
Optimization & Optimal Research
Practical Session

Abstract

The aim of this practical session is to write the algorithm we have studied during the class. I will ask you to
study the convexity of the function, �nd the global minimum or local minima. We will also so the in�uence of
the learning rate for the gradient descent with a �x step and see a condition of convergence of this algorithm.
You can use the language you want, but I will use R for the correction and I will not be able to help you if you
are using an other one (maybe if you are using Matlab).

Introduction (20 minuts)

We will use the following functions :

f1(x, y) = x2 +
y2

20
,

f2(x, y) =
x2

2
+
y2

2
,

f3(x, y) = (1− x)2 + 10(y − x2)2,

f4(x, y) =
x2

2
+ x cos(y).

For the function f3 we will take (x0, y0) = (−1, 1) as the initialization of our algorithms.

1. Compute the gradient of each functions.

The gradient of each function is given by :

∇f1(x, y) =
(

2x,
y

10

)
∇f2(x, y) =

(
x, y

)
∇f3(x, y) =

(
40x3 − 40xy + 2x− 2, 20y − 20x2

)
∇f4(x, y) =

(
x+ cos(y), −x sin(y)

)
2. Which of the functions ar convex ? Why ? You can use what we have studied during the lessons or in

exercises.

The functions f1 and f2 are convex as the sum of two convex functions. The function f3 is not convex as
we have seen in class.
Neither is f4. If we compute the Hessian matrix we have :

∇2f4(x, y) =

(
1 − sin(y)

− sin(y) −x cos(y)

)
.

If we take (x, y) = (2, 0), we see that the trace is equal to −1 < 0.
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A) B)

C) D)

Figure 1: Graph of the four studied functions. A) Function f1, B) Function f2, C) Function f3, D) Function f4.
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3. Plot these functions.

See Figure 1

4. What is the global minimum of each functions ?

The global minimum of the function f1 and f2 is reached at the point (0, 0) and is equal to 0.
Note that the function f3 is non-negative. Furthermore, we have f(1, 1) = 0 and for all (x, y) 6= (1, 1), f(x, y) >
0. So the minimum of f3 is reached at the point (1, 1) and is equal to 0.
For the function f4 we need to solve Euler’s Equation to �nd the critical points :

∇f4(x, y) =
(
x+ cos(y), −x sin(y)

)
=
(
0, 0

)
.

The second argument −x sin(y) is equal to zero when x = 0 or y = kπ for k ∈ Z.
• If x = 0 then the �rst argument is equal to 0 when cos(y) = 0 so y =

π

2
+ kπ.

• If y = kπ then the �rst argument is equal to 0 when x = −cos(kπ) = −(−1)k = (−1)k+1.

The global minimum of f4 is reached at the points (−1, 2kπ) and is equal to −1

2
.

We now want to solve the following optimization problem

min
(x,y)∈R2

f(x, y),

for each function f using the di�erent algorithm studied in class.

1 Gradient descent with a constant learning rate (40 minuts)

We recall that the gradient descent algorithm with constant learning rate η > 0 updates the weights at each
iteration as follows :

uk+1 ← uk − η∇f(uk).

1. De�ne a function called gradientdescent using this gradient descent algorithm.

See the code

2. Use your function for the di�erent values of η with the function (f1, f2, f3, f4). What do you notice ? Rep-
resent the convergence of (x, y)

See the code

• For the function f1 :

As we will see in the text question, the algorithm converge if the learning rate : η is less than 1. For
a learning rate 1 < η < 20 the algorithm diverge but the variable y converge toward 0 unlike x. If
20 < η both variables diverge. The graphics are reprensented in Figure 2.

3



Figure 2: Convergence of the iterates for the function f1 for the di�erent values of η. From left to right we have
eta = 0.98, 10, 21 respectively. We have done 100 iterations and we choose u0 = (1, 1)

Figure 3: Convergence of the iterates for the function f2 for the di�erent values of η. From left to right we have
η = 0.5 and η = 2.5 respectively. We have done 100 iterations and we choose u0 = (1, 1)

• For the function f2 :

Same as before, we notice that the algorithm converge for 0 < η < 2 and diverge otherwise. See
Figure 3.

For the functions f1 and f2 you can choose any starting point you want, you will always reach the
point (0, 0) if you respect the condition on the learning rate.

• For the function f3 :

We have see that u = (1, 1) is the point where the function reaches its global minimum so we have
to choose a di�erent starting point, let say u0 = (−1, 1).

Because the function is not convex, it’s also interested to test di�erent values of the starting point
to see which point(s) we reach with this algorithm. But if you”re looking for the critical points (the
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Figure 4: Convergence of the iterates for the function f3 for the di�erent values of η and starting points. From left
to right we have η = 0.001, 0.001 and η = 0.08 respectively. The starting points are respectively u0 = (−5,−5),
u0 = (−1, 1) and u0 = (−1, 1).

points u for which we have∇f3(u) = 0., the only solution is given by u = (1, 1).
In practice, we will use a small learning rate.

The Figure 4 illsutrate the behaviour of the solution (the iterates) with respect to di�erent values of
the learning rate and values of initialization. We can notice that if we take an enough small learning
rate and if we start at the point u0 = c(−1, 1) we reach the optimal point but we need a huge number
of iterations to reach it, compared to the previous functions.
Try to implement the method using a learning rate η = 0.5 and the starting point u0 = (−1, 1). What
do you notice ?

You should remark that the algorithm converge in 1 step !
• For the function f4 :

For this function, we have seen that we have di�erent global minima. So we will just test di�erent
values of u0 and keep the same learning rate η for all experiments, results are presented on Figure 5.
In the instances presetend, we reach two di�erent local minimum where the function is equal to 0.
Even if you start around the the global minimum u = (0, 2kπ) it’s really hard to reach it.

3. Now we consider the function f2, if you have not done it, test the algorithm for η = 1.9 and η = 2.1. Give
a condition on η so that the algorithm converges.

We suppose that the function f is α−elliptical and the gradient function ∇f is L−lipschitzien. We can
show that this algorithm converges if we take η such that : 0 < η <

2α

L2
.

(a) Find the value of L such that (De�nition of ∇f is L-lipschitzien) :

‖∇f(x1, y1)−∇f(x2, y2)‖ ≤ L‖(x1, y1)− (x2, y2)‖
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Figure 5: Convergence of the iterates for the function f4 for the di�erent starting points. From left to right we
have η = 0.001 and the starting points are respectively u0 = (−1, 1), u0 = (−3, 3).

We have : ‖∇f(x1, y1)−∇f(x2, y2)‖ = ‖(x1, y1)− (x2, y2)‖ =
√

(x1 − x2)2 + (y1 − y2)2.
And ‖(x1, y1)− (x2, y2)‖ =

√
(x1 − x2)2 + (y1 − y2)2.

So we have :
‖∇f(x1, y1)−∇f(x2, y2)‖ ≤ ‖(x1, y1)− (x2, y2)‖,

in other words, L = 1

(b) Compute λmin the smallest eigenvalue of f . We admit that α = λmin and conclude.

The Hessian matrix of f2 is given by :

∇2f2(x, y) =

(
1 0
0 1

)
.

So the eigenvalues of the matrix are equal to 1 and λmin = 1 = α

According to the theorem in red, the algorithm converges when 0 < η <
2× 1

1
= 2. Its e�ectively

what we have noticed before.

(c) Try to do the same for the function f1.

We begin by calculating the eigenvalues of the Hessian matrix of f1 given by :

∇2f2(x, y) =

(
2 0

0
1

10

)
.

So the eigenvalues are equal to 2 and 1

10
and α = λmin =

1

10
.

Now we have to �nd a value of L such that :

‖∇f(x1, y1)−∇f(x2, y2)‖ ≤ L‖(x1, y1)− (x2, y2)‖
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We have : ‖∇f(x1, y1)−∇f(x2, y2)‖ =
√
4(x1 − x2)2 +

1

100
(y1 − y2)2.

And ‖(x1, y1)− (x2, y2)‖ =
√
(x1 − x2)2 + (y1 − y2)2.

So we have :
‖∇f(x1, y1)−∇f(x2, y2)‖ ≤ 2‖(x1, y1)− (x2, y2)‖,

in other words, L = 4. So the algorithm converges if 0 < η <
2× 1

10
22

=
1

20
.

Supplementary

The result is di�erent is di�erent from what we have seen when we have implemented the gradient descent for
the function f1. In fact, the theorem gives us a condition on η such that the algorithm converge, but it does not
say that it gives the best range for η.

We have previously noticed that the algorithm converge for η < 1. We will try to explain why.
First you have to noticed that :

∇f1(x, y) =
(
g(x), h(y)

)
and the Hessian matrix is diagonal. So we can study the convergence of variable x and y independently.

• If we study the function with respect to x (so we consider that y is constant), we can show that g is
2-Lipschitzien. Moreover, we have∇2f1(x) ≥ 2 for all x.
According to the theorem, the gradient with optimal step converge if :

0 < η <
2× 2

22
= 1.

• If we study the function with respect to y (so we consider that x is constant), we can show that h is 1

10
-

Lipschitzien. Moreover, we have∇2f1(y) ≥
1

10
for all x.

According to the theorem, the gradient with optimal step converge if :

0 < η <
2× 1

10(
1

10

)2 = 20.

So the real range of values of η is 0 < η < min(1, 20) = 1. For these values, the algorithm converge.

2 Gradient descent with optimal step (30 minuts)

Now the learning rate is no more constant, it is determined by solving the problem :

η(k) = Argmin
eta>0

f(uk − η∇f(uk)).

1. Give an explicit expression of η for the �rst and/or second function(s).
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According to what we have seen in class, the optimal learning rate ρ for quadratic function is given by :

ρ =
‖Au− b‖2

‖Au− b‖2A
.

• For the function f1, we have A =

(
2 0

0
1

10

)
and b = 0. So Au− b =

(
2x
y

10

)
and

A(Au− b) =

(
4x
y

100

)
. So ‖Au− b‖2 = 4x2 +

y2

100
and ‖Au− b‖2A = 8x2 +

y2

1000
. So

ρ =
4x2 +

y2

100

8x2 +
y2

1000

.

• For the function f2 we have A =

(
1 0
0 1

)
and b = 0. So Au− b =

(
x
y

)
and

A(Au− b) =
(
x
y

)
. So ‖Au− b‖2 = x2 + y2 and ‖Au− b‖2A = x2 + y2. So

ρ =
x2 + y2

x2 + y2
= 1.

2. Implement the algorithm.

See the code : The algorithm is implemented for quadratic function f1 and f2.
We will see how to do it for f3 later.

3. Solve the problem of minimization of function f1 and compare to the previous algorithm.
The graphs presented on Figure 6 show that the gradient descent with optimal step converges faster than
the gradient descent with �x step.
THis is normal because, at each step, we choose the optimal learning along the given direction so that the
value of f deacreases the most.

4. Do the same for the function f3.

I will do the calculous later, but you have to �nd the value of the learning rate η that minmize a polynom
of degree 3 (remember that the learning rate is positive).

3 Newton’s Method (30 minuts)

The Newton’s Method is solving Euler’s Equation

∇f(u) = 0.

An iteration of the Newton’s algorithm is given by :

uk+1 ← uk − (Hf (u))
−1∇f(u),

where Hj refers to the Hessian matrix of the function f .
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Figure 6: We compare the convergence in terms of number of iterates of the gradient descent with a �x step
(the blue curve) in VS gradient descent with optimal step (the red curve). We started the algorithm at the point
u0 = (−1, 1) and we took a learning rate equal to 0.98 for the version with a �x step.

Remark : It is possible to improve this method combining it with a line search algorithm, setting :

uk+1 ← uk − η(Hf (u))
−1∇f(u),

where η is constant or satis�es the Wolfe’s condition.

1. Compute the Hessian matrix for the functions f1, f3 and f4.

The Hessian matrices of the functions are given by :

∇2f1(x, y) =

(
2 0

0
1

10

)
∇2f2(x, y) =

(
1 0
0 1

)
∇2f3(x, y) =

(
120x2 − 40y + 2 −40x

−40x 20

)
∇2f4(x, y) =

(
1 − sin(y)

− sin(y) −x cos(y)

)
2. Implement the Newton’s method for the function f2 and f3 to �nd the global minimum.

See the code

3. For the function f2 and/or f3, compare the convergence of the three algorithms.

See the code

• On Figure 7, we compare the three algorithms with the function f1. We can see that both Newton’s
method and gradient descent with optimal step are better than the classical gradient descent and the two
reach the optimal value at the same speed. Here we also see that the Newton’s method is better than the
Gradient Descent with optimal step but it’s not obvious.

We need an other example (i.e an other function) to compare the speed of convergence (in term of iterations)
to see which algorithm is faster between Gradient Descent with optimal step and Newton’s method.
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Figure 7: The three algorithms are used to minimize the function f1 we a starting point equal to u0 = (−1, 1).
The learning rate η is equal to 0.98 for the �x step method.

4. What are the avantage(s) and drawback(s) of this method ?

This algorithm is faster than the two others so it requires less iterations to reach the global minimum of a
convex function or local minimum of the other functions.
It works well when you work in low dimensionnal space and with few data (it depends on the context).

This algorithm is weak when it comes to use it for problem with a huge number or variables. You’ ll have
to invert a matrix of size p × p which cost O(p3). Even it requires less iteration than the others you will
spend more time to invert the Hessian matrix.
Moreover, in a machine learning context, you can spend lots of time to calculate the Hessian matrix if you
have lots of data (it depends on the expression of the Hessian matrix).
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