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Distributional vs quantile regression

In distributional regression we want a good model for p(y |x).

We indicate it with pm{y |θ1(x), . . . , θq(x)}, where θ1(x), . . . , θq(x) are
model parameters.

For instance, if we use a Gaussian model, we can make its mean and/or
variance depend on the covariates, that is

y |x ∼ N
{
y |µ = θ1(x), σ

2 = θ2(x)
}
,

where µ = E(y |x) and σ2 = Var(y |x).
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Distributional vs quantile regression
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Figure: We are using of Gaussian model with variable mean.
In mgcv: gam(y~s(x), family=gaussian).
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Distributional vs quantile regression
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Figure: We are using of Gaussian model with variable mean and variance.
In mgcv: gam(list(y~s(x), ~s(x)), family=gaulss).
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Distributional vs quantile regression

There are lots of models for p(y |x) that can be used for distributional
regression: binomial, gamma, Poisson, Tweedie, etc...

But sometimes it is difficult to find a good model.
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Distributional vs quantile regression

In QR we do not have a model for p(y |x), but we model quantiles directly.

Let F (y |x) be Prob(Y ≤ y |x). The τ -th (τ ∈ (0, 1)) quantile is

µτ (x) = F−1(τ |x).
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Distributional vs quantile regression

Obviously, given a set of fitted quantiles, we can approximate p(y |x).
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So we can use QR when we can’t model p(y |x) directly.

But we could be genuinely interested in estimating a quantile µτ (x).
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Distributional vs quantile regression

We might want to model median, rather than mean, income because:

a) it is more robust to outliers then mean income;
b) it is a better indicator of how the “average” person is doing.
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Distributional vs quantile regression

For electricity producers and/or distributors the top electricity demand on
a given day might be more important that mean demand.
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Structure of the seminar

Structure:

1 Distributional vs quantile regression

2 Additive quantile regression

3 The qgam R package

4 Limitations and future developments
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Additive quantile regression

We are in an additive framework

µτ (x) =

m∑

j=1

fj(x),

where the effects fj(x) can be parametric, smooth or random effects.

Given τ , how is µτ (x) estimated?

Key fact is that µτ (x) is minimizer of

Lτ{µ(x)} = E{ρτ{y − µ(x)}|x},

where
ρτ (z) = (τ − 1)z1(z < 0) + τz1(z ≥ 0),

is the so-call “check” function or “pinball” loss.
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Additive quantile regression
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Given n observations, {y1, x1}, . . . , {yn, xn}, the total loss is

µ̂τ (x) = argmin
µ

n∑

i=1

ρτ [yi − µ(xi )],

hence we could estimate µτ (x) by minimizing

PL{µ(x)} = L{µ(x)} +

m∑

j=1

γj

∫

f ′′j (xj)
2dxj .

but L{µ(x)} is not differentiable!
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Additive quantile regression

We use a modified loss based on the Extended log-F (ELF) density:

ρ̃(y |µ, σ, τ, λ) ∝ −(1− τ)
y − µ

σ
+ λ log

[

1 + e
y−µ
λσ

]

,

This is smooth and convex and, as λ → 0, we have recover pinball loss.
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NB in qgam, λ reparametrized as err ∈ (0, 1) (↓ err implies ↓ λ).
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Additive quantile regression

For fixed γ = {γ1, . . . , γm} we can estimate µτ (x) = argmin
µ

PL{µ(x)}.

But how to select γ in the first place?

We minimize the marginal loss

G (γ, σ) = −

∫

exp

[

−
1

σ
L{µ(x)}

]

︸ ︷︷ ︸

fit the data well

keep fit simple
︷ ︸︸ ︷

p(β|γ) dβ.

where p(β|γ) is related to the penalties
∑m

j=1 γj
∫
f ′′j (xj )

2dxj .

Here σ is the reciprocal of the “learning rate” and it needs to be selected
as well...
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Additive quantile regression

If ↑ σ then ↑ γ̂ (smoother fit) and wider conf. int. for µτ (x).

If ↓ σ then ↓ γ̂ (more wiggly fit) and narrower conf. int. for µτ (x).
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Additive quantile regression

We choose σ so that confidence intervals for µτ (x) are well calibrated.
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In practice we use bootstrapping to calibrate σ.

In qgam this is implemented by tuneLearn() and tuneLearnFast().
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Additive quantile regression

To recap, we have three nested iterations:

1 Calibration to estimate reciprocal of learning rate, σ.

2 Minimize ML to select smoothing parameters γ (fixed σ):

G (γ, σ) = −

∫

exp
[
− σ−1L{µ(x)}

]
p(β|γ)dβ.

3 Minimize PL to estimate regression coefficients β (fixed σ and γ):

PL{µ(x)} = L{µ(x)} +
m∑

j=1

γj

∫

f ′′j (xj)
2dxj .

For more methodology, see Fasiolo et al. (2017) on arXiv.
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