Masters DSC/MLDM/CPS2

Optimization & Operational Research - Exam

(27/03/2018) 2h00 : personal documents allowed

Exercise 1 : Convexity and Rate of Convergence (8.5 points)

The aim of this exercise is to study the function $f_{\gamma} : \mathbb{R}^2 \to \mathbb{R}$ defined by :

$$f_{\gamma}(x,y) = \frac{1}{2}(x^2 + \gamma y^2 + 2xy) + 2x + 2y, \quad \gamma \in \mathbb{R}.$$

Part A : A study of f_{γ} (4.5 points)

This first part is dedicated to the study of the function f_{γ} .

- 1. Study the convexity of the function f_{γ} .
- 2. Give the solution of *Euler's Equation*, i.e. the solution of the linear system $\nabla f_{\gamma}(x, y) = (0, 0)$, for all values of γ .
- 3. Give the nature of the previous extrama of the function (the nature of the extremum depends on γ).
- 4. Show that $A = \begin{pmatrix} 1 & 1 \\ 1 & \gamma \end{pmatrix}$ and find the expression of $b \in \mathbb{R}^2$ such that, for all $u = (x \ y)^T$:

$$f_{\gamma}(u) = \frac{1}{2}u^T A u - b^T u,$$

5. Give the algorithm of the Gradient Descent with Optimal Step.

Part B : Rate of Convergence of the Gradient Descent with Optimal Step (4 pts)

In this part we assume that $\gamma > 1$ so that f_{γ} is strictly convex. The aim is to study the rate of convergence of the Gradient Descent with Optimal Step. This rate depends on the **Condition Number** of the matrix A defined by $Cond(A) = \frac{\lambda_{max}}{\lambda_{min}}$, where λ_{max} (resp. λ_{min}) is the largest (resp. the smallest) eigenvalue of A.

- 1. Compute the two eigenvalues of the matrix A.
- Give the expression of Cond(A) with respect to γ. Give an equivalent of the Condition Number Cond(A) for large values of γ.
 Hint : for large values of γ we have (γ − 1)² + 4 ≃ (γ − 1)²
- 3. We denote by u^* the point where the function f_{γ} reaches its minimum and u_0 the initial point of our algorithm. The rate of convergence η of the studied algorithm is defined by $\eta = 1 Cond(A)^{-1}$ and we have :

$$\|u_{k+1} - u^{\star}\|_{A} \le \eta^{k} \|u_{0} - u^{\star}\|_{A}.$$
(1)

The figure below illustrates the convergence of the function f_{γ} for two different values of γ and with the studied algorithm. We also choose $u_0 = (20 \ 1)$.

Say for which curve the value of γ is the largest one. What is the impact of the Condition Number Cond(A) on the rate (or speed) of convergence of the Gradient Descent according to the Inequality (??)? Give a condition on Cond(A) for which the convergence rate is fast.

- 4. We want to prove the Inequality (??). We denote by ρ_k the optimal learning rate at the k-th iteration of the algorithm.
 - (a) Show that :

$$||u_{k+1} - u^{\star}||_A^2 = ||(I - \rho_k A)(u_k - u^{\star})||_A^2$$

Hint : Remember that if u^* is a minimum of f_{γ} , then $Au^* = b$ where A and b were defined in the previous part.

(b) Now, we assume that for all $k \in \mathbb{N}$ we have :

$$||u_{k+1} - u^{\star}||_{A}^{2} \le ||I - \rho_{k}A||_{2}^{2}||u_{k} - u^{\star}||_{A}^{2}.$$

Show that η^2 is an upper bound of $||1 - \rho_k A||_2^2$, i.e.

$$\|I - \rho_k A\|_2^2 \le \eta^2 = \left(1 - \frac{\lambda_{min}}{\lambda_{max}}\right)^2.$$

(c) Conclude.

Exercise 2: (4.5 points)

Consider the following constrained optimization problem

$$\min_{\substack{x_1, x_2 \\ \text{subject to}}} x_1 - x_2 \\
x_1^2 + x_2^2 - 2x_2 = 0$$

- 1. Provide the Lagrangian formulation of this problem.
- 2. Deduce the Lagrange dual function associated to this problem.
- 3. Compute the optimum of this dual function.
- 4. Deduce the values that lead to an optimal solution in the primal formulation.
- 5. Check that the duality (weak or strong) holds. If you think you have a strong duality explain why, otherwise try to provide a justification explaining why this is not the case.