
j=1

aijbij = λ〈A,C〉+ 〈A,B〉.

• For the �rst part of the question, you just apply the de�nition on an inner product. We then check that
this application de�nes a norm.
It is obviously positive and de�nite for the same reason as before.
For the scalability, we consider λ ∈ R and evaluate ‖λA‖ :

‖λA‖F =

 n∑
i=1

m∑
j=1

λ2a2ij

 1
2

= |λ|

 n∑
i=1

m∑
j=1

a2ij

 1
2

= |λ|‖A‖F .
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Finally, the triangle inequality :

‖A+B‖2F = Tr((A+B)T (A+B)),

= Tr(ATA+ATB +BTA+BTB),

= Tr(ATA) + Tr(ATB) + Tr(BTA) + Tr(BTB),

= ‖A‖2F + ‖B‖2F + 2Tr(ATB),

≤ ‖A‖2F + ‖B‖2F + 2‖A‖F ‖B‖F ,
≤ (‖A‖F + ‖B‖F )2 .

We conclude by taking the square root.
• We will simply apply the de�nition of norm to the vector Ax where (Ax)k =

∑m
j=1 xjakj . We then

have :

‖Ax‖22 =
n∑
k=1

 m∑
j=1

xjakj

2

,

≤
m∑
j=1

x2j

n∑
k=1

(akj)
2,

≤

 m∑
j=1

x2j

 m∑
j=1

n∑
k=1

a2kj

 ,

= ‖x‖22‖A‖2F .

The �rst inequality comes from the follwing one : a2+b2 > 2ab. We also conclude by tacking the square
root on both sides.

• We will use the de�nition of norm and apply the Cauchy-Scwharz inequality :

‖AB‖2F =
n∑
i=1

p∑
j=1

(
m∑
k=1

aikbkj

)2

,

≤
n∑
i=1

p∑
j=1

(
m∑
k=1

a2ik

m∑
k=1

b2kj

)
,

≤

(
n∑
i=1

m∑
k=1

a2ik

) p∑
j=1

m∑
k=1

b2kj

 ,

≤ ‖A‖2F ‖B‖2F .

•
‖A‖F = 2

√
5 and ‖A‖F =

√
53.

Exercise 3 :

1 ) Let 0 < p, q <∞ such that 1
p
+

1

q
= 1

• This equality holds because ln(xp) = p ln(x) and ln(xy) = ln(x) + ln(y).
• We apply the exponential function to the previous equality and use the de�nition of convexity :

xy = exp

(
ln(xp)

p
+
ln(yq)

q

)
≤ exp(ln(xp))

p
+

exp(ln(yq))

q
=
xp

p
+
yq

q
.
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2) We want to proove now that : ‖xy‖1 ≤ ‖x‖p‖y‖q (Hölder’s inquality)
We consider 0 < p, q <∞ such that 1

r
=

1

p
+

1

q

• We �rst apply Young’s Inequality using p = p′r and q = q′r so that 1 =
1

p′
+

1

q′
, we have :

|ab| ≤ 1

p′
|a|p′ + 1

q′
|b|q′ ,

where a and b are real numbers. We then set a = xri and b = yri to �nd the inequality.
• In the previous inequality we begin by using the hint and consider the special case where r = 1 :

|xiyi|
‖y‖qq‖x‖pp

≤ 1

p

|xi|p

‖x‖pp
+

1

q

|yi|q

‖y‖qq
.

We then sum over the index i and we have :

‖xy‖1
‖y‖qq‖x‖pp

≤ ‖x‖
p
p

‖x‖pp
+

1

q

‖y‖qq
‖y‖qq

≤ 1.

Multiplying on both sides by ‖y‖qq‖x‖pp leads to the result.

3) The triangle inequality for the Lp norm.

• We begin by writing the left hand side, the triangle inequality and Hölder’s Inequality with 1

q
=
p− 1

p

‖x+ y‖pp =

n∑
i=1

|xi + yi|p,

≤
n∑
i=1

(|xi|+ |yi|)|xi + yi|p−1,

≤
n∑
i=1

|xi||xi + yi|p−1 +
n∑
i=1

|yi||xi + yi|p−1,

≤

(
n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|xi + yi|(p−1)×q
) 1

q

+

(
n∑
i=1

|yi|p
) 1

p
(

n∑
i=1

|xi + yi|(p−1)×q
) 1

q

,

≤

(
n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|xi + yi|p
) p−1

p

+

(
n∑
i=1

|yi|p
) 1

p
(

n∑
i=1

|xi + yi|p
) p−1

p

,

≤

( n∑
i=1

|xi|p
) 1

p

+

(
n∑
i=1

|ii|p
) 1

p

+

(
n∑
i=1

|xi + yi|p
) p−1

p

≤ (‖x‖p + ‖y‖p) ‖x+ y‖p−1p .

• The hardest point is to proove that the triangle inequality holds, but it has been done in the previous
question.
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Derivatives

Exercise 1 : Calculous

•
∇f(x, y)

(
8x+ y exp(xy) x exp(xy)

)
.

Hf(x, y)

(
8 + y2 exp(xy) exp(xy)(1 + y)
exp(xy)(1 + y) x2 exp(xy)

)
•

∇f(x, y)
(
7y − sin(x) + 2x 7x+ 8y

)
.

Hf(x, y)

(
2− cos(x) 7

7 8

)
•

∇f(x, y)
(
20x3 − 20xy + 8x− 8y −10x2 + 18y − 8x

)
.

Hf(x, y)

(
60x2 − 20y + 8 −20x− 8

20x− 8 18

)
•

∇f(x, y)
(
2x exp(x2 + y2) 2y exp(x2 + y2)

)
.

Hf(x, y)

(
exp(x2 + y2)(2 + 4x2) 4xy exp(x2 + y2)

4xy exp(x2 + y2) exp(x2 + y2)(2 + 4y2)

)
Exercise 2 : Schwarz Theorem : a counter example

• The two di�enretial are equal to :

∂f

∂x
(x, y) =

[x2 + y2][y(x2 − y2) + 2x2y]− 2x(xy)(x2 − y2)
(x2 + y2)2

,

and
∂f

∂y
(x, y) =

[x2 + y2][x(x2 − y2)− 2xy2]− 2y(xy)(x2 − y2)
(x2 + y2)2

/

Evaluated at the given point, we have : ∂f
∂x

(0, y) = −y and ∂f
∂y

(x, 0) = x.

• According to the previous section : ∂
∂y

∂f

∂x
(0, 0) = −1 and ∂

∂x

∂f

∂y
(0, 0) = 1

• The function f is not twice countinuously di�erentiable at at the origin, that is the reason why the
theorem does not hold.

Convex set

Exercise 1 : Using de�nition

• To proove that C is convex, we need to show that for any point x, y ∈ C and for all t ∈ [0, 1], the point
z(t) de�ned by z(t) = tx+ (1− t)y ∈ C .
If x, y belong to C they belong in both C1 and C2, then using the convexity of C1 and C2, we can say
that z(t) belongs to C1 and C2 so it belongs to the intersection.
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• 1) Suppose that C is covnex and denote by D any straight line. Then the intersection I = C ∩ D is
convex using the previous question and the fact that a stragiht line is convex.
2) Conversely suppose that the intersection I = C ∩D is convex. So for all points x, y and all t ∈ [0, 1]
the point z(t) de�ned by z(t) = tx + (1 − t)y ∈ I . It means that z(t) belongs to both C and D, so it
belongs to C . We can conclude that C is convex.

• We have seen in class the case when k = 2 (i.e. taking the combination of two points). Let us now
consider that the de�nition holds for a given k = n− 1 and let us show the de�nition holds for k = n.
We consider any n points x1, ..., xn ∈ C and the set of weights {θ1, ..., θn |

∑n
i=1 θi = 1}. We have to

show that y =
∑n

i=1 θixi ∈ C .
Without loss of generality we can consider that θn 6= 1. The point y can be rewritten as follow :

y = θnxn + (1− θn)(λ1x1 + ...+ λn−1xn−1),

with λi =
θi

1− θn
. We have

∑n−1
i=1 λi = 1 so the point λ1x1 + ... + λn−1xn−1 belongs to C using the

fact that the de�nition holds for k = n− 1. And �nally the point y belongs to C using the case k = 2.

Exercise 2 :

• We solve this exercise with di�erent methods :
1) LetE(f) be the epigraph of the function f de�ned by y = f(x) = 3x2−6x+2. ThenE(f) is convex
because f is convex. So the set C can be seen as the intersection of the line y = 0 withE(f). These two
sets are convex so C is convex.
2) Solve the inequation 3x2 − 6x+ 2 ≤ 0 and the result is the segment

[
1− 1√

3
; 1 +

1

1 +
√
3

]
.

• We have previously shown that a set is convex if and only if its intersection with any line segment is
convex. So let us set x = u+ tv where t ∈ [0, 1] and u, v ∈ Rn , we have :

xTAx− bTx+ c = (u+ tv)TA(u+ tv)− bT (u+ tv) + c,

= (vTAv)t2 + (2uTAv − bT v)t+ (c− bTu+ uTAu),

= αt2 + βt+ γ.

The set {t ∈ R | αt2 + βt+ γ ≤ 0} is convex if α ≥ 0 (using argument 1, as in the previous question).
So this set is convex because A is PSD.

Exercise 3 :

• We �rst begin by prooving the hint using the convexity of the exponential function. For all θ ∈ [0, 1]
and for all x, y ∈ R++ we have :

xθy1−θ = exp(θ ln(x) + (1− θ) ln(y)) ≤ θ exp(ln(x)) + (1− θ) exp(ln(y)) = θx+ (1− θ)y.

We now have to show that
∏n
i=1 (θxi + (1− θ)yi) ≥ 1. The result is a consequence of the hint :

n∏
i=1

(θxi + (1− θ)yi) ≥
n∏
i=1

xθi y
1−θ
i =

(
n∏
i=1

xi

)θ( n∏
i=1

yi

)1−θ

≥ 1.
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Convex function

Exercise 1 : Calculous

• It is convex as the sum of quadratic and convex functions.
• It is convex as the sum of quadratic and linear convex functions.
• It is convex as the sum of convex functions (indeed, for all n ∈ N, x2n is convex).
• You can compute the Trace and the determinant of the Hessian Matrix. These lasts are respectively equal

to 22 and 84. So the function f is convex.
• We compute the Hessian Matrix H :

Hf(x, y)

(
y2 exp(xy) (1 + xy) exp(xy)

(1 + xy) exp(xy) x2 exp(xy)

)
.

The Trace is equal to x2 + y2 > 0 and the Determinant is equal to −1− 2xy > 0 because y < −1 and
x > 1 so 2xy > 2.

Exercise 2 : Calculous

• Yes, it is sum of two convex terms, the �rst one is a quadratic convex term. The second term is convex
as the composition of a convex function (linear and quadratic) with an increasing and convex function
(f(x) = x2).

• This function is also convex as the sum of two convex quadratic terms.
• This function is not convex because of the term −1.05x4.
• This function is not convex because the function g de�ned by g(x) = sin(x) is not convex.
• Same reason as before with the function cos.

Exercise 3 : A PSD matrix

• The aim is to show that the eigenvalues of this matrix are non-negative. Let us consider (λ, u) the couple
eigenvalue, eigenvector of the matrix G such that Gu = λu.
We now want to show that λ ≥ 0. The previous equation can be rewritten as follow :

Gu = XXTu = λu.

We then take the inner product with u on both sides :

uTXXTu = (XTu)T (XTu) = ‖XTu‖2 = λ‖u‖2.

This last equality, combining with the positiveness of the norm imply the non-negativity of the eigen-
value λ.
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Optimization and Algorithm

Exercise 1 : A Quadratic function : Matyas function

You can notice that f is a quadratic function. In fact, f can be written as : f(v) =
1

2
〈Av, v〉 − 〈b, v〉 where

A is the matrix
(

0.52 −0.48
−0.48 0.52

)
and b the vector :

(
0
0

)
. It will be usefull in this exercise when it comes to

calculate the �rst iteration of the algorithm.

1. The function f is convex. In fact, the Jacobian and Hessian matrices are given by :

Jf(x,y) =

(
0.52x− 0.48y
−0.48x+ 0.52y

)
Hf(x,y) =

(
0.52 −0.48
−0.48 0.52

)
The trace of the Hessian Matrix is equal to 1.04 and the determinant is equal to 0.522 − 0.482. Both of
them are non-negative. So the Hessian Matrix is PSD so the function f is convex.

2. We have to solve the following linear system :

0.52x− 0.48y = 0,

−0.48x+ 0.52y = 0.

A solution of this system is given by (x, y) = (0, 0).

3. Due to Euler’s Equation and because of the convexity of the function. The function f reaches its minimum
at (x, y) = (0, 0) and the minimum is equal to 0.

4. We set u0 = (x, y)(0) = (1, 1), the initial point of the gradient descent with the optimal learning rate
(or optimal step)

(a) • First we have to choose an initial point u0 which is given here.
• For k = 0, 1, . . . we estimate ∇f(uk)
• We solve the problem ρk = Argmin

ρ
f(uk − ρ∇f(uk)). Inother words, we are looking for the

optimal step.
• We then set uk+1 = uk − ρ∇f(uk).
• Till ‖∇f(uk+1)‖ ≤ ε.

(b) We have to apply the previous process the estimate u1 and u2.

• We have ∇f(u0) =
(

0.04
0.04

)
. Acording to what we have seen during the course about quadratic

function, the optimal step is given by :

ρ0 =
‖Au0 − b‖2

‖Au0 − b‖2A
.

We haveAu0 =
(

0.04
0.04

)
(this is no more than the gradient of f ) andA(Au0) =

(
0.042

0.042

)
. Then

ρ0 =
2× 0.042

2× 0.043
=

1

0.04
= 25.

So u1 =
(

1
1

)
− 25

(
0.04
0.04

)
=

(
0
0

)
. We have reached the global minimum

• We have already reached the global minimum so u2 =
(

0
0

)
7



Exercise 2 : The Rosenbrock function

• The function f is not convex. Indeed, the Jacobian and Hessian matrices are given by :

Jf(x,y) =

(
40x3 − 40xy + 2x− 2
−20x2 + 20y

)
Hf(x,y) =

(
120x2 − 40y + 2 −40x

−40x 20

)
The Trace of the Hessian matrix is negative for x = 0 and y = 1.

• By solving the linear system∇f(x, y) = 0, you will �nd one solution that is the point (1, 1).
• The function f is non-negative (as the sum of two non-negative terms). Moreover, f(1, 1) = 0. So the

global minimum of f is zero and it reaches its minimum at the point (1, 1).
• First we have to choose an initial point u0 which is given here.
• For k = 0, 1, . . . we estimate ∇f(uk)
• We then set uk+1 = uk − ρ∇f(uk) where ρ = 0.5
• Till ‖∇f(uk+1)‖ ≤ ε.

• We have to apply the previous process the estimate u1 and u2.

We have∇f(u0) =
(

162
−60

)
. Because ρ = 0.5 we can immediatly set u1 =

(
2
2

)
− 0.5

(
162
60

)
=(

−79
32

)
. You do the same thing to compute u2. But the values are here to big, so do not do this. The

learning rate is not well chosen for this function.

Exercise 3 : The Rastrigin function

1. The function f is not convex. In fact, the Jacobian and Hessian matrices are given by :

Jf(x,y) =

(
2x+ 20π sin(2πx)
2y + 20π sin(2πy)

)
Hf(x,y) =

(
2 + 40π2 cos(2πx) 0

0 2 + 40π2 cos(2πy)

)

The trace of the Hessian Matrix is equal to 4(1 + 20π2(cos(2πx) + cos(2πy))). If we set x = y =
1

2
then the trace is equal to 4(1 + 20π2(−1 + (−1))) = 1− 160π2 < 0

2. We know that sin(0) = 0, so a trivial solution of Euler’s Equation is given by the couple (x, y) = (0, 0).
3. We assume that the function f is non-negative, i.e. f(x, y) ≥ 0. However, if we evaluate the function f

at the point (0, 0) we have f(0, 0) = 0. So 0 is the global minimum of f and this minimum is reached
at (0, 0).

4. We set u0 = (x, y)(0) = (2, 2), the initial point of the gradient descent with a learning rate ρ = 0.5.
(a) • First we have to choose an initial point u0 which is given here.

• For k = 0, 1, . . . we estimate ∇f(uk)
• We then set uk+1 = uk − ρ∇f(uk) where ρ = 0.5
• Till ‖∇f(uk+1)‖ ≤ ε.

(b) We have to apply the previous process the estimate u1 and u2.

• We have ∇f(u0) =
(

4
4

)
. Because ρ = 0.5 we can immediatly set u1 =

(
2
2

)
− 0.5

(
4
4

)
=
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(
0
0

)
. We have reached the global minimum

• We have already reached the global minimum so u2 =
(

0
0

)
5. Because the function is not convex, given a random starting point u0, we are not sure that the algorithm

will reach the global solution.

6. Do the same question with u0 =
(

1
1

)
and ρ = 0.25.

Exercise 4 : A quadratic function

1. The function f is convex. In fact, the Jacobian and Hessian matrices are given by :

Jf(x,y) =

(
8x− 5y + 2
14y − 5x− 7

)
Hf(x,y) =

(
8 −5
−5 14

)
The trace of the Hessian Matrix is equal to 22 and the determinant is equal to 8× 14− 25 = 87. Both of
them are non-negative. So the Hessian Matrix is PSD so the function f is convex ( f is strictly convex
because the two quantities are both positive).

2. We have to solve the following linear system :

8x− 5y + 2 = 0,

14y − 5x− 7 = 0.

The solution is given by (x, y) = (
7

87
,
46

87
).

3. Due to Euler’s Equation and because of the convexity of the function. The function f reaches its minimum
at (x, y) = (

7

87
,
46

87
) and the minimum is equal to 2308.

4. We set u0 = (x, y)(0) = (1, 1), the initial point of the Newton’s Method.
(a) • First we have to choose an initial point u0 which is given here.

• For k = 0, 1, . . . we estimate∇f(uk).
• We also calculate∇2f(uk) and we invert it.
• We then set uk+1 = uk − (∇2f(uk))

−1∇f(uk).
• Till ‖∇f(uk+1)‖ ≤ ε.

(b) We have to apply the previous process the estimate u1 and u2.

• We have∇f(u0) =
(

5
2

)
and∇2f(u0) =

(
8 −5
−5 14

)
. Notice that the Hessian matrix doesn’t

depend on x and y so it will be the same at each step of the algorithm.

So u1 =
(

1
1

)
− 1

87

(
14 5
5 8

)(
5
2

)
=

 7

87
46

87

 . We have reached the global minimum

• We have already reached the global minimum so u2 =

 7

87
46

87


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Exercise 5 : A last function

• The Hessian matrix is given by :

Hf(x,y) =

(
5x4 − 12.6x2 + 4 1

1 2

)
• To check if a 2 × 2 matrix is PSD, we have to compute its eigenvalues and show that these lasts are

non-negative. Which is equivalent, in this particular case, to show that both Trace and determinant are
non-negative.
The Trace is equal to 5x4−12.6x2+6 and the determinant is equal to 10x4−25.2x2+6. These polynoms
admit two roots in x2 so both trace and determinant can take negative values. So the function f is not
convex.

• We �rst compute the Jacobian of the function f :

Jf(x,y) =
(
x5 − 4.2x3 + 4x+ y x+ 2y

)
The results is immediate by replacing x and y by 0.
You can show that the function f is non-negative by reformulating this last.

• Because f is non-negative and reaches the value 0 at the point (0, 0), its global minimum is reached at
(0, 0) with 0 as minimum.

• Same as in the other exercises :
(a) • First we have to choose an initial point u0 which is given here.

• For k = 0, 1, . . . we estimate ∇f(uk).
• We then set uk+1 = uk − ρ∇f(uk).
• Till ‖∇f(uk+1)‖ ≤ ε.

(b)

• We have ∇f(u0) =
(

1.8
3

)
. Because ρ = 0.5 we can immediatly set u1 =

(
1
1

)
− 0.5

(
1.8
3

)
=(

0.1
−0.5

)
.

We do the same to compute u2.

We have∇f(u1) =
(

10−5 − 4.2× 10−3 + 0.4− 0.5 ' −0.1
−0.9

)
. Because ρ = 0.5 we can immediatly

set u2 =

(
0.1
−0.5

)
− 0.5

(
−0.1
−0.9

)
=

(
0.15
−0.05

)
. The learning rate seems to be approrpriate. The

norm of the gradient is decreasing at each iteration. But we can not be sure that the algorithm will
converge (without theoretical analysis).

Exercise 6 : An Application of Newton’s Method : The Logistic Regression

• We will simply the de�nition of the model :

ln

(
p(1 | X)

p(0 | X)

)
= w0 + w1x1 + w2x2 + ...+ wdxd.

10



We use the fact that p(0 | X) = 1− p(1 | X) and apply the exponential function to have :

p(1 | X)

1− p(1 | X)
= exp(w0 + w1x1 + w2x2 + ...+ wdxd).

Finally, we have :

g(w) = p(1 | X) =
1

1 + exp(−w0 − w1x1 + ...− wdxd)
=

1

1 + exp
(∑d

i=0wixi

) ,
where x0 = 1.

• The function g is continuously di�erentiable and for all w ∈ R we have :

∇wg(w) =
exp(−w)

(1 + exp(−w))2
,

=
1

1 + exp(−w)
− exp(−w)
1 + exp(−w)

,

=
1

1 + exp(−w)

(
1− 1

1 + exp(−w)

)
,

= g(w)(1− g(w)).

• The gradient of the function g is also continuously di�erentiable, because g is. For all w ∈ R :

∇2
wg(w) = ∇wg(w)(1− g(w))−∇wg(w)g(w),

= (1− g(w))2g(w)− g(w)2(1− g(w)),
= g(w)(1− g(w))(1− 2g(w)).

So the function g is convex if g(w) < 0.5, i.e. if w ≤ 0. If w ≥ 0 the function g is concave.
• Because the function g is positive and its �rst order derivative too, the function ln(g(x)) is twice conti-

nuously di�erentiable for all w ∈ R and we have :

∇w ln(g(w)) =
∇wg(w)
g(w)

= 1− g(w).

The second order derivative is then given by :

∇2
w ln(g(w)) = −∇wg(w) = −g(w)(1− g(w)).

Recall that, for all w ∈ R, 0 < g(w) < 1. So the function ln(g) is concave.

In the following questions, for all indexes i, xi ∈ Rd + 1, where xi,0 = 1 for all i = 1, ..., n.

• The likelihood of the data is de�ned by :

L
n∏
i=1

P (yi | xi, w) =
n∏
i=1

g(w, xi)
yi(1− g(w, xi))1−yi .

Then the likelihood is given by :

` = ln(L) =

n∑
i=1

yi ln(g(w, xi)) + (1− yi) ln(1− g(w, xi)).

The expression −` is then trivial.

11



• We will also compute the �rst and second order derivative of −` :

−∇w` = −
n∑
i=1

yi(1− g(w, xi))− (1− yi)g(w, xi) = −
n∑
i=1

(yi − g(w, xi))xi.

And the second order derivative is given by :

−∇2
w` =

n∑
i=1

g(w, xi)(1− g(w, xi))xixTi .

You can show that −∇2
w` is PSD using the exercise 3 of the Section Convex Functions.

• For this last question, let us denote w(k) the k−th iterate of the studied algorithm. We then have :

w(k+1) = w(k) −
(
−∇2

w`
)−1

(−∇w`).

Exercise 7 : The Backtracking Line Search

• According to Taylor’s Theorem, for all x, y ∈ Rn we have :

f(y) = f(x) + 〈∇f(x), y − x〉+R2(y),

where R2(y) = O(y2),i.e. the function R2/y
2 tends to zero when y tends to x.

A particular result in Analysis (The Taylor-Cauchy Formula) claims that, if the function f is twice
di�erentiable (which is the case here), Then, it exists z ∈ Rn such that x ≤ z ≤ y (or y ≤ z ≤ x) and :

R2(y) =
1

2
〈∇2f(y)(y − x), (y − z)〉.

The �rst inequality can be rewritten in the following form :

f(y) = f(x) + 〈∇f(x), y − x〉+ 1

2
〈∇2f(y)(y − x), (y − z)〉.

Note that for all z previously de�ned we have 〈(y − x), (y − z)〉 ≤ ‖x − y‖22 and using the strong
convexity of f we have ‖∇2f(y)‖2 ≤M.
These two upper bounds lead us to the result, you simly have to set y = x+ ρdx.

• According to the previous question, using the existence of a constantM > 0 such that :∇2f(x) ≤MI,
we have :

f(x+ ρdx) ≤ f(x) + ρ〈∇f(x), dx〉+
M

2
ρ2〈dx, dx〉.

Moreover, f(x+ ρdx) ≤ f(x) + αρ〈∇f(x), dx〉 if :

ρ(1− α)〈∇f(x), dx〉+
M

2
ρ2〈dx, dx〉 ≤ 0.

So the exit condition holds for all 0 < ρ ≤ ρ0 such that :

ρ0 = −2(1− α)
〈∇f(x), dx〉
M〈dx, dx〉

≤ −〈∇f(x), dx〉
M〈dx, dx〉

.

Th equality comes from the previous inequality, we are simply looking for a value of ρ for which the
inequality holds. The inequality uses the fact that α ∈ [0, 0.5]. If you further assume that ρ ≤ 1, then

βkρ ≤ βk < ρ0 if k > ln(1/ρ0)

ln(1/β)
.
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Exercise 8 : Minimizing a quadratic-linear fractional function :

• A minimizer x? of the function f is given by ∇f(x?) = 0.

∇f(x) =
2

cTx− d
AT (Ax− b)− ‖Ax− b‖

2
2

cTx− d
c,

=
1

cTx− d

(
2AT (Ax− b)− ‖Ax− b‖

2
2

cTx− d
c

)
,

=
1

cTx− d

(
2ATAx− 2AT b− ‖Ax− b‖

2
2

cTx− d
c

)
,

=
1

cTx− d
(
2ATAx− 2AT b− 2tc

)
.

Then, if x = x?, we have :

∇f(x?) = 0,

ATAx−AT b− tc = 0,

x? = (ATA)−1AT b+ t(ATA)−1c.

• According to the de�nition of t, it should satisfy :

t =
‖A(x1 + tx2)− b‖22
2(cT (x1 + tx2)− d)

.

Thus, the value of t must satisfy :

2t2cTx2 + 2t(cTx1 − d) = t2‖Ax2‖22 + 2t(Ax1 − b)TAx2 + ‖Ax1 − b‖22,
= t2cTx2 ++‖Ax1 − b‖22,

you can easily check that (Ax1 − b)TAx2 = 0 and ‖Ax2‖22 = cTx2. You simply have to develop each
expression.
Finally, t is the positive root of the following quadratic equation :

t2cTx2 + 2t(cTx1 − d)− ‖Ax1 − b‖22 = 0.

You can now try to �nd the positive root of this equation and proove that solution satis�es cT (x1 +
tx2)− d > 0

Exercise 9 : The optimal step algorithm : illustration of convergence

• The function f reaches its minimum at the point (0, 0) and this minimum is equal to 0.
• Just have a quick look in your slides. I just remind you that the optimal learning rate is given :

ρ =
‖Ax− b‖22
‖Ax− b‖2A

,

where A =

(
1 0
0 γ

)
and b is the nul vector.
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We initialize the algorithm at the point x(0) = (x
(0)
1 , x

(0)
2 ) = (γ, 1)

• We need �rst to compute the optimal learning rate ρ0. Its value is equal to 2

γ + 1
. Then x(1) is the vector :

x(1) =

((
γ − 1

γ + 1

)
γ,−

(
γ − 1

γ + 1

))
.

We apply the same process to compute the value of x(2). The optimal learning rate is given by ρ1 =
2

γ + 1
.Then x(2) is the vector :

x(2) =

((
γ − 1

γ + 1

)2

γ,

(
γ − 1

γ + 1

)2
)
.

• You have to proove it by induction.

The Initialization has been made in the previous question.

We will assume it exists k ∈ N such that the relation (i.e. the expression of x(k)) is true. We will show
that it is still true for k + 1.

We will �rst compute the optimal learning rate ρk :

ρk =
‖Ax(k)‖22
‖Ax(k)‖2A

.

We will compute the two quantities, we begin with the numerator. We have :

Ax(k) =

(
γ

(
γ − 1

γ + 1

)k
, (−1)kγ

(
γ − 1

γ + 1

)k)
. So ‖Ax(k)‖22 = 2γ2

(
γ − 1

γ + 1

)2k

.

Moreover A(Ax(k)) =
(
γ

(
γ − 1

γ + 1

)k
, (−1)kγ2

(
γ − 1

γ + 1

)k)
. So ‖Ax(k)‖2A =

(
γ − 1

γ + 1

)2k (
γ2 + γ3

)
.

We can �nally compute the learning rate. This one is given by :

ρk =
2

1 + γ
.

The value of the gradient fγ(x(k)) is equal to Ax(k) and has been previously published. It remains to
compute x(k+1).

The value of x(k+1)
1 is given by :

x
(k+1)
1 = x

(k)
1 − ρkAx

(k)
1 ,

= γ

(
γ − 1

γ + 1

)k
− 2

γ + 1

(
γ − 1

γ + 1

)k
γ,

= γ

(
γ − 1

γ + 1

)k (
1− 2

γ + 1

)
,

= γ

(
γ − 1

γ + 1

)k (γ − 1

γ + 1

)
,

= γ

(
γ − 1

γ + 1

)k+1

.
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of x(k+1)
2 is given by :

x
(k+1)
2 = x

(k)
2 − ρkAx

(k)
2 ,

= (−1)(k)
(
γ − 1

γ + 1

)k
− 2

γ + 1

(
γ − 1

γ + 1

)k
γ(−1)(k),

= (−1)(k)
(
γ − 1

γ + 1

)k (
1− 2γ

γ + 1

)
,

= (−1)(k)
(
γ − 1

γ + 1

)k (
−γ − 1

γ + 1

)
,

= (−1)(k+1)

(
γ − 1

γ + 1

)k+1

.

We conclude by induction and say that expressions are true for k ∈ N.

• Using the expresion of x(k) and the fact that fγ(x(0)) =
1

2

(
γ2 + γ

)
we have :

fγ(x
(k)) =

1

2

((
γ − 1

γ + 1

)2k

γ2 + γ

(
γ − 1

γ + 1

)2k
)

= fγ(x
(0))

(
γ − 1

γ + 1

)2k

.

• The previous expression directly shows that the function lim
k→∞

fγ(x
(k)) = 0. Indeed,

∣∣∣∣γ − 1

γ + 1

∣∣∣∣ < 1.

Technical Proofs and Convergence

...

Other Exercises

...

Constrained Optimization Problem

...
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