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Topic of the course

Headline
• Mathematical bakcground : Convex sets and derivatives.
• Convex function and their properties.
• What is a convex optimization problem ?
• Algorithm for convex optimization.
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Some references

Linear Algebra
• K.B Petersen, M.S Pedersen, The Matrix Cookbook,2012.
Available at : http ://matrixcookbook.com

Convex Optimization
• Stephen Boyd & Lieven Vandenberghe, Convex Optimization,
Cambridge University Press, 2014
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Norms
Given x , y ∈ Rn, the inner product is given by :

〈x , y〉 = xT y =
n∑

i=1
xiyi .

The inner product of x with itself is called the square of the norms of x

〈x , x〉 = ‖x‖2.

Definition
Let E be a R-vectorial space, then the application ‖.‖ is said to be a
norm if for all u, v ∈ E and λ ∈ R

1 (positive) ‖u‖ ≥ 0 ,
2 (definite) ‖u‖ = 0 ⇐⇒ u = 0,
3 (scalability) ‖λu‖ = |λ|‖u‖,
4 (triangle inequality) ‖u + v‖ ≤ ‖u‖+ ‖v‖.
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Norms

• The norm can be seen as distance between two vectors x , y in the same
vectorial space

dist(x , y) = ‖x − y‖.

Example of usual norms :
• ‖x‖1 =

∑n
i=1 |xi | (Manhattan)

• ‖x‖2 =
√∑n

i=1 |xi |2 (Euclidean)
• ‖x‖∞ = max (|x1|, . . . , |xn|)
• More generally we define the norm ‖.‖p for all integers p as

‖x‖p =
( n∑

i=1
|xi |p

)1/p

.
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Example 1/2
We will show that the Euclidean norm is effectively a norm. We have to
check each point of the definition. Let us consider x , y ∈ Rn and λ ∈ R

• It is obvisous that ‖x‖2 =
√∑n

i=1 |xi |2 is positive.
• Each |xi |2 is a positive number and a sum of positive number is equal
to zero if and only if all of the numbers are equal to zero ⇒ x = 0
•

‖λx‖2 =

√√√√ n∑
i=1
|λxi |2

=

√√√√ n∑
i=1
|λ|2|xi |2

= |λ|

√√√√ n∑
i=1
|xi |2.
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Example 2/2

To prove the last point we will use the Cauchy-Schwartz Inequality :

〈x , y〉 ≤ ‖x‖‖y‖.

•

‖x + y‖2
2 = ‖x‖2

2 + 2〈x , y〉+ ‖y‖2
2

≤ ‖x‖2
2 + 2‖x‖2‖y‖2 + ‖y‖2

2

≤ (‖x‖2 + ‖y‖2)2
.

By taking the square root, which is an increasing function, we get the
result.
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Norms and Unit Ball

Unit ball for the norms ‖‖p for p = 1, 2 and p > 2

Exercise
• Represent the unit ball for the norm ‖.‖∞.
• Show that the application f : Rn → R defined by f (x) =

∑n
i=1 |xi | is a

norm.
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Correction

• The Unit Ball using the ‖.‖∞ is a full square.
• We have to check the four points of the definition.

1 ‖x‖1 =
∑n

i=1 |xi | ≥ 0 by definition of the absolute value.
2 ‖x‖1 =

∑n
i=1 |xi | ≥ 0 =⇒ x = 0 because the sum of positive

numbers is equal to zero if and only if all the terms are equal to zero.
3 ‖λx‖1 =

∑n
i=1 |λxi | = |λ|

∑n
i=1 |xi | = |λ|‖x‖1.

4 ‖x + y‖1 =
∑n

i=1 |xi + yi | ≤
∑n

i=1 |xi |+
∑n

i=1 |yi | = ‖x‖1 + ‖y‖1.
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Norms on matrices

It is also to define an inner product and a norms on matrices :
• Given two matrices X ,Y ∈ Rm×n the inner product is defined by :

〈X ,Y 〉 = Tr
(
XT Y

)
=

m∑
i=1

n∑
j=1

xijyij .

• A classical norm used with matrices is the Frobenius norm :

‖X‖F =
√

Tr (XT X ) =
( m∑

i=1

n∑
j=1

x2
ij

)1/2

.

What is the inner product of the matrices X ,Y ∈ Sn(R) ?
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Convex Sets

Definition
A set C is said to be convex if, for every (u, v) ∈ C and for all t ∈ [0, 1]
we have :

tu + (1− t)v ∈ C .

In other words, C is said to be convex if every point on the segment
connecting u and v is in the set.

Proposition
Let (u1, u2, . . . , un) be a set of n points belonging to a convex set C .
Then for every reel numbers λ1, λ2, . . . , λn such that

∑n
i=1 λi = 1 :

v =
n∑

i=1
λiui ∈ C .

It means that every convex combination of points belonging in a convex
set, belongs in the convex set.
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Convex Sets

Which of the sets are convex ?
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Examples of Convex Sets

• B = {u ∈ Rn | ‖u‖ ≤ 1} is convex.
• Every segment in R is convex.
• Every hyperplane {x ∈ Rn | aT x = b} is convex.
• If C1 and C2 are two convex sets, then the intersection C = C1 ∩ C2 is
also convex.

Exercise
• Proove that the Euclidean Unit Ball is convex.
• (At home) Proove that a set A is convex if and only if its intersection
with any line is convex.

G. Metzler OOR Course Master 14 / 107



Mathematical Background and Recall
Convex Problems

Algorithm

Norms and convex sets
Derivatives of a function

Correction

• For the first point, consider λ ∈ [0, 1] and u, v two vectors in the unit
ball. Then set z = λu + (1− λ)v . (i) take the norm of z , (ii) apply the
triangle inequality and (iii) the scalability of the norm.
• Use the definition of convexity
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Build a convex set

Given the definition of a convex set and a set of point x1, . . . xn, it is
possible to build a convex set. This new set is called the convex hull H of
a set of points

H = {y =
n∑

i=1
λixi |

n∑
i=1

λi = 1}.
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Derivative for real functions

Recall
Let f : R→ R be continuous and x0 ∈ R. We say that f is differentiable
at x0 if the limit :

lim
h→0

f (x0 + h)− f (x0)
h ,

exists and is finite.

If f is continuously differentiable at x0, so for h ' 0 we have

f (x0 + h) = f (x0) + hf ′(x0) + ε(h).

This formula (Taylor’s Formula) can be generalized to a function g
n-times continuously diffenrentiable :

f (x0 + h) = f (x0) +
n∑

i=1

h(i)

i! f (n)(x0) + ε(hn).
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First order derivative

Definition
Let f : Rm → Rn be a C0 application and x ∈ Rm. Then f is
differentiable at x0 if it exists J ∈ Rm×n such that :

lim
x→x0

‖f (x)− f (x0)− Jf (x0)(x − x0)‖
‖x − x0‖

= 0.

D is called the Jacobian of the application f .

For all i , j the elements of the matrix J are given by :

Jij f (x0) = ∂fi (x)
∂xj

∣∣∣∣
x=x0
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First order derivative

Remark
Usually f : Rm → R so the Jacobian of the application f (also called the
gradient) will be a vector ∇f (x0)

The gradient gives the possibilty to approximate the function near the
point its gradient is calculated. For all x ∈ V (x0) we have

f (x) ' f (x0) +∇f (x0)(x − x0)

This affine approximation of the function f will help us to
characterize convex functions.
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First order derivative : example

Let us consider the application f : R3 → R defined by

f (x , y , z) = 3x2 + 2xyz + 6z + 5yz + 9xz .

We want to calculate the Jacobian of this function. To do so, we need to
calculate : ∂f

∂x ,
∂f
∂y ,

∂f
∂z . The Jacobian of f at (x , y , z) is given by :

Jf (x ,y ,z) =
(
6x + 2yz + 9z , 2xz + 5z 2xy + 6 + 5y + 9x

)
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First order derivative

Exercise
• On other function :
Let x , y , z ∈ Rn.
Calculate the Jacobian of the function
f (x , y , z) = exp(xyz) + x2 + y + log(z).

• Linear Regression :
Let Y ∈ Rn,X ∈ Rn×d and β ∈ Rd .
Calculate the derivative of the function f (β) = ‖Y − Xβ‖2

2

• Log-Sum-Exp :
Let x , b ∈ Rn.
Calculate the derivative of the function f (x) = log

∑n
i=1 exp (xi + bi )
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Correction

• You simply have to apply the definition as it wa done in the previous
example and you will have :

∇f (x , y , z) =
(

yz exp(xyz) + 2x , xz exp(xyz) + 1, xy exp(xyz) + 1
z

)
.

• Here, you have to use the face that : ‖x‖2 = 〈x , x〉. Then you compute
the derivative using the fact that f is defined as a product of to functions
of β.

∇f (β) = −XT (Y − Xβ) + ((Y − Xβ)T (−X ))T = −2XT (Y − Xβ).

• Remember that the Jacobian ∇f = Jf is a vector where each entry i is
equal to :

∇f (x)i = exp(xi + bi )∑n
i=1 exp(xi + bi )

.
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Second order derivative

Definition
Let f : Rm → R be a real function. Provided that this function is twice
diffentiable, the second derivative H, (also called the Hessian)of f at x0 is
given by :

Hij f (x0) = ∂2f (x)
∂xi∂xj

∣∣∣∣
x=x0

,

and H ∈ Rm×m

This matrix is usefull to prove that a function f is convex or not and also
to build efficient algorithms.
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Second order derivative : example

Let us consider the function f : R2 → R defined by

f (x , y) = 4x2 + 6y2 + 3xy + 2 (cos(x) + sin(y))

and calculate the Hessian of this function. We first have to calculate the
Jacobian of the matrix and then the Hessian.

Jf (x ,y) =
(

∂f
∂x

∂f
∂y

)
=
(
8x + 3y − 2 sin(x) 12y + 3x + 2 cos(y)

)

Hf (x ,y) =


∂2f
∂2x

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂2y

 =
(

8− 2 cos(x) 3
3 12− 2 sin(y)

)
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Second order derivative : example

Exercise
Calculate the second order derivative of the following functions :

• f (x , y) = log(x + y) + x2 + 2y + 4

• f (x , y , z) = 6x
1 + y + exp(xy) + z
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Correction

The process is similar as in the previous example, so I only give the
results.

Hf (x ,y) =


∂2f
∂2x

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂2y

 =

 2− 1
(x + y)2 − 1

(x + y)2

− 1
(x + y)2 − 1

(x + y)2



Hf (x ,y) =


y2 exp(xy) − 6

(1 + y)2 + (xy + 1) exp(xy) 0

− 6
(1 + y)2 + (xy + 1) exp(xy) 12x

(1 + y)3 + x2 exp(xy) 0

0 0 0
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Convexity
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What is a convex optimization problem ?

Given a convex function f : Rn → R we would solve de problem :

x̂ = Argmin
x∈Rn

f (x).

The aim of the course is to introduce some algorithms to build a serie of
reals (xn)n∈N which converges to x̂ .
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Optimization

It exists several type of optimization problem :
• convex optimization as presented before
• constraint optimization problem,
• non convex optimization problem,
• non differentiable convex optimization problem
• ...

→ In this part, we’ll only focus on convex optimization problem.
As presented before, we need first to study convex functions.
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Why do we study them

• They are very important in Machine Learning. As we’ll see later in the
course, their properties guaranties the uniquiness of any convex
optimization problem.

• Studying convex function gives also the possibility to build better
algorithm that converge faster than classical methods (Gradient
Descent vs Newton’s Method.)
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Convex Functions

Which of the following functions are convex graphically ?
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Convex Functions

Definition
Let U be an on empty set of a vectorial space (U = Rn). A function
f : U → R is said to be convex if, for every (u, v) ∈ U and for all
t ∈ [0, 1], we have :

f (tu + (1− t)v) ≤ tf (u) + (1− t)f (v).

• A linear function is convex,
• f : R→ R, f (x) = x2,
• f : R→ R, f (x) = exp(x).
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Convex Functions and line segment

Proposition
A function f : Rn → R is convex if and only its restriction to a line is
always convex, i.e. if the function g : R→ R defined by g(t) = f (x + tv)
is convex, for all x and v such that x + tv belongs to the domain of
definition of f (f is concave if and only if g is concave).

Exercise
Try to proove this result at home. Hint : you just have to apply (write)
the definition of convex function seen earlier.

Example : show that the function f : Sn
++ → S with

f (X ) = log(det(X )) is concave
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A convex function and its chord
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Convex Functions

Exercise

Show that the function F : R→ R, f (x) = x2 is convex.

Solution : we need to show (tx + (1− t)y)2 ≤ tx2 + (1− t)y2.

⇐⇒ t2x2 + 2t(1− t)xy + (1− t)2y2 ≤ tx2 + (1− t)y2,

⇐⇒ (t2 − t)x2 + 2t(1− t)xy + ((1− t)2 − (1− t))y2 ≤ 0,

⇐⇒ t(t − 1)x2 − 2t(t − 1)xy + t(t − 1)y2 ≤ 0,

⇐⇒ t(t − 1)(x − y)2 ≤ 0,
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Convex functions

Equivalent definition
A function f is convex on U if and only if its epigraph E is convex, where
E = {(x , y) ∈ U | f (x) ≤ y}.

The epigraph is the blue domain, which is convex. Consider this result as an exercise.
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Concavity

Remark
Let U be an on empty set of a vectorial space (U = Rn). A function
f : U → R is said to be concave if, for every (u, v) ∈ U and for all
t ∈ [0, 1], we have :

f (tu + (1− t)v) ≥ tf (u) + (1− t)f (v).

If f is concave, then −f is a convex function.

The function f defined by f (x) = ln(x) is concave.
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Convex Functions

1 Given two convex functions f and g defined on U , the sum f + g is
also a convex function.

2 If f is an increasing and convex function, g a convex function, then
f ◦ g(x) is convex.

3 If f and g are convex functions, then h defined by
h(u) = max (f (u), g(u)) is also convex

Exercise
Proove the two first points using the definition of convexity.
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Correction

1 For this one, you have to notice that (f + g)(x) = f (x) + g(x) and
apply the definition of convexity

2

g(tx + (1− t)y)) ≤ tg(x) + (1− t)g(y)
f (g(tx + (1− t)y))) ≤ f (tg(x) + (1− t)g(y))
f (g(tx + (1− t)y))) ≤ tf (g(x)) + (1− t)f (g(y))
f ◦ g(tx + (1− t)y) ≤ tf ◦ g(x) + (1− t)f ◦ g(y)

On applique successivement (1) la convexité de g puis (2) utilise la
croissance de la fonction f et enfin (3) utilise la convexité de la
fonction f
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Convex Loss Functions
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Convexity and differentiability

Proposition
Let f be a continuously differentiable function (C1) on U . Then f is
convex if and only if, for all (u, v) ∈ U , we have :

f (v) ≥ f (u) +∇f (u)(v − u).

Equivalently if and only if, for all (u, v) ∈ U , we have :

(∇f (v)−∇f (u))(v − u) ≥ 0

Try to proove the previous proposition using the definition of convexity.
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Convexity and differentiability

Definition
Let f be an application of class C2 on U and let H be the matrix of the
application ∇2f (The Hessian of f ). Then f is said to convex if :
• ∇2f (u) ≥ 0 for all u ∈ U .
• H is a positive semi definite (PSD), i.e, ∀u ∈ U

tuHu ≥ 0.

Recall
A matrix H is said to be PSD if and only if all of it’s eigenvalues are
non-negative.
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Convexity and differentiability

Interpretation
Having positive eigenvalues means that the gradient is an increasing
function along each directions of the space.
Furthermore, a function is convex if and only if its gradient is an
increasing function along each direction.

We consider a 2× 2 matrix A :

A =
(

a b
c d

)
,

where a, b, c, d are real numbers. We denote by λ1, λ2 the eigenvalues of
this matrix (roots of the polynom det(A− XI2)).
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Convexity and differentiability

We’ll show why, for a 2× 2 matrix, we have the following equivalence :
A is PSD ⇐⇒ Tr(A) ≥ 0 and det(A) ≥ 0.

• We have det(A− XI2)) = x2 − (a + c)x + ad − bc. The roots of this
polynom are exactly the eigenvalues of the matrix A (by definition), so

det(A− XI2) = (x − λ1)(x − λ2) = x2 − (λ1 + λ2)x + λ1λ2.

So we have, for all x ∈ R :

x2 − (a + c)x + ad − bc = x2 − (λ1 + λ2)x + λ1λ2.

It implies : λ1 + λ2 = a + c = Tr(A) and
λ1λ2 = ad − bc = det(A).
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Convexity and differentiability

• (⇒) If the eigenvalues are positive, we immediatly see that both :

Tr(A) > 0 and det(A) ≥ 0.

(⇐) Conversly, if det(A) ≥ 0 it means that the two eigenvalues have the
same sign. Moreover, if the trace is positive then the two eigenvalues are
positive.

Remark
A matrix A is said to be NSD (Negative Semi-Definite) if its eigenvalues
are non-positive.
A 2× 2 matrix A is NSD if we have :

Tr(A) < 0 and det(A) ≥ 0.

G. Metzler OOR Course Master 46 / 107



Mathematical Background and Recall
Convex Problems

Algorithm

Norms and convex sets
Derivatives of a function

Examples

• If for all i = 1, . . . , n, λi ≥ 0, then H = diag(λi ) is PSD.
• The function f : Rn → Rn defined by f (x1, . . . , xn) =

∑n
i=1 x2

i is
convex.

Exercises
Show that the function f : R2 → R defined by
f (x , y) = 2x2 + 2xy + 2y2 is convex.
Show that the function f : R3 → R defined by
f (x , y , z) = 5x2 + 2

√
2xy + 6y2 + 3z2 is convex.

Show that the function f : Rn → R defined by
f (x) = log

(∑N
i=1 exi

)
is convex.
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Correction 1/6

For the two first functions, you have to check that all the eigenvalues of
the Hessian Matrix are non-negative. So you need : 1) to compute the
Hessian Matrix of the given function and 2) to compute the eigenvalues
of this last. Remember that the eigenvalues of a given matrix H are given
by finding the roots of the following polynom in λ :

det(H − λId )
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Correction 2/6

• For the first function, the Hessian Matrix is given by :

Hf (x , y) =
(

4 2
2 4

)
,

The eigenvalues are then given by finding the roots of the polynom :

det (Hf (x , y)− λI2) = det
(

4− λ 2
2 4− λ

)
= (4−λ)2−22 = (λ−2)(λ−6).

The eigenvalues are 2 and 6, they are non-negative so the function f is
convex.
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Correction 3/6

• For the second function, the Hessian Matrix is given by :

Hf (x , y) =

 10 2
√
2 0

2
√
2 12 0

0 0 6

 ,

The eigenvalues are then given by finding the roots of the polynom :

det (Hf (x , y)− λI3) = det

 10− λ 2
√
2 0

2
√
2 12− λ 0

0 0 6− λ

 .

det (Hf (x , y)− λI3) = (6−λ)[(10−λ)(12−λ)−8] = (6−λ)(λ−8)(λ−14).

The eigenvalues are 6, 8 and 14, they are non-negative so the function f
is convex.
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Correction 4/6

• For this last function, we will use the expression of the Jacobian
previously computed :

Jf (x) = 1∑n
i=1 exp(xi )

(exp(x1, ..., exp(xn))

Then we compute the Hessian, we will seperate the diagonal terms with
the non-diagonal one. For convenience, we will set zi = exp(xi ),
Z =

∑n
i=1 exp(xi ) and z = (z1, ..., zn).

Hf (x , y)(i,j) =


ziZ − z2

i
Z 2 if i = j

−zizj
Z 2 if i 6= j
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Correction 5/6

Using the previous notations, we can write :

Hf (x , y)(i,j) = 1
Z diag(z)− 1

Z 2 zzT .

To proove that this function is convex, we will show that for vector
u ∈ Rn we have uT Hf u ≥ 0.

uT Hf u = 1
Z 2

( n∑
i=1

u2
i zi

)( n∑
i=1

zi

)
−

( n∑
i=1

uizi

)2
 .

We need to show that is expression is non-negative. For that, we use the
Cauchy-Schwarz Inequality. So we will introduce inner product and
norms.

G. Metzler OOR Course Master 52 / 107



Mathematical Background and Recall
Convex Problems

Algorithm

Norms and convex sets
Derivatives of a function

Correction 6/6

Note that :
∑n

i=1 u2
i zi = ‖ui

√zi‖2
2,
∑n

i=1 zi = ‖√zi‖2
2 and(∑n

i=1 uizi
)2 = ‖uizi‖2

2. So that :

uT Hf u = 1
Z 2
(
‖u
√

z‖‖
√

z‖ − 〈u
√

z ,
√

z〉2
)
.

We can bound the inner product as follow :

〈u
√

z ,
√

z〉2 ≤ ‖u
√

z‖‖
√

z‖.

We conclude that :
uT Hf u ≥ 0.
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Condition of Optimality

Definition
Let f : Rn → R be a continuous function. We say that u ∈ Rn is a local
minimum of f is it exists a neighborhood V ⊂ Rn of u such that :

f (u) ≤ f (v), ∀v ∈ V .

u is a global minimum of the function f if and only if :

f (u) ≤ f (v), ∀v ∈ Rn.
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• x1 and x2 are two local minima of f .
• x2 is the global minimum of the function f
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Condition of Optimality

Proposition : - Euler’s Equation -
Let f : Rn → R be a continuous function and differentiable at u ∈ Rn. If
u is a local minimum then we have : ∇f (u) = 0.

Proof : In fact, using the definition : ∀v ∈ Rn,∃t > 0 such that
u + tv ∈ V a neighborhood of u.

f (u) ≤ f (u + tv) = f (u) +∇f (u)(tv) + tv ε(tv), t � 1
⇐⇒ 0 ≤ ∇f (u)(tv) + tv ε(tv)

Dividing by t > 0 and taking the limit t → 0 we have : 0 ≤ ∇f (u)v .
Same thing by replacing v → −v we have 0 ≤ −∇f (u)v .
So ∀v ∈ Rn, ∇f (u)v = 0⇒ ∇f (u) = 0.
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Condition of Optimality

The solution of Euler’s Equation gives us the points where the function f
reaches a local extremum (a minimum or maximum (local or global)).

Given a solution u of ∇f (u) = 0, we can say that :
• u is local minimum if ∇2f (u) = Hf (u) ≥ 0, i.e. the Hessian matrix
evaluated at the point u is PSD. This point is a global minimum if
the function is convex everywhere or if for all v 6= u we have
f (u) ≤ f (v).

• u is local maximum if ∇2f (u) = Hf (u) ≤ 0, i.e. the Hessian matrix
evaluated at the point u is NSD. This point is a global maximum if
the function is concave everywhere or if for all v 6= u we have
f (u) ≥ f (v).
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Condition of Optimality

Definition
Let f : Rn → R be a continuous function and U a non empty set. We say
that f has a relative minimum u if

f (u) ≤ f (v), ∀v ∈ U .

Proposition : - Euler’s Inequation -
Let f : Rn → R be a continuous function and U a non empty and convex
set. Furthermore, let u ∈ U be a relative minimum of f . If f is
differentiable at u we have : ∇f (u)(v − u) ≥ 0 ∀v ∈ U .
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Exercise
• Let f defined by f (x , y) = (4− 2y)2 + 5x2 + x + 3y + 4xy

1 Is the function f convex ? (without calculous).
2 What is the global minimum of f ?

• Let f defined by f (x , y) = 2x2 + 4(y − 2)2 + 4x + 6y − 2xy + 2y3.
1 Is f convex ?
2 Give a condition on y so that f is convex.
3 (Optional) For the previous condition on y , find the local minimum

of f
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1) • The function f is convex. In fact, we have :

Hf (x ,y) =


∂2f
∂2x

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂2y

 =
(

10 4
4 8

)
.

• Because f is convex, if we find (x , y) such that ∇f (x , y) = 0 then
(x , y) is the Argmin of f .

Jf (x ,y) =
(
10x + 4y + 1, 4x + 8y − 13

)
= (0, 0).

The solution is (x , y) = (−15
16 ,

67
32 ).
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2) • Same as before, we calculate the Hessian matrix :

Hf (x ,y) =
(

4 −2
−2 12y + 8

)
.

We have Tr(H) = 12y + 12 and det(H) = 48y + 28. These
quantities are both postive if and only if y ≥ −28

48 = − 7
12 .

• So the function is not convex on R2, but it is on R× [− 7
12 ,∞[.
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• You have to solve the following system :

4x + 4− 2y = 0,
6y2 + 8y − 2x − 10 = 0.

4x + 4− 2y = 0,
6y2 + 7y − 8 = 0.

You solve the following system, keeping the appropriate value of y and
then you calculate x .
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The basic formulation

Given a vectorial space E and a function f : E → R, an optimization
problem consists of solving the following problem :

min
x∈E

f (x).

• The function f is sometimes called the cost function.

• The function f can represent the cost for a company to store a series of
products (represented by the parameter x). It can also represent a risk
that is taken by making decisions.

• Most of times, we want to minimize the function f under some
contraints.
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Linear Regression 1/3

Let us first consider the linear regression :

• Given a vector response Y ∈ Rn and feature vectors
X = (x1, . . . , xn)T , xi ∈ Rm where m + 1 < n.
We’d like to find a vector β that explain the value of Y using X with the
following model

Y = Xβ + ε, where ε ∼ N (0, σ2).

• ε represent the error due to the model. To find the best vector β we
have to minimize this error, i.e. to solve :

min
β∈Rm+1

ε‖Y − Xβ‖2
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Linear Regression 3/3

We easilly check that is problem is convex : as we have seen before

∇β ε = −2XT (Y − Xβ),

and
∇2
β = 2XT X ,

which is positive semi definite.
The solution given by β = (XT X )−1XT Y .

→ In this case, an analytical solution exist to solve this problem of
minimization. Unfortunately this is not always the case.
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Logistic regression 1/2
Let us consider now the logistic regression problem which is quite similar
as the previous one.
We want to find a model that predict the class of our data.

→ An example of straight line that separate the two classes using logistic
regression.
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Logistic Regression 2/2

• To predict the class of the individual we use a model of the form :

g(x , a) = log
(

P(X | Y = 1)
1− P(X | Y = 1)

)
= a0 + a1x1 + . . . + amxm.

• The parameters of the model are astimated by maximizing the
(log-)likelihood of our data.

l(x , a) =
n∑

i=1
yi log(pi ) + (1− yi ) log(1− pi ), pi = 1

1 + exp(−
∑m

j=1 ajxij)
.

→ There is no analytical solution to this problem. To solve it, we need a
way to approximate it step by step.

G. Metzler OOR Course Master 70 / 107



Mathematical Background and Recall
Convex Problems

Algorithm

Introduction
Optimal Step
Newton’s Method

Algorithms

G. Metzler OOR Course Master 71 / 107



Mathematical Background and Recall
Convex Problems

Algorithm

Introduction
Optimal Step
Newton’s Method

Generality

Given a function f and a non empty set U and knowing there is a
solution to the problem : f (u) = Inf

v∈U
f (v).

Idea : build a serie (uk)k∈N which converges to u.

Algorithm :

• Take an initial value u0.
• uk → uk+1 : Choose a

direction dk and minimize
the function f along this
direction.

• Solve
Argmin
ρ>0

f (uk − ρdk) = ρk

• uk+1 = uk − ρkdk
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Generality : direction of descent

How to choose the direction dk ?

→ Some ways seem to be faster than others to reach the solution
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Generality : direction of descent

Recall that f (uk − ρdk) = f (uk)− ρ〈∇f (uk), dk〉+ ρε(ρ) when ρ is
closed to 0.
To minimize f we have to choose the direction dk that maximize the
scalar product 〈∇f (uk), dk〉 (we suppose, without loss of generality,
‖dk‖ = 1).
Due to Cauchy-Scwhartz Inequality we have dk = ∇f (uk). So the
previous algorithm become :

• Choose u0 to initialize the algorithm,
• set uk+1 = uk − ρk∇f (uk) for ρk > 0
• till ‖∇f (uk)‖ ≤ ε.
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Generality

• It exists several ways to reach the solution using the gradient (or more)
of the function we want to optimize.
• We will focus on gradient descent algorithms and their variants.
(Gradient Descent, Line Search, Newton’s Method,...)

Remark
It exists other algorithms which are able to solve that kind of problem
without using the derivatives of the function.
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Gradient descent : choose the step 1/3

G. Metzler OOR Course Master 76 / 107



Mathematical Background and Recall
Convex Problems

Algorithm

Introduction
Optimal Step
Newton’s Method

Gradient descent : choose the step 2/3
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Gradient descent : choose the step 3/3

• If the step is too large, the sequence of iterates will oscillates near the
global optimum.

• If the step is too small, the algorithm will need a large number of
iterations to reach the solution.

→ We will see different algorithm to choose the step for the gradient
descents method.
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Gradient descent : with optimal step

A basic idea is, at each iteration, to choose the step in order to minimize
the objective function along a given direction. The following is presented
bellow :

• Choose u0 to initialize the algorithm,
• for k = 0, 1, . . . solve Argmin

ρ>0
f (uk − ρ∇f (uk)),

• set uk+1 = uk − ρk∇f (uk)
• till ‖∇f (uk)‖ ≤ ε.

This algorithm is called the Gradient Descent with optimal step.
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Gradient descent : with optimal step

Definition
Let f be a convex and continuously differentiable function on Rn. We say
that f is strongly convex or α-elliptical if it exists α > 0 such that

〈∇f (v)−∇f (u), v − u〉 ≥ α‖v − u‖, ∀u, v ∈ Rn

Proposition
If f is a strongly convex function with respect to the above definition so
the Gradient Descent with optimal step converge.

→ What can we say about 〈∇f (uk+1),∇f (uk)〉 using
ρk = Argmin

ρ>0
f (uk − ρdk) ?
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Gradient descent : with optimal step

If ρk minimize f (uk − ρkdk) we have :

∂

∂ρ
f (uk − ρ∇f (uk))|ρ=ρk

= 0,

⇐⇒ 〈∇f (uk − ρk∇f (uk),∇f (uk)〉 = 0,

⇐⇒ 〈∇f (uk+1),∇f (uk)〉 = 0.

The last equality is called the optimality condition.

Let us show how it works on an example.
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Gradient descent : with optimal step

Let A be a symetric and positive definite matrix (so all of it’s eigenvalues
are positive and AT = A) and b ∈ Rn. We want to write the previous
algorithm at the iteration k > 0 for the function f defined by

f (v) = 1
2 〈Av , v〉 − 〈b, v〉

• Calculate the gradient : ∇f (uk) = Auk − b
• We then have to solve : ρk = Argmin

ρ>0
f (uk − ρdk). The optimality

condition gives us : 〈∇f (uk),∇f (uk+1)〉 = 0

∇f (uk+1) = Auk+1 − b
= A(uk − ρk(Auk − b)− b
= Auk − b − ρkA(Auk − b)
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Gradient descent : with optimal step

⇒ 〈Auk − b,Auk − b − ρkA(Auk − b)〉 = 0
⇒ 〈Auk − b,Auk − b〉 = 〈Auk − b, ρkA(Auk − b)〉

⇒ ρk = 〈Auk − b,Auk − b〉
〈Auk − b,A(Auk − b)〉

We finally have the following algorithm :
• Initialize u0 ∈ Rn

• At each step, calculate ρk = ‖Auk − b‖2

‖Auk − b‖2
A

• Set uk+1 = uk − ρk(Auk − b)
• Stop if ‖∇J(uk+1)‖ = ‖Auk+1 − b‖ ≤ ε
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Gradient descent : with optimal step

Exercise

Consider the matrices A =
(
6 2
2 4

)
and b =

(
2
3

)
and the application f

defined by f (v) = 〈Av , v〉+ 〈b, v〉
1 Explain why f in convex.
2 Solve the problem u = Argmin

v∈R2
f (v).

3 For a given vector uk , calculate ∇fuk and ρk .
4 Implement the presented method to solve this problem.
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Correction

• f is defined as a quadratic function where A is PSD, so f is convex.
• We have to solve :

Jf (x ,y) =
(
12x + 4y + 2, 4x + 8y + 3

)
= (0, 0).

The solution is (−120 ,
−7
20 ).

• Let set uk = (v1, v2) then :

∇fuk =
(
12v1 + 4v2 + 2, 4v1 + 8v2 + 3

)
,

and ρk = ‖2Auk − b‖2
2

‖2Auk − b‖2A
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Exercise
Let f be the function defined by : f (x , y) = 4x2 − 4xy + 2y2.

1 Is the function f convex ?
2 Apply the gradient descent with optimal step to calculate the three

first step of the algorithm using (x0, y0) = (1, 1).
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Correction 1/3

• The function f can be rewritten as : f (u) = 1
2uT Au − bT u, where

b = (0, 0)T and A =
(

8 −4
−4 4

)
. The function f is a quadratic

function, furthermore the matrix A is PSD so the function f is convex.
• The optimal learning rate is given by :

ρk
‖Auk − b‖2

2
‖Auk − b‖2

A
,

where the matrix A and the vector b were previously introduced.
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Correction 2/3

• The function f can be rewritten as : f (u) = 1
2uT Au − bT u, where

b = (0 0)T and A =
(

8 −4
−4 4

)
. The function f is a quadratic

function, furthermore the matrix A is PSD so the function f is convex.
• The optimal learning rate is given by :

ρk = ‖Auk − b‖2
2

‖Auk − b‖2
A
,

where the matrix A and the vector b were previously introduced.
Recall that the process is defined by :

uk+1 = uk − ρk∇f (uk).

We will now apply this process to compute the three first iterations.

G. Metzler OOR Course Master 88 / 107



Mathematical Background and Recall
Convex Problems

Algorithm

Introduction
Optimal Step
Newton’s Method

Correction 3/3

1 For the first iteration : ρ0 = ‖Au0‖2
2

‖Au0‖2
A

= 16
128 = 1

8 . And

∇f (u0) = Au0 = (4 0)T .

u1 = (1 1)T − 1
8 (4 0)T = (0.5 1)T .

2 For the second iteration : ∇f (u1) = Au1 = (0 2)T . The learning rate

is given by : ρ1 = ‖Au1‖2
2

‖Au1‖2
A

= 4
16 = 1

4 . Thus u2 is given by :

u2 = (0.5 1)T − 1
4 (0 2)T = (0.5 0.5)T .

3 For the third iteration : ∇f (u2) = Au2 = (2 0)T . The learning rate is

given by : ρ2 = ‖Au2‖2
2

‖Au2‖2
A

= 4
32 = 1

8 . Thus u3 is given by :

u3 = (0.5 0.5)T − 1
8 (2 0)T = (0.25 0.5)T .
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Gradient Descent : Armijo Criterium

An other method to find the best learning rate is to use a linear search
process. The idea is, given a θ ∈]0, 1[, choose the greatest ρ such that :

f (uk − ρ∇f (uk)) ≤ f (uk)− θρ‖∇f (uk)‖2.

It means : at each step, we reduce the function’s value of at least
θ‖∇f (uk)‖.

Armijo’s condition :
Choose α0 > 0 and 0 < θ < 1,
Choose the greatest s ∈ Z such that :

f (uk − α02s∇f (uk)) ≤ f (uk)− 2sα0θ‖∇f (uk)‖2.

Set uk+1 ← uk − α02s∇f (uk).
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Gradient Descent : Armijo Criterium and Wolfe’s Criteria

Theorem
If the function f is strictly convex and if its gradient ∇f is Lipschitz, then
the Armijo’s algorithm converge.

If we add the following condition to the previous one, given
0 < θ < η < 1 :

〈∇f (uk),∇f (uk − ρ∇f (uk))〉 ≥ η‖∇f (uk)‖2,

we get the Wolfe’s Criteria
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Conjugate Gradient

Definition
Let A be a symetric positive and definite matrix and u, v two vectors.
u, v are conjugate with respect to A if 〈Au, v〉 = 0.
If A = I we say that they are orthogonal.

Let A be a symetric positive and definite matrix and f the function
defined by

f (v) = 1
2 〈Av , v〉 − 〈b, v〉.

→ The objective of this algorithm is to build a serie of conjugate descent
direction. Let us see how it is built in pratice.
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Conjugate Gradient

• Let u0 ∈ Rn. We define a first direction of descent d0 = ∇f (u0) for
instance and we minimize f along this direction, i.e we solve :

Argmin
α0

f (u0 − α0d0).

Solving this problem we get :

α0 = 〈∇f (u0), d0〉
〈Ad0, d0, 〉

.

And we set u1 = u0 − α0d0
•To build d1 = ∇f (u1) + β0d0 we have to calculate the value of β0 ∈ R
such that

〈Ad1, d0〉 = 0.
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Conjugate Gradient

• We then have to solve 〈A∇f (u1), d0〉+ 〈Aβ0d0, d0〉 = 0. The solution
is given by

β0 = −〈A∇f (u1), d0〉
〈Ad0, d0〉

.

Once it’s done, you’ll do as before.

You set α1 = Argmin
α

f (u1 − αd1).

Set u2 = u1 − α1d1. And so on ...
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Conjugate Gradient : Summary

Algorithm :
Choose u0 ∈ Rn and d0 = ∇f (u0).

Set α0 = 〈∇f (u0), d0〉
〈Ad0, d0, 〉

and u1 = u0 − α0d0.

β0 = −〈A∇f (u1), d0〉
〈Ad0, d0〉

.

For k ≥ 1 do,
Set dk = ∇f (uk) + βk−1dk−1.

Set αk = 〈∇f (uk), dk〉
〈Adk , dk , 〉

and uk+1 = uk − αkdk .

Set βk = 〈A∇f (uk+1), dk〉
〈Adk , dk〉

Untill ‖∇f (uk+1)‖ ≤ ε.
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Conjugate Gradient : Results

Proposition
For all 1 ≤ k ≤ n such that ∇f (u0), . . . ,∇f (un) are non equal to zero,
we have the following relations for all 0 ≤ l ≤ k − 1 :

〈∇f (uk),∇f (ul )〉 = 0

and
〈Adk , dl〉 = 0.

Theorem
If A is a symetric positive and definite matrix, then the conjugate
gradient method converges with at most n steps.

→ You can try to prove the proposition by induction. (At home)
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Newton’s Method

The Newton’s Method is also an algorithm of gradient descent. It uses
the second derivative to refine the direction of the descent as follow :

uk+1 ← uk −
(
∇2f (uk)

)−1 · ∇f (uk).

It requires less iteration to converge to the solution compared to the
other gradient descent methods.
Harder to implement, requires the inverse of the Hessian of the
function we want to optimize (Θ(n3)).
The Hessian is not always invertible at a given point.
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Newton’s Method
Let’s come back to the logistic regression.
We want to find a model that predict the class of our data.

→ An example of straight line that separate the two classes using logistic
regression.
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Newton’s Method

In the case of Logistic Regression, we want to maximize the
Log-Likelihood of our data, noted l(x , a) where x refers to the data and a
the parameters of our model.
Remember that a possible solution is given by solving the equation :

∇al(x , a) = ∇a

( n∑
i=1

yi log(pi ) + (1− yi ) log(1− pi )
)

= 0,

where p =
(
1 + exp(−aT x)

)−1
.

→ Explain why the log-likelihood is concave. Calculate the first and
second derivatives of the function l .
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Newton’s Method

If we apply the Newton’s Method to the logistic regression we have

∇al(x , a) =
n∑

i=1
(yi − pi ) xi , ∇2

al(x , a) = −
n∑

i=1
pi (1− pi )xixT

i

We can then write the algorithm :
Choose a0,
Calculate ∇al(x , a) and

(
∇2

al(x , a)
)−1

Set ak+1 ← ak −
(
∇2

al(x , a)
)−1∇al(x , a)

Stop when ‖∇al(x , a)‖ ≤ ε.
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Quasi-Newton’s Method : Motivation

The main drawback of the Newton’s Method is calculous of the inverse
of the Hessian matrix H−1

k . To avoid it, an other process is proposed as
follow

uk+1 = uk −Mk∇f (uk),
Mk+1 = Mk + Ck .

The idea is to approximate the H−1
k by matrix Mk at which, we add a

matrix of correction Ck at each step.
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Quasi-Newton’s Method : Motivation

Recall that :

∇f (uk) = ∇f (uk+1 + (uk − uk+1)) ∼ ∇f (uk+1) +∇2f (uk+1)(uk − uk+1),

we then have :(
∇2f (uk+1)

)−1 (∇f (uk+1)−∇f (uk)) ∼ uk+1 − uk .

If we set : Mk+1 =
(
∇2f (uk+1)

)−1
, γk = ∇f (uk+1)−∇f (uk) and

δk = uk+1 − uk , we get the Quasi Newton’s Condition :

Mk+1γk = δk
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Quasi-Newton’s Method : Davidon-Fletcher-Powell

• The matrix of correction Ck is supposed to be of rank 1. So we can
rewrite Ck as vkvT

k where vk ∈ Rn.
• The update become : Mk+1 = Mk + vkvT

k .
• The Quasi Newton’s Condition gives :

(Mk + vkvT
k )γk = δk ,

Mkγk + vkvT
k γk = δk ,

vkvT
k γk = δk −Mkγk ,

vk = δk −Mkγk

vT
k γk

.

And the second line gives us : vT
k γk = (γkδk − γkMkγk)1/2

.
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Quasi-Newton’s Method : Broyden Algorithm

Broyden Algorithm
Algorithm

Initialize u0 ∈ Rn and M0 (usually M0 = Id),
for k ≥ 0 do

set ρk = Argmin
ρ∈R

f (uk − ρMk∇f (uk)),

set uk+1 = uk − ρkMk∇f (uk),

setMk+1 = Mk + (δk −Mkγk)(δk −Mkγk)T

(δk −Mkγk)T γk
,

Untill ‖∇f (uk+1)‖ ≤ ε.
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Quasi-Newton’s Method : BFGS

This method was proposed by Broyden-Fletcher-Goldfarb-Shanno.
Instead of taking a matrix of correction Ck of rank 1. They suppose this
matrix is of rank 2.
The inverse of the Hessian, at each step, is then approximate by :

Mk+1 = Mk +
[
1 + 〈Mkγk , γk〉

〈δk , γk〉

]
δkδ

T
k

〈δk , γk〉
− 〈δk , γk〉Mk + Mkγkδ

T
k

〈δk , γk〉
.

The algorithm is the same as the previous one.
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Conclusion

• Gradient descent with a constant learning rate : Easy to
implement and the algorithm works fastly (time). Its convergence
depends on the value of the learning rate. It can take several
iterations to converge (if the learning rate is to small).

• Gradient descent with an optimal step : Need less iterations to
converge, but an iteration takes more time to be done (time to
calculate the optimal learning rate). Very fast for quadratic function !

• Newton’s Method : Faster than the two others. Requires less
iterations. But we need to compute the Hessian matrix and to invert
it (which is not always possible). In practice we use in low dimension
problem and to solve a logistic regression problem.
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To go further

It exists several other algorithms for convex optimization which consists
of a variant the gradient descent one. One of them is the Adam
Gradient Descent which is commonly used in neural networks. Indeed,
this last seems to be really fast in practice.
You can also found other algorithms for constrained convex
optimization to solve problem as follows :

min
x∈Rn

f (x)

s.t. 0 ≤ xi ≤ bi ,∀i = 1, ..., n,

using Projected gradient descent or Uzawa Algorithm, but for this last,
you need the notion of duality that you will see later in this course.
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