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Example Project
Data sources

Challenges:
 Massive amounts of data (TBs)
 Sourced from heterogeneous systems
 Owned by different entities
 Largely unstructured
 Quality issues

Curation

Analytics

Insights

Data
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Example Project
Data sources
 Spark as framework for data ingestion, filtering and aggregation:
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Example Project: Analytics models
Regression Model:

where        is a (stationary) stochastic process with zero mean and unit variance,

Given paired observations                                      we assume          follows the Generalized Additive Model 

where           are transfer functions. Note: GAMs are learned by mgcv packages in R. 
   

 

Y t=μ(X t)+σ(X t)ϵt

{ϵt }

E [Y t∣X t=x t ]=μ(xt) ,

Var [Y t∣X t=x t ]=σ
2
(xt).

[1]

(xt , y t), t=1,. .. , n , μ(.)

μ(x t)=∑
i=1

p

f i(xt)

f i(.)

[2]
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Example Project: Analytics models

Covariates       : 

Calendar: TimeOfDay, TimeOfYear, DayType, 
Season, Special days
Weather: Temperature (lagged, Integrated, 
Min/Max), irradiance, dew point
PV generation: Data-driven physical models
Real-time measurements: 

1-16h ahead: DailyMinimum

17-24h ahead: Lag 24h

25-40h ahead: Lag 48h

Data anomalies: Fallback models

X t
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Example Project: Analytics models – Uncertainty 

There are 3 main constituents of uncertainty in energy demand forecasts:

1. inherent randomness 

2. modeling and estimation error 

3. uncertainty in model inputs 
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Inherent randomness (largest constituent of uncertainty)

   Usage of individual electric appliances:

● When? For how long? 

● How much electricity do they consume?

Another source of randomness is the noise of metering devices.

Recall regression model:  

} largely “random” 
(some daily/seasonal patterns)

Conditional mean

Conditional standard deviation

Demand “Noise”Y t=μ(X t)+σ(X t)ϵt

--      represents inherent randomnesss. 

--       accounts for the uncertainty 
depending on      , e.g., during peek 
demand hours uncertainty is larger than 
during low demand hours. 

ϵt

σ
2

X t
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Inherent randomness (largest constituent of uncertainty)

Suppose the aggregated demand       is composed of the sum of a large of 
individual demands

1. Under standard assumptions,                              and                                 , the signal-to-
noise ratio increase with    . Empirically, the aggregate demand        can be forecasted with 
higher accuracy.

2. If     is large, the distribution of   
   
can be approximated by normal.

    In practice, the convergence to normal is adversely affected by large individual customer       
    where      is typically skewed and heavy-tailed. 

Y t

Y t
Y t ,i , i=1,. .. , k ,

Y t ,i=μ i(X t ,i)+σ i(X t , i)ϵt , i .

μi(X t , i)=O(k) σ i(X t , i)=O(√k )
k

k ϵt

ϵt , i
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Inherent randomness (largest constituent of uncertainty)

Given                                  we assume            also follows a GAM.

Uncertainty forecast algorithm (GAM2):

● Step 1. fit a GAM              for the conditional mean. E.g., 
                      

               

(xt , y t), t=1,. .. , n , σ
2
(.)

μ̂(x t)

μ̂t= β̂0+β̂1DayTypet+∑
j=1

34

1(DayType t= j) f̂ 1, j(HourOfDayt)+ f̂ 2(TimeOfYear t)

+∑
l=1

4

1(Season t=l) f̂ 3, l(Temperature t)+ f̂ 4( Irradiancet)+ f̂ 5(Dewpoint t ,HourOfDay t)

+f̂ 6(Temperature.lag1t)+ f̂ 7(Temperature.lag12 t)+ f̂ 8(Temperature.lag24t)

+f̂ 9(Temperature.Mean.Previous.Day t)+ f̂ 10(Temperature.Max.Previous.Day t)
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● Step 2. Calculate the squared empirical residuals                              where 

● Step 3. Fit a GAM               to

●                 

● Chebyshev's inequality: 

● Assuming                          Let             denote the                    quantile of

● Substituted by             and             ,  the 100    % PI of
● When the model assumption is correct, we can show as                      

 

•                     

Inherent randomness (largest constituent of uncertainty)

r̂ t
2
=( ŷ t− y t)

2 ŷ t=μ̂(xt) .

σ̂
2
(xt) (xt , r̂ t

2
).

σ̂ t
2= α̂0+α̂1DayTypet+∑

j=1

4

1(DayType t= j) f̂ 1, j(HourOfDay t)+ f̂ 2(Temperature.Mean.Day t)

DayType t : Mon-1, Tue~Thurs-2, Fri-3, Sat-Sun 4.

P(∣Y t−μ(x t)∣⩾δ)⩽σ
2
(xt)δ

−2 .

ϵt∼N (0,1). q(α) (1+α)/2

P(Y t∈[μ(x t)±q(α)σ(x t)])=α

N (0,1):

[μ̂( xt)±q(α)σ̂(x t)].μ̂(x t) σ̂ (x t) Y t :
n→∞ ,

μ̂(.)→μ(.) σ̂ (.)→σ(.).and

α
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Inherent randomness  (GAM2)

Example: QQ-plots of                 and 

One of the goodness-of-fit criterions we consider homoscedasticity and normality of the 
rescaled residuals 

( ŷ t− yt) ( ŷ t− yt)/σ̂ (x t), t=1,. .. , n.

( ŷ t− yt)/σ̂ (x t).
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Inherent randomness

● GAM2 Drawback:

● 1.        can be negative.  

● 2. the normal assumption may not apply at low aggregation levels.

● 3. the serial correlation of residuals is complex.  

Alternative approach: GAM + boostrap AR-ARCH 
● Let us consider hourly model: 

● where           follows GAM with         including DayType, TimeOfYear, Season, Temperature 
(lagged, integrated), irradiance, dewpoint. 

σ̂ t
2

Y t , p=μ(X t , p)+ϵt , p , p=1,. .. ,24.

μ(.) X t , p



© 2014 International Business Machines Corporation

IBM Research – Ireland Lab

© 2017 International Business Machines Corporation 16

Inherent randomness

● Empirical evidence shows        having features of an AR-ARCH model, e.g., clustered volatility, 
lepkurtoticity.

For the briefty of notations, we omit the subscript p.  

● Recall AR(p)-ARCH(q) model: 

where                 satisfy                                                        satisfy

  

̂ϵt , p

ϵt=∑
i=1

p

ϕi ϵt− j+r t

r t=σ t e t

σ t
2
=α0+∑

j=1

q

α j r t− j
2

ϕ1,. .. ,ϕp ∣ϕ j∣<1, i=1,. .. , p ; α0,α1. .. ,αq α0>0, α j≥0, j=1,. .. , q ;
e t∼IID(0,1).
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Inherent randomness

Algorithm sketch: 

● Fit an AR(p)-ARCH(q) model to the empirical residuals                       where p and q are 

selected by AIC. Conduct residual bootstrap to the AR-ARCH residuals      and construct the 

h-step-ahead bootstrap forecasts               and                 B is the number of bootstrap iteration.

● Construct the empirical cdfs           and           of           and

● The                         PIs of

where                 is pth quantiles of   

  

ϵ̂t= ŷ t− yt ,

ê t
{rn+h}

B

*
{σn+h

2
}
B ,* *

rn+h σn+h
2 .F̂rn+h F̂

σn+h
2

*

*

100(1−α)% Y n+h :

[μ̂( xn+h)+ϵ̂n+h+I n+h(α /2) ,μ̂ (xn+h)+ϵ̂n+h+I n+h(1−α/2)] ,* *

In+h( p)* F̂rn+h .
*
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Inherent randomness

● Let       and         respectively denote the true and empirical cdf of

● Assumptions: 

● A1.

● A2.

● A3. Let                              and                             . Assume     

● Let be Mallows metric defined as

where the infimum is taken over all pairs of (X,Y) of r.v. X and Y respectively distributed 
according to P and Q. 

  

Fe F̂e ,n e t.

d 2(P ,Q)=inf (E∣X−Y
2∣)

1/2
,

Eet
4
<∞

(Eet
4
)
1/2∑

j=1

q

α j<∞

θ=c (α0,. .. ,αq) θ̂n=c(α̂0,. .. ,α̂q) √n∥θ̂n−θ∥=O p(1)
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Inherent randomness

Lemma. Under assumption A1-A3, as

                                           in probability. 

Theorem. Under assumption A1-A3, as
                       

                                    and 

For                          . 

n→∞ ,

n→∞ ,

d 2(F e , F̂ e ,n)→0

rn+h→rn+h* σn+h
2
→σn+h

2 ,

h=1,. .. , H ,H∈ℤ

*d d
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Inherent randomness

● Empricial coverage probability: 

where     is the significance level;      is the size the test set;                                       is the                      PIs. 

Example: 

● State hourly energy demand 48-hour-ahead forecasting. 

● Training: 2012-09-01 ~ 2014-06-30

● Testing: 2014-07-01 ~ 2014-10-31

● Method for comparison:

● GAM2

● Hourly model with bootstrap AR-ARCH

● Hourly model with GAM2

C (α , nt)=nt
−1∑

t∈nt

1(Φt(α/2)⩽ yt⩽Φt(1−α/2))
,

α nt [Φt(α/2) ,Φt(1−α/2)] 100(1−α)%
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Inherent randomness

Coverage (95%)

GAM2 88.7%

H.Boot 91.8%

H.GAM2 94.7%

● Hourly GAM2 has the best 
coverage. 

● Hourly Boot can be used as 
a back up method when       
is negative using GAM2. 

σ̂ t
2
σ̂ t

2

σ̂t
2
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Modeling and estimation errors

Given         and     , the expected value of the squared residual is

Hence,          does not only account for          but also                     , which is smaller in-sample than out-of-sample. 

Uncertainty forecast algorithm modification

1. Partition {1,2,...,n} into two disjoint sets T and V, where V is a held-out set for rescaling. 

2. Fit a model          on the training data              with tϵT.

3. Fit a multiplicative correction     to the model          on the held-out training data             with t Vϵ .

● The correction is used, on data outside the training set, to rescale the residuals             
 
by               instead       

of            .

●  The efficiency can improved by randomly sampling the points to be included in the validation set and by 
repeating the procedure for different training-validation splits. 

σ̂ (.) xt
E [( ŷt− y t)

2
∣xt ,μ̂(.)]=(μ̂ (xt)−μ(x t))

2
+σ

2
(x t)

σ̂2(.) σ2( .) (μ̂ (.)−μ(.))2

(xt , r̂ t
2)

ĉ2

ŷ t− yt ĉ σ̂ (xt)
σ̂ (xt)

σ̂2(.)

σ̂2(.) (xt , r̂ t
2)
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Uncertainty in model inputs 

Weather covariates:

● Temperature (daily max/min/mean, lagged values, etc.)

● Dew point, irradiance

Two ways to account for uncertainty in weather inputs:

(1) Use weather forecasts instead of actual weather measurements to train the 
demand model. Thereby, the model will be less sensitive to weather forecasting 
errors and treat the uncertainty in the weather inputs as part of the inherent 
randomness discussed before.

(2) If probabilistic weather forecasts are available, train the model on actual weather 
measurements and obtain an ensemble of demand forecasts based on sampled 
weather inputs. 
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Uncertainty in model inputs

Simulated energy demand forecasts using actual temperature (black), actual temperature +2°C 
(red) and actual temperature – 2°C (blue), respectively on a cold day (left), a moderate day 
(middle) and a hot day (right).
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Reduce uncertainty using real-time infomation 

● Learn different models for every forecasting horizon. 

● Use the most recent available demand data. 

Specifically, given observations                       in the case of 24-hour-ahead forecasting, 

● The idea is to train different models           for each of h=1,2,...,24 hours ahead. 

● When computing the forecast                           those models take into account the most recent 
measurement 

● For small h, this yields significant gains in modeling accuracy. 

● Similarly, train 24 different models for the conditional variance. 

y t , yt−1 , ... ,
μ̂h(.)

ŷ t+h=μ̂(xt+h),
y t.
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Reduce uncertainty using real-time infomation

Real-time demand forecast and associated uncertainty on Feb 1st (left) and Jul 1st, 2014 (right). 
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Automatic forecasting for Distribution Substations 
● Forecasting at lower aggregation levels requires handling large amount of data and models. 

● It is infeasible to depend on manual work. 

● We present a Energy Forecasting System for automatically processing and forecasting energy

demand at different aggregation levels. 
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Automatic forecasting for Distribution Substations

Challenges of demand forecasting at substation level:
● Inherent randomness: higher volatility, individual customer's impact can be significant.

● Distributed generation: the effect caused by renewable is highly noticeble. e.g., demand 
inversion.

● Heterogenous profiles: difference in data patterns due to the characteristics of consumers 
within the substation, e.g., residential, industry. 

● Load shift: changes in the network configuration or connectivity lead to significant level shifts.

● Data issues: data are more contaminated by messurement errors and noise, e.g., constants, 
zeros, missings. 
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Automatic forecasting for Distribution Substations

Residential Vs. Industrial substations. 

Fig. 1 Residential 
load with solar

Fig. 2 Industrial load 
without solar
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Automatic forecasting: System Architecture 
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Automatic forecasting: Workflow and Output 
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Automatic forecasting: Anomaly handling 

Outlier detection – a combination of rule- and model-based method. 
● S1. Apply static rules to remove implausible values, e.g., negative values and constant 

segments. 

● S2. Fit GAM to the remaining data. 

● S3. Compute the absolute values of the model residuals. 

● S4. Remove all values where the residuals are beyond a given quantile of the normal 
distribution, e.g,    

● S5. Go back to S2 until convergence, i.e., no further values being removed.

α=0.9999 .
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Automatic forecasting: Anomaly handling 

Load shift, equivalently, multiple change point detection. 
● S1. Aggregate the hourly electrical loads to daily total demand.

● S2. Fit  a simple GAM model to the daily demand (including average daily 
temperature, dewpoint and irradiance). 

● S3. Compute the model residuals and record the explained deviance d.

● S4. Apply the Pruned Exact Linear Time (PELT) algorithm [2] for detection 
of multiple change points in the residuals.

● S5. Identify the segment which most significantly deviates in mean from the 
rest of the data, and remove the corresponding days.

● S6. Go back to S2 until no data is left, or the explained deviance d exceeds 
a given threshold, e.g., d=0.8. 
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Automatic forecasting: Anomaly handling

Transfer learning. Assume the load shift occurs at       ,
● S1. Fit a GAM to the data before       . 

● S2. Calculate the predictions                     

The predictions are regarded as the regular demand values without the 
load shift.

● S3. Learn transfer model                      where      includes

● S4. Calculate

● S5. In the data, replace the values       before               by                     

ŷ t=f (x t) , t=t LS+1, tLS+2,. .. , n.

tLS

y t= f̃ ( x̃ t) ,             x̃ t ŷ t .
ỹ t= f̃ ( x̃ t) , t=1,2,. .. , t LS .

y t t=t LS ỹ t .

t LS
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Automatic forecasting: Feature selection 

● Select features from a pre-defined set using the backward elimination 
(greedy approach). 

● The data is divided into a training set     and a verfication set
● S1. Fit GAM on      using the entire feature set. Compute model quality. e.g., RMSE, on

● S2. Progressively remove each feature from the GAM equation, fit a GAM and compute 
the model quality (e.g., RMSE). Select the equation with the highest improvement over 
the previous one.  

● S3. Repeat S2 until convergence, i.e., no further improvement can be achieved.   

ST SV .

ST SV .
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Automatic forecasting: Specialized model 
● In some cases, meta information is available from the domain experts. 

● Example: Substations with snowmaking. Special features are added, 
e.g., peak season, derived temperature effect and day types. 
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Automatic forecasting: Case study 

● Data: hourly energy demand 2013-01-01 ~ 2016-03-31 from 
substations. 

● Training: 2013-01-01 ~ 2016-02-29

● Testing: 2016-03-01 ~ 2016-03-31

● Forecasting quality measure: normalized RMSE (NRMSE). 

● Comparison:
● 1. baseline model with the entire feature set

● 2. baseline model with anomaly handling

● 3. automatic model selection 

● 4. both anmaly handling and automatic model selection  
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Automatic forecasting: Case study – NRMSE comparison

 

Fig. 3 
NRMSE without 
autoregressive

Fig. 4 
NRMSE with 
autoregressive
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Automatic forecasting: Case study – Anomaly handling 

Substation C

 
Method NRMSE

baseline 23%

anomaly 
handling

6.5%

anomaly 
handling & 
automatic 
model selection

5.3%



© 2014 International Business Machines Corporation

IBM Research – Ireland Lab

© 2017 International Business Machines Corporation 40

Automatic forecasting: Case study – Specialized model 

Substation S

 Method NRMSE

Baseline 
without AR

19%

Baseline 
with AR

11%

Snow-
Making
model

8%
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 Long-term planning:
 Data and analytics services
 Analysis of bulk and subsystem issues
 Analysis of non-transmission alternatives

 Short-term planning / operations:
 Renewable integration
 Contingency analysis
 Outage planning

 Peak energy management:
 Reduction of regional network charges
 Mitigation of congestion events

Example Project
Use cases
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