Optimization & Operational Reasearch Mock Exam

Exercise 1 : True of False (No justification)

Answer *True* or *False* to the following assertions.

1. Consider the function $f : \mathbb{R}^n \to \mathbb{R}$ defined by :

$$f(x) = \frac{1}{2}x^T A x - b^T x,$$

where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$.

- (a) f is quadratic function.
- (b) For any matrices $A \in \mathbb{R}^{n \times n} f$ is convex.
- (c) The function g defined by $g(x) = \exp(f(x))$ is convex.
- (d) The function h defined by $h(x) = \exp(-f(x))$ is convex.
- 2. We consider a function f for which it exists a vector u such that $\nabla f(u) = 0$.
 - (a) u is an extremum (minimum or maximum) of the function f.
 - (b) u is a global minimum of f if its last is convex.
- 3. We consider a function $f : \mathbb{R}^2 \to \mathbb{R}$ and we denote by H its second order derivative and λ_1 and λ_2 the eigenvalues of H.
 - (a) f is concave if λ_1 and λ_2 are negative.
 - (b) f is concave if Trace(H) < 0 and det(H) < 0.
 - (c) f is convex if both Trace and Determinant are positive.
 - (d) What about the last assertion if $f : \mathbb{R}^n \to \mathbb{R}$ where n > 2.
- 4. Let us consider ton convex sets C_1 and C_2 and any straight line D.
 - (a) The intersection $C = C_1 \cap C_2$ is always convex.
 - (b) The union $C = C_1 \cup C_2$ is always convex.
- 5. About the algorithms
 - (a) The Gradient Descent with a fix step always converges.
 - (b) Finding the Optimal step consists of solving an other minimization problem at each iteration of Gradient Descent algorithm.
 - (c) The Newton's method can be applied even if the function is not convex.

Exercise 2 : Convexity and Convex Set

- 1. We say that a function $f : \mathbb{R} \to \mathbb{R}^*_+$ is log-convex if the function $g : \mathbb{R} \to \mathbb{R}$ defined by $: g(x) = \log(f(x))$ is convex.
 - We suppose that f is **twice differentiable** and log-convex. Show that f is convex.
- 2. We consider the set C defined by

$$C = \{ x \in \mathbb{R} \mid x^2 - 6x + 5 \le 0. \}$$

Show that this set is convex.

3. Show that the hyperbolic set $\{x \in \mathbb{R}^n_+ \mid \prod_{i=1}^n x_i \ge 1\}$ is convex. Hint : you can first show that, for all $x, y \in \mathbb{R}_{++}$ and $\theta \in [0, 1]$ we have $:x^{\theta}y^{1-\theta} \le \theta x + (1-\theta)y$.

Exercise 3 : Optimization and Algorithm

We consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by :

$$f(x,y) = 5x^2 + 3y^2 - 6xy + 2x + 3y + 1$$

- 1. Is the function f convex? Why?
- 2. Find the solution(s) of Euler's Equation : $\nabla f(x, y) = (0, 0)$.
- 3. What is the global minimum of the function ?
- 4. We set $u_0 = (x, y)^{(0)} = (1, 1)$, the initial point of the Gradient Descent Algorithm with a learning rate $\rho = 0.5$.
 - (a) First recall what this method consists of.
 - (b) Calculate u_1 and u_2 . What do you think of the choice of the learning rate?
- 5. Can we apply the Newton's Method using the same initial point? Why?
- 6. Would you apply the Gradient Descent with Optimal step in this case and why? Recall how we can compute the optimal learning rate if we are at the point $u_k = (x, y)^{(k)}$ (give the value of the matrix A and the vector b as they were defined in class).