Masters DSC/MLDM/CPS2

Optimization & Operational Research - Exam

(26/03/2019) 2h00 : personal documents allowed

Exercise 1 : A sum of two functions (8 points)

The aim of this exercise is to study a function h which is defined as the sum of two other functions : f and g. The two first parts focus on the study of f and g and last part on h on which different gradient descent algorithms are applied.

We consider two parameters $\gamma, \delta \in \mathbb{R}$. The aim of this exercise is to study function $h_{\gamma,\delta}: \mathbb{R}^4 \to \mathbb{R}$ defined by :

$$
h_{\gamma,\delta}(x_1, x_2, x_3, x_4) = f_{\gamma}(x_1, x_2) + g_{\delta}(x_3, x_4),
$$

where $f_{\gamma}, h_{\delta} : \mathbb{R}^2 \to \mathbb{R}$ are defined by :

$$
f_{\gamma}(x_1, x_2) = \frac{1}{2} \left(x_1^2 + 8x_2^2 - 2\gamma x_1 x_2 \right) + x_1 - x_2 + 3,
$$

\n
$$
h_{\delta}(x_3, x_4) = \delta x_3^3 + \frac{1}{2} \left(2x_3^2 + x_4^2 + x_3 x_4 \right) - 6x_3 + 2x_4.
$$

Part A : Study of f_{γ}

This part focuses on the function f_{γ} . The aim is to find the nature of the extrema of this function according to the paramter γ .

- 1. Study the convexity of the function f_{γ} .
- 2. Give the solution of Euler's Equation, i.e. the solution of the linear system $\nabla f_{\gamma}(x, y) = (0, 0),$ for all values of $\gamma \notin \{-2\sqrt{2}, 2\sqrt{2}\}.$ For an values of $\gamma \notin \{-2\sqrt{2}, 2\sqrt{2}\}$.
What happens when $\gamma = -2\sqrt{2}$ or $\gamma = 2\sqrt{2}$?
- 3. Give the nature of the previous extrema (i.e. say if it is local/global minimum/maximum of the function). The nature of the extremum depends on γ .

Part B : Study of g_{δ}

This part focuses on the function g_{δ} . The aim is to find the nature of the extrema of this function according to the paramter δ .

- 1. Study the convexity of the function g_{δ} .
- 2. Give the solution of Euler's Equation, i.e. the solution of the linear system $\nabla g_\delta(x, y) = (0, 0)$, for all values of δ .
- 3. Give the nature of the previous extrama (i.e. say if it is local/global minimum/maximum of the function). The nature of the extremum depends on δ .

Part C : Minimization of $h_{\gamma,\delta}$

- 1. Show that the sum of two convex functions is convex.
- 2. Using the previous parts, show that the function $h_{\gamma,\delta}$ is convex if and only if $\gamma \in [-2]$ √ $\overline{2,2}$ √ 2] and $\delta = 0$. √ √
- 3. Suppose that $\gamma \in [-2]$ $\overline{2,2}$ 2 and $\delta = 0$. Using the previous parts, what is the global minimum of the function $h_{\gamma,\delta}$?
- 4. In the following, we consider that both γ and δ are equal to 0. Thus, the function $h_{0,0}$ is convex. The figure below on the left illustrates the convergence of two variations of gradient descent algorithm : (i) gradient descent with a fixed step and (ii) gradient descent with an optimal step

- (a) Recall what the gradient descent algorithm consists of in general.
- (b) Explain which curve corresponds to which method. Justify your answer.
- (c) The figure on the right illustrates another variation of the gradient descent algorithm represented by the red curve (mentioned in class). In your opinion, which algorithm is that ? (Bonus)
- (d) If you have found the right algorithm, try to explain why it converges in only one iteration in this case. (Bonus+)

Exercise 2 : Linear programming (6 points)

Part A : Formulate and solve an optimization problem

A chemical firm makes two types of industrial solvents, S_1 and S_2 . Each solvent is a mixture of three chemicals. Each kL of S_1 requires 12L of chemical \mathbf{A} , 9L of chemical \mathbf{B} , and 30L of chemical \mathbf{C} . Each kL of S_2 requires 24L of chemical \mathbf{A} , 5L of chemical \mathbf{B} , and 30L of chemical \mathbf{C} . The profit per kL of S1 is \$100, and the profit per kL of S2 is \$85. The inventory of the company shows 480 L of chemical A, 180 L of chemical B, and 720 L of chemical C. Assuming the company can sell all the solvent it makes, find the number of kL of each solvent that the company should make to maximize profit.

- 1. Formulate the corresponding optimization problem and explain the meaning behind the introduced variables ;
- 2. Do one step of the simplex algorithm. Explain which is the entering / leaving variable and why. Give the tableau before and after this step ;
- 3. Finally, give the new feasible solution and explain what will happen next (e.g., this is the optimal solution, there is no optimal solution, ...).

Part B : Understanding simplex method

1. What are the basic variables of the problem given below ? What is the value of nonbasic variables ?

\mathbf{B}			X 1	X2		X3 X4 X5	
\mid X? \mid 4		\equiv	$\overline{0}$	1/3	-1		
\mid X? \mid 20		\equiv		2/3	-1		
	X ? 80	$=$	$\overline{0}$	-1	-3		
	$Z-3 =$			$0 \t -25/3 \t 0$		40/3	

2. What can you say about the solution of the following minimization problem ?

Exercise 3 : Constrained optimization (6 points)

Consider the following constrained optimization problem with an arbitrary constant c_1 :

$$
\min_{x_1, x_2, x_3} \quad c_1 x_1 - 4x_2 - 2x_3
$$
\n
$$
\text{subject to} \quad x_1^2 + x_2^2 \le 2
$$
\n
$$
x_2^2 + x_3^2 \le 2
$$
\n
$$
x_1^2 + x_3^2 \le 2
$$

- 1. Write down the KKT-conditions for the problem.
- 2. Are there any values for the constant c_1 which make the point $\mathbf{x} = (1.4, 0.2, 0.2)^T$ an optimal solution to the problem? If there are any such values, determine all of these values for c_1 .
- 3. Reply to the previous question with $\mathbf{x} = (1, 1, 1)^T$.
- 4. Assume that $c_1 = -6$. Compute the value of the dual objective function $g(\lambda)$ in the point $\lambda^* = (1, 1, 1)^T$, and determine whether it is an optimal solution to the dual problem.