
qgam: computer lab exercises

Please make sure that the following packages are installed:

1. qgam (install.packages("qgam"));

2. devtools (install.packages("devtools"));

3. mgcViz (library(devtools); install_github("mfasiolo/mgcViz"));

4. gamair (install.packages("gamair")).

We have two main exercises:

1. CO2 modelling;

2. Electricity load forecasting;

but feel free to try qgam on your own data.

1 CO2 modelling

This question1 is about modelling data with seasonality, and the need to be very careful if trying to
extrapolate with QGAMs (or any statistical model). The data frame co2s contains monthly measurements
of CO2 at the south pole from January 1957 onwards. The columns are co2, the month of the year, month,
and the cumulative number of months since January 1957, c.month. There are missing co2 observations
in some months.
Questions:

1. Load qgam, mgcViz and the data with library(gamair); data(co2s)

2. Plot the CO2 observations against cumulative months.

3. Fit an additive model for the median, µ0.5(c.monthi) = f(c.monthi) where f is a smooth function,
using the qgam function. Use the cr basis, and a basis dimension of 100. Set err = 0.1 in qgam to
avoid warnings and speed up computation.

4. Obtain the predicted CO2 for each month of the data, plus 36 months after the end of the data,
as well as associated standard errors. Produce a plot of the predictions with twice standard error
bands. Are the predictions in the last 36 months credible? NB: to produce the plot you have to
write your own code, mgcViz does not produce such plots.

5. Fit the model µ0.5(c.monthi) = f1(c.monthi) + f2(monthi) where f1 and f2 are smooth functions.
Use a basis of dimension 50 for f1 and a cyclic basis for f2. In the qgam call, you will need to set
argument argGam to list(knots=list(month=c(1,13))) to make so that that the effect of January
is the same as January, not that December and January are the same!

6. Repeat the prediction and plotting in question 4 for the new model. Are the predictions more
credible now? Explain the differences between the new results and those from question 4.

7. Transform the fitted qgam model to a gamViz object, by calling getViz with argument nsim = 0

(we need to set nsim to 0 because, at the present moment, qgam does not allow to simulate data
from the model). Plot the smooth effects and experiment with model checks (e.g. QQ-plots). Can
you expect the residuals to be normally distributed in a quantile regression model? We talk more
about this in the exercise on electricity load forecasting.

1Shamelessly adapted from Simon Wood’s notes
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2 Electricity load forecasting

Here we consider a UK electricity demand dataset, taken from the national grid. The dataset covers the
period January 2011 to June 2016 and it contains the following variables:

• NetDemand net electricity demand between 11:30am and 12am.

• wM instantaneous temperature, averaged over several English cities.

• wM_s95 exponential smooth of wM, that is wM_s95[i] = a*wM[i] + (1-a)*wM_s95[i] with a=0.95.

• Posan periodic index in [0, 1] indicating the position along the year.

• Dow factor variable indicating the day of the week.

• Trend progressive counter, useful for defining the long term trend.

• NetDemand.48 lagged version of NetDemand, that is NetDemand.48[i] = NetDemand[i-2].

• Holy binary variable indicating holidays.

• Year and Date should obvious, and partially redundant.

Questions:

1. Load qgam, mgcViz and the data (data("UKload")). Then create a model formula (e.g. y~s(x))
containing: smooth effects for wM, wM_s95, Posan and Trend with 20, 20, 4 and 50 knots and cubic
regression splines bases (bs='cr'); parametric effects for Dow, NetDemand.48 and Holy.

2. Use the tuneLearn function to evaluate the calibration loss for the median, on a grid of values
for log(σ) (e.g. lsig=seq(4,8,le=16)). In the tuneLearn call, set err=0.1 to avoid numerical
problems, speed up computation by using only 20 bootstrap samples (control=list("K"=20)) and
by setting multicore=T.

3. Let closs be the output of tuneLearn. Use the function check on closs. It is important that the
loss looks smooth, especially around its minimum. How do the effective degrees of freedom vary
with log(σ)?

4. Call qgam to fit this model for the median (use again err=0.1), and set argument lsig to closs$lsig,
the latter being the value of log(σ) achieving the lowest loss on the grid. Convert to the output
of qgam using getViz, with nsim=0 and plot the fitted smooth effects. Do you notice anything
problematic about the effect of Posan? How many degrees of freedom are we using for this smooth
effect (use summary)?

5. Modify the effect of Posan to use an adaptive (bs='ad') spline basis. Then refit the model with qgam

(use again lsig=closs$lsig and err=0.1) and plot the smooth effects. Has the effect of Posan
changed? How many degrees of freedom are we using now for Posan? Explain what happened.

6. Use mqgam to fit this model to 10 quantiles between 0.05 and 0.95, using err=0.15 and lsig=closs$lsig.
Use qdo and pen.edf to extract the effective degrees of freedom corresponding to each quantile and
plot them against the quantiles. Why would we expect the degrees of freedom to decrease, as we
move in the far tails of the response?
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7. Let fitM be the of the mqgam call in the previous question. Use the code in Appendix to plot
the smooth effects corresponding to each quantile on a single plot. The effect corresponding to
high quantiles (e.g. 0.95) are green, the orange curves correspond to low quantiles (e.g. 0.05).
Think about the interpretation of these curves. NB: here we are plotting the smooth effects, not
the predicted quantiles, hence the effects corresponding to, say, quantile 0.9 can fall below that of
quantile 0.1.

8. Use fit3 <- qdo(fitM, 0.45, getViz, nsim=0) to extract the qgam model corresponding to
quantile τ = 0.45. Look at the distribution of the residuals along wM, wM_s95 and Posan us-
ing check1D with the l_densCheck layer. You should see large departures from normality, but
this is not a problem, because in quantile regression we don’t have a probabilistic model of the
response, hence we cannot expect the residuals to be normal. But we can expect that, if we
are fitting quantile 0.45, around 45% of the residuals should be negative. Use check1D with
the l_gridCheck1D(gridFun = function(.x){sum(.x < 0)/length(.x)}) layer to check that the
fraction of negative residuals does not depart too much from 0.45. HARD PART: it would be nice
to add confidence bands to the plots produced by check1D. You can do this by adding further
l_gridCheck1D layers to these plots, but using a gridFun which uses the number of samples n in
each bin to calculate the confidence bands (which are based simply on binomial distribution with
parameters p = 0.5 and n). If you have no idea about how to do this last point, copy-paste the code
in Appendix B.

Appendices

A Code for plotting smooth effects of all quantiles

Let fitM be the output of mqgam from question 6. This code should plot the smooth effects of all quantile
together:

qus <- as.numeric( names(fitM$fit) )

nqus <- length( qus )

fits <- qdo(fitM, qus, getViz, nsim = 0)

pl <- list()

for( ii in 1:4 ){

smo <- lapply(fits, sm, ii)

pl[[ii]] <- lapply(smo, plot, n = 200)

}

EdfColors <- c("#FE5815", "#FFA02F", "#C4D600", "#509E2F", "#005BBB", "#001A70")

EdfColors <- colorRampPalette(EdfColors[1:4])( nqus )

basic <- list()

for( ii in 1:4 ){ # Loop over effects

basic[[ii]] <- pl[[ii]][[1]]

for( kk in 1:nqu ){ # Loop over nqu quantiles

basic[[ii]] <- basic[[ii]] + geom_line(data = pl[[ii]][[kk]]$data$fit,

colour = EdfColors[kk], na.rm = T)

}

}

# Green high quantiles, orange low quantiles
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library(gridExtra)

grid.arrange(grobs = lapply(basic, "[[", "ggObj"))

B Confidence intervals for model checks

Let fit3 be the qgam model corresponding to quantile 0.45. Then copy-paste this on the console:

# Function that returns the appropriate "gridFun" function, depending on quantile .qu,

# confidence level .lev and type of confidence line .type.

funCreator <- function(.qu, .lev, .type){

ciFun <- function(.x){

.n <- length(.x)

if( .type == "lower" ){ return( qbinom(.lev/2, .n, .qu) / .n ) }

if( .type == "upper" ){ return( qbinom(.lev/2, .n, .qu, lower.tail = FALSE) / .n ) }

}

}

# Getting out functions

qus <- seq(0.05, 0.95, length.out = 10)

lowCI <- funCreator(.qu = qus[5], .lev = 0.05, .type = "lower")

upCI <- funCreator(.qu = qus[5], .lev = 0.05, .type = "upper")

pl <- list()

pl[[1]] <- check1D(fit3, x = "wM_s95") +

l_gridCheck1D(gridFun = function(.x){sum(.x < 0)/length(.x)},

level = 0, shape = 3, size = 2) +

l_gridCheck1D(gridFun = lowCI, level = 0, colour = 2) +

l_gridCheck1D(gridFun = upCI, level = 0, colour = 3) +

geom_hline(yintercept = qus[5], linetype = 2)

pl[[2]] <- check1D(fit3, x = "Posan") +

l_gridCheck1D(gridFun = function(.x){sum(.x < 0)/length(.x)},

level = 0, shape = 3, size = 2) +

l_gridCheck1D(gridFun = lowCI, level = 0, colour = 2) +

l_gridCheck1D(gridFun = upCI, level = 0, colour = 3) +

geom_hline(yintercept = qus[5], linetype = 2)

library(gridExtra)

grid.arrange(grobs = lapply(pl, "[[", 1), ncol = 2)
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