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Example motivation: London smog 1952

I 5-9 Dec 1952.
I 4-12 thousand

premature deaths.
I Black smoke

(particulates) and
sulphur from
domestic coal fires.

I Clean air act 1956.
I Monitoring from

1961.

Black smoke monitoring. . .
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I 4 decades of daily ‘black smoke’
monitoring at a variable subset of the
2400+ stations shown.

I Started in 1961 to monitor air
pollution (then mostly from coal), in
wake of 1950s smog deaths.

I Epidemiological studies need
estimates of daily exposure away
from stations.

I O(107) measurements and suitable
smooth latent Gaussian models have
O(104) coefficients with 10-30
variance parameters.

Daily BS data
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Black smoke modelling

I A reasonable daily black smoke model is

log(bsi) = f1(yi) + f2(doyi) + f3(dowi)

+ f4(yi,doyi) + f5(yi,dowi) + f6(doyi,dowi)

+ f7(ni,ei) + f8(ni,ei,yi) + f9(ni,ei,doyi) + f10(ni,ei,dowi)

+f11(hi)+f12(T0
i ,T

1
i )+f13(T̄1i, T̄2i)+f14(ri)+αk(i)+bid(i)+ei

The model has around 104 coefficients, and was well beyond
previous model fitting technology.

I Even without worrying about computing time, storing a
107 × 104 model matrix requires nearly a terabyte of memory.

I We need ways to reduce the memory footprint and speed up
computation. First consider some computational practicalities.

The messy realities of parallel computing
1. Hyper-threading can make parallel slower than serial. . .
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2. Dynamic core clock speed management for power efficiency can
make low work thread take most time.

CPU

core 1

slow fast
light workload finished later!

core 2

slow fast
heavy workload finished earlier!

3. Thermal limits: n cores are not n times faster than 1 core.
CPU
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CPU would fry itself!!

4. A floating point operation (flop) may take one or two CPU
cycles, retrieving a number from memory 10 times that.

I Numerical computation is memory bandwidth limited.

Memory bandwidth, Cache, block algorithms

I Cache is small fast access memory between CPU and main
memory.

I Big speed up if most flops involve data already in Cache.
I Consider two 106 flop computations

1. C is a 1000× 1000 matrix, and y a 1000-vector. Compute Cy.
Each of 106 elements of C read once, no re-use.

2. A and B are both 100× 100 matrices. Form AB. Repeatedly
revisits the 2× 104 elements of A and B.

. . . provided A and B fit in Cache, 2 is much faster.
I Structure algorithms around Cache friendly blocks! e.g.[

A11 A12
A21 A22

] [
B11 B12
B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]

Building a scalable method

I We need low memory footprint, multi-core scalability and
numerical stability.

I Here, I’ll give a flavour of what is needed to get the first two.
I In particular the regression computations require

β̂ = (XTWX +
∑

j
λjSj)

−1XTWz

while smoothing parameter selection requires computations
involving log |XTWX +

∑
jλjSj|.

I Pivoted Cholesky decomposition can be made block oriented1 so
that a parallel version works, and we can build computation
around this, if we can obtain XTWX efficiently.

1Lucas 2004, LAPACK working paper



Low memory XTWX updating

I Partition X row-wise into sub-matrices X1,X2, . . ., and partition
W and z correspondingly.

I Forming the blocks Xj one at a time we can use

XTWX =
∑

j

XT
j WjXj

to accumulate XTX without needing to form X whole.
I At same time we can accumulate

XTWz =
∑

j

XT
j Wjzj.

I Note that the operations count for XTWX is O(np2), while the
formation of the elements of X is O(np), so even repeated
formation of the Xj is not a major cost for most bases.

Cheaper XTWX: discrete covariate methods

I Formation of XTWX is the leading order cost: O(np2).
I Lang et al.2 point out that for a single 1D smooth, f (x), the

product XTWX is very efficiently computable if x has only
m� n discrete values.

I As statisticians we should be prepared to discretise x to
m = O(

√
n) bins.

I It is possible to find (novel) efficient computational methods for
the multiple discretised covariate case, both for multiple 1D
smooths and for ‘tensor product’ smooths of multiple covariates
(which also have to be parallelized).

2Lang, Umlauf, Wechselberger, Harttgen & Kneib, 2014, Statistics & Computing.

Simple discrete method example

I For a single smooth, its n× pj model matrix becomes

Xj(i, l) = X̄j(kj(i), l)

where X̄j is an mj × pj matrix evaluating the smooth at the
corresponding gridded values.

I Then, for example

XT
j y = X̄T

j ȳ where ȳl =
∑

kj(i)=l

yi

Cost: O(n) + O(mjpj) – for mj � n this a factor of pj saving.
I In general all required (cross)products are a factor of pj more

efficient, where pj is the largest (marginal) basis dimension
involved in the term.

bam(...,discrete=TRUE)
I We also need a somewhat different iteration to the fitting

iterations covered so far (omitted here).
I In the end the black smoke model could be estimated in an hour

on a 10 core workstation using the methods built in to
mgcv:bam(...,discrete=TRUE).3

I Map shows average daily probability of exceeding current EU
daily limit, for 4 years in the 1960s.
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3Wood et al. (2017) JASA


