Masters DSC/MLDM/CPS2

Optimization & Operational Research - Exam

(27/03/2018) 2h00 : personal documents allowed

Exercise 1 : Convexity and Rate of Convergence (8.5 points)

The aim of this exercise is to study the function $f_{\gamma}: \mathbb{R}^2 \to \mathbb{R}$ defined by :

$$
f_{\gamma}(x, y) = \frac{1}{2}(x^2 + \gamma y^2 + 2xy) + 2x + 2y, \quad \gamma \in \mathbb{R}.
$$

Part A : A study of f_{γ} (4.5 points)

This first part is dedicated to the study of the function f_{γ} .

- 1. Study the convexity of the function f_{γ} .
- 2. Give the solution of Euler's Equation, i.e. the solution of the linear system $\nabla f_{\gamma}(x, y) = (0, 0),$ for all values of γ .
- 3. Give the nature of the previous extrama of the function (the nature of the extremum depends on γ).
- 4. Show that $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 1 γ) and find the expression of $b \in \mathbb{R}^2$ such that, for all $u = (x \ y)^T$:

$$
f_{\gamma}(u) = \frac{1}{2}u^{T}Au - b^{T}u,
$$

5. Give the algorithm of the Gradient Descent with Optimal Step.

Part B : Rate of Convergence of the Gradient Descent with Optimal Step (4 pts)

In this part we assume that $\gamma > 1$ so that f_{γ} is strictly convex. The aim is to study the rate of convergence of the Gradient Descent with Optimal Step. This rate depends on the Condition Number of the matrix A defined by $Cond(A) = \frac{\lambda_{max}}{\lambda_{max}}$ $\frac{\lambda_{max}}{\lambda_{min}}$, where λ_{max} (resp. λ_{min}) is the largest (resp. the smallest) eigenvalue of A.

- 1. Compute the two eigenvalues of the matrix A.
- 2. Give the expression of $Cond(A)$ with respect to γ . Give an equivalent of the **Condition Number** $Cond(A)$ for large values of γ . *Hint : for large values of* γ *we have* $(\gamma - 1)^2 + 4 \simeq (\gamma - 1)^2$
- 3. We denote by u^* the point where the function f_γ reaches its minimum and u_0 the initial point of our algorithm. The rate of convergence η of the studied algorithm is defined by $\eta = 1 - Cond(A)^{-1}$ and we have :

$$
||u_{k+1} - u^*||_A \le \eta^k ||u_0 - u^*||_A. \tag{1}
$$

The figure below illustrates the convergence of the function f_{γ} for two different values of γ and with the studied algorithm. We also choose $u_0 = (20 1)$.

Say for which curve the value of γ is the largest one. What is the impact of the Condition Number $Cond(A)$ on the rate (or speed) of convergence of the Gradient Descent according to the Inequality $(??)$? Give a condition on $Cond(A)$ for which the convergence rate is fast.

- 4. We want to prove the Inequality (??). We denote by ρ_k the optimal learning rate at the k-th iteration of the algorithm.
	- (a) Show that :

$$
||u_{k+1} - u^*||_A^2 = ||(I - \rho_k A)(u_k - u^*)||_A^2.
$$

Hint: Remember that if u^* is a minimum of f_{γ} , then $Au^* = b$ where A and b were defined in the previous part.

(b) Now, we assume that for all $k \in \mathbb{N}$ we have :

$$
||u_{k+1} - u^*||_A^2 \le ||I - \rho_k A||_2^2 ||u_k - u^*||_A^2.
$$

Show that η^2 is an upper bound of $||1 - \rho_k A||_2^2$, i.e.

$$
||I - \rho_k A||_2^2 \le \eta^2 = \left(1 - \frac{\lambda_{min}}{\lambda_{max}}\right)^2.
$$

(c) Conclude.

Exercise 2 : (4.5 points)

Consider the following constrained optimization problem

$$
\min_{x_1, x_2} x_1 - x_2
$$

subject to $x_1^2 + x_2^2 - 2x_2 = 0$

- 1. Provide the Lagrangian formulation of this problem.
- 2. Deduce the Lagrange dual function associated to this problem.
- 3. Compute the optimum of this dual function.
- 4. Deduce the values that lead to an optimal solution in the primal formulation.
- 5. Check that the duality (weak or strong) holds. If you think you have a strong duality explain why, otherwise try to provide a justification explaining why this is not the case.