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Splines
I Most smooths covered here are based on splines. Here’s the

basic idea . . .

1.5 2.0 2.5 3.0

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

size

w
e

a
r

I Mathematically the red curve is the function minimizing∑
i

(yi − f (xi))
2 + λ

∫
f ′′(x)2dx.

I We don’t pre-specify a basis for f – it arises naturally from the
minimization.

Splines have variable stiffness

I Varying the flexibility of the strip (i.e. varying λ) changes the
spline function curve.
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I Irrespective of λ the spline functions always have the same basis.
I But there is one basis function per data point.

Penalized regression splines

I A basis function per data point is computationally wasteful,
when penalization ensures that the effective degrees of freedom
will be much smaller than this.

I Penalized regression splines simply use fewer spline basis
functions. There are two alternatives:

1. Choose a representative subset of your data (the ‘knots’), and
create the spline basis as if smoothing only those data. Once you
have the basis, use it to smooth all the data.

2. Choose how many basis functions are to be used and then solve
the problem of finding the set of this many basis functions that
will optimally approximate a full spline.

I’ll refer to 1 as knot based and 2 as eigen based.



Eigen basis example

I We saw knot based regression spline bases already. Here is an
illustration of an eigen-basis ("tp" in mgcv).
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Why is this rank reduction OK?

I Consider a spline, f , with k equally spaced knots.
I If used for interpolation the approximation error will be O(k−4).
I If we use the spline basis for unpenalized regression with n data,

the standard deviation of f will be O(
√

k/n). Its bias will be
inherited from the approximation error: O(k−4).

I So if we want neither bias nor sampling error to dominate then
we need to set k = O(n1/9), so that both become O(n−4/9).

I With penalization k = O(n1/5) is better.
I The point is that n = O(n) is pointlessly wasteful. We might as

well use penalized regression splines.

P-splines: "ps", "cp" & "bs"

I These are popular in the literature (very easy to code and sparse,
for example). "ps" and "cp" in mgcv.

I Take an evenly spaced B-spline basis to represent f (x).
I Instead of penalizing something like

∫
f ′′(x)2dx, use a discrete

penalty directly on the basis coefficients. e.g.

k−1∑
j=2

(βj+1 − 2βj + βj−1)
2.

I Can mix-and-match order of penalty and basis.
I Actually sparsity and mix-and-match almost as easy with

derivative based penalties ("bs" in mgcv).

P-spline illustration
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An adaptive smoother

I Can let the p-spline penalty vary with the predictor. e.g.

Pa =

K−1∑
k=2

ωk(βk−1 − 2βk + βk+1)
2 = βTDTdiag(ω)Dβ

where D =

 1 −2 1 0 ·
0 1 −2 1 ·
. . . . .

.

I Now let ωk vary smoothly with k, using a B-spline basis, so that
ω = Bλ, where λ is the vector of basis coefficients.

I So, writing B·k for the kth column of B we have

βTDTdiag(ω)Dβ =
∑

k

λkβ
TDTdiag(B·k)Dβ =

∑
k

λkβ
TSkβ.

1D smooths compared
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I So cubic regression splines, P-splines and thin plate regression
splines give very similar results.

I A cyclic smoother is a little different, of course.
I An adaptive smoother can look very different.

Beyond 1D: Isotropic smooths

I One way of generalizing splines from 1D to several D is to turn
the flexible strip into a flexible sheet (hyper sheet).

I This results in a thin plate spline. It is an isotropic smooth.
I Isotropy may be appropriate when different covariates are

naturally on the same scale.
I In mgcv terms like s(x,z) generate such smooths.
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Thin plate splines

I In 2 dimensions a thin plate spline is the function minimizing∑
i

{yi − f (xi, zi)}2 + λ

∫
f 2
xx + 2f 2

xz + f 2
zzdxdz

I This generalizes to any number of dimensions, d, and any order
of differential, m, such that 2m > d + 1.

I Actually thin plate splines are a special case of Duchon splines
(Duchon, 1977). The general case allows further penalization of
higher frequencies of the derivative field and relaxation of the
restriction on the derivative order, m.

I Duchon splines have a basis – quadratic penalty representation,
and eigen based rank versions can be produced. mgcv
implements them as bases "ds" and "tp".



Thin plate regression spline illustration

I The eigen approximation is quite effective. The following figure
compares reconstructions of of the true function on the left,
using and eigen based thin plate regression spline (middle), and
one based on choosing knots. Both are rank 16 approximations.
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Smoothing on the globe

I Thin plate spline like smoothers can also be constructed for the
sphere [s(la,lo,bs="sos")]. . .

 −
3
0
 

 −20 
 −10 

 0 

 10 

 20 

 30 

 40 

 4
0
 

 50 

 5
0
 

 60 

 70 

 80 

 −160 
 −160 

 −140 

 −120 

 −100 

 −80 

 −
60 

 −
40 

 −20  0
 

 2
0
 

 4
0
 

 60 

 80 

 100 

 120 

 1
4
0
 

 1
6
0
 

 −0.8 

 −0.6 

 −0.4 

 −0.2 

 0
 

 0
.2

 

 0
.4

 

 0
.6

 

 0
.8

 

 −
0
.8

 

 −
0
.6

 

 −
0
.4

 

 −
0
.2

 

 0 

 0.2 
 0.4 

 0.6 

 0.8 

 1 

 −
20 

 −10 

 0
 

 0
 

 10 

 10 

 20 

 20 

 30 

 40 

 50 

 60 

 70 

 80 

 −
1
6
0
 

 −
1
4
0
 

 −120 

 −100 

 −80 

 −
60 

 −
4
0
 

 −
2
0
  0

  20 

 40 

 60 

 80 

 100 

 120 

 140 

 160 

 1
8
0
 

Gaussian process smoothers

I Suppose f (x) is a random field with correlation between f (xi)
and f (xi) of c(‖xi − xj‖). To produce this correlation, let
f (x) = (1, xT)β +

∑
i bic(‖x− xi‖) where b ∼ N(0, (λC)−1),

and Cij = c(‖xi − xj‖).
I So f has a basis penalty representation, and eigen based rank

reduction is possible. ("gp" in mgcv.)
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Discrete spatial smoothing: Markov random fields

I Sometimes data come allocated to irregular partitions of space
(e.g. administrative regions).

I Markov random fields are popular for smoothing such data.
I The smooth has a coefficient, γi, for each region.
I The neighbouring regions of each region are found, and a

quadratic penalty constructed. If Ni is the set of indices of the
neighbours of region i, then the simplest penalty is∑

i

(
∑
j∈Ni

(γi − γj))
2

I Eigen based rank reduction is also effective here.



Markov random field illustration
data(columb.polys) ## district shapes list
xt <- list(polys=columb.polys)
gam(crime ~ s(district,bs="mrf",xt=xt),data=columb)
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Finite area smoothing

I Suppose we want to smooth samples from this function
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I . . . without ‘smoothing across’ the gap in the middle?
I Let’s use a soap film . . .
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The boundary interpolating film
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Soap film smoothers s(...,bs="so")

I Mathematically this smoother turns out to have a basis-penalty
representation.

I It also turns out to work. . .
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Scale invariant smoothing: tensor product smooths
I Isotropic smooths assume that a unit change in one variable is

equivalent to a unit change in another variable, in terms of
function variability.

I When this is not the case, isotropic smooths can be poor.
I Tensor product smooths generalize to multiple dimensions using

a lattice of bendy strips, with different flexibility in different
directions.
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Tensor product basis construction
I Make a spline fz(z) (parameterized in terms of function values) a

function of x by letting its coefficients vary smoothly with x
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The complete tensor product smooth
I Use a spline fx(x) for each fz coefficient (left).
I Symmetric construction: can exchange roles of fx and fz (right).
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Tensor product penalties - one per dimension
I x-wiggliness: sum fx spline penalties over red curves.
I z-wiggliness: sum fz spline penalties over green curves.
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Tensor product expressions

I Let bzj(z) and bxi(x) be the basis functions for fz and fx with
penalty matrices Sx and Sz. The marginal smoothers.

I The tensor product basis construction shown above gives:

f (x, z) =
∑∑

βijbzj(z)bxi(x)

I With double penalties

βTI⊗ Szβ and βTSx ⊗ Iβ

I The construction generalizes to any number of marginals and
multi-dimensional marginals.

I Can start from any marginal bases & penalties (including
mixtures of types).



Isotropic vs. tensor product comparison
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. . . each figure smooths the same data. The only modification is that x
has been divided by 5 in the bottom row.

Functional ANOVA and ti terms

I The basis for a te tensor product smooth, f (x, z), contains a
subspace of functions of the form f (x) + f (z) (similar applies in
higher dimensions).

I This is because the marginal bases include the constant function
in their span.

I Applying sum-to-zero constraints to the marginal bases before
forming the tensor product smooth removes this f (x) + f (z)
component. See ti() terms in mgcv.

I Such a construction facilitates a ‘mean effect plus interactions’
smooth model.

I e.g. f (x) + f (z) + f (x, z) can be fitted via
ti(x) + ti(z) + ti(x,z), in a stably interpretable
manner. t2 smooths are an alternative. See also Chong Gu’s
book ‘Smoothing Spline ANOVA’.

ti example
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Interactions with parametric effects

I Tensor product terms are smooth interactions. Sometimes an
interaction between a smooth and a parametric term is required.
The by mechanism facilitates this.

I Suppose you want a term f (x)z where x and z are numeric
variables. s(x,by=z) creates such terms (varying coefficient
models/ geographic regression).

I What about interactions with a factor, g?
1. s(x,by=g) creates a smooth of x for each level of g.
2. s(x,by=g,id="foo") does the same, but constrains all the

smoothing parameters to the same value.
3. If g is an ordered factor then no smooth is created for the first

level of g.



The basis dimension

I You have to choose the number of basis functions to use for each
smooth (using the k argument of s or te in mgcv).

I Any default is essentially arbitrary.
I Provided k is not too small its exact value is not critical, as the

smoothing parameters control the actual model complexity.
However

1. if k is too small then you will oversmooth.
2. if k is much too large then computation will be very slow.

I Basic checks are provided in gam.check in mgcv. See also
?choose.k.

Random effect s(...,bs="re")

I Statistically, smooths consist of a basis and a quadratic penalty,
where the penalty matrix can be treated as the generalized
inverse of a covariance matrix.

I They can therefore be estimated as random effects.
I Reversing this, we can treat simple random effects as (zero

dimensional) smooths.
I s(a,b,bs="re") creates a terms with model matrix
model.matrix(~a:b-1) and a scaled identity
penalty/covariance matrix.

I Any number of covariates are possible.
I Function gam.vcomp helps later interpretation by converting

smoothing parameters to variance components.

Summary

I We can treat simple random effects as 0 dimensional smooths.
I In 1 dimension, the choice of basis is not critical. The main

decisions are whether it should by cyclic or not and whether or
not it should be adaptive.

I In 2 dimensions and above the key decision is whether an
isotropic smooth, s, or a scale invariant smooth, ti/te/t2, is
appropriate. (te/i/2 terms may be isotropic in some
marginals.)

I Spatial smoothing may sometimes require more specialized
smoothers (Markov random fields, spherical splines, finite area
smooths).

I The basis dimension is a modelling decision that should be
checked.
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