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� Representing functional data in RKHS by means of kernel methods im-
proves pattern recognition in both unsupervised and supervised learn-
ing settings.

� Combining functions with their derivative functions in a complemen-
tary manner can provide better clustering and classification perfor-
mances

� Learning how to linearly combine functions with their derivative func-
tions leads to more robust models.

� Our methods SF-MK-KM and SF-MK-SVM extend multiple kernel k-
means and multiple kernel SVM to Sobolev functions.
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Abstract

In order to have a rich representation of functional data, we introduce a
framework that relies on the following principles. Firstly, we pursue a mul-
tiview approach and consider the functions along with their derivative func-
tions as distinct but complementary sources of information. Secondly, we as-
sume that, in practice, functional data belong to non-linear manifolds and we
thus promote kernel methods in order to cope with this hypothesis. Thirdly,
we extend existing methods in multiple kernel learning for multivariate data
to functional data. In this context, we present a general procedure that
learns how to linearly combine the different kernel functions. We deal with
the clustering and classification tasks. The methods that we introduce are
extensions of the multiple kernel k-means and the multiple kernel SVM to
Sobolev functions. Our experiments consider both simulated and real-world
data and allow us to underline the advantages of our framework.

Keywords: Functional data analysis, Functional data clustering, Functional
data classification, Derivative functions, Multiple kernel learning

1. Introduction

Our modern technologies allow one to massively record observations of
diverse phenomena at fine grained resolutions in space and in time. For
example, climate and environmental changes can be measured thanks to
remote sensing instruments, machines health in facilities can be monitored
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using sensors, human movements and physical activities, can be detected with
a smartphone accelerometer sensor. . . These measurements are associated to
a timestamp and/or a geographical location and are thus recorded as discrete
data. But, they are in fact discretized observations of continuous curves or
surfaces. From a data analysis standpoint, it is advantageoous to consider the
continuous function underlying the multivariate data. Indeed, working with
continuous functions allows one to leverage tools from functional analysis
such as differential operators. Functional Data Analysis (FDA) is the branch
of statistics that is concerned with this topic.

One main research line in FDA has been to extend multivariate statistical
techniques and machine learning methods to functional data (FD). Concern-
ing the clustering task, several works based on the k-means approach have
been proposed in [1, 2, 3, 4, 5]. The Self-Organized Maps is yet another clus-
tering technique that was studied in the context of FD [6]. Regarding the
classification task, several machine learning models have also been adapted
to FD. In that case, Rossi and colleagues for example, studied several ma-
chine learning methods: Radial Basis Function (RBF) Networks, Multi-Layer
Perceptron (MLP) [7] and Support Vector Machines (SVM) as well [8].

In this paper, we propose to investigate the multiple kernel paradigm
for clustering and classifying FD. Our motivations are the following ones.
Firstly, similarly to the multivariate case, we argue that projecting FD onto
Reproducing Kernel Hilbert Spaces (RKHS) can be beneficial in the non-
linear case. Secondly, one interesting property of FD is that one can use the
derivative functions so as to obtain a richer representation. More precisely,
assuming that the FD belong to the Sobolev space Wq,2, their successive
derivatives up to order q, can provide one with q distinct sources of informa-
tion. In this context, one can attempt to combine these different views in the
goal of obtaining a better geometric representation of the FD in the context
of clustering and classification tasks. When combining derivative functions,
our main proposal is to employ the multiple kernel learning approach. For the
clustering task, we suggest to extend the multiple kernel k-means approach
to FD. As far as the classification problem is concerned, it is the multiple
kernel SVM method that we aim to adapt for FD.

The rest of the paper is organized as follows. In section 2, we introduce
the necessary background in FDA, make more precise the context we place
ourselves in and discuss some related works on FD clustering, FD classifica-
tion and on the use of derivatives in FDA. We also introduce an optimization
procedure for learning how to balance the different views for both the un-
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supervised and supervised cases. Then, in section 3, we review the kernel
methods we focus on and introduce their extension to FD. In section 4, we
report on the experimental results we obtained with the previous methods
for clustering and classification tasks using both simulated and real-world
datasets.

2. Notations, Background and Related work

In this section, we precise the general FDA setting we place ourselves
into and introduce the required definitions and notations we use all along
the paper. The different notions or work we respectively review concern: FD
representation, FD clustering, FD classification and methods that combine
derivative functions.

2.1. Functional data representation

We assume that the objects under study are smooth curves. More pre-
cisely, we suppose n real valued functions {xi}i=1,...,n inWq,2([0, T ]) ≜ Hq([0, T ])
with T > 0, the Sobolev space that consists of functions x whose derivatives
up to order q are elements of the Hilbert space L2([0, T ]).

Hq([0, T ]) = {x ∈ L2([0, T ]) : Djx ∈ L2([0, T ]),∀j = 1, . . . , q} (1)

where D is the differential operator.
In practice, one does not directly observe the whole curves but samples

of their realizations at different time points in [0, T ]. While, the set of ob-
servation points of two distinct FD xi and xi′ can be different, say {tij} and
{ti′j′}, we suppose, in this paper, that all FD were measured with respect to
the same time grid {tj}j=1,...,p.

In this case, a practical issue concerns the distribution of time points
{tj}j in [0, T ]. The number of observations p can be large or restricted and
the successive points t1 < t2 < . . . < tp can be equally spaced or not. In
this contribution, we do not deal with such problems and place ourselves
in the basic framework where the grid {tj}j is assumed to be suitable so
as to apply conventional pre-processing procedures in FDA (see for example
[9]). Furthermore, we do not consider the registration problem of misaligned
curves with respect to {tj}j either.

Consequently, for all xi, i = 1, . . . , n, we suppose that we have a set of
p observations {yij}j=1,...,p. However, we presume that these measurements

3



could have been corrupted by some noise:

yij = xi(tj) + ϵij, ∀i,∀j (2)

where {ϵij}i=1,...,n;j=1...,p are assumed to be independent across i and j.
From {yij}i,j, one needs to reconstruct the functional form of the objects

of interest, {xi}i. There are typically two ways to proceed: a data-driven
method on the one hand, and using a set of basis functions on the other
hand. The data-driven approach is based on functional principal component
analysis (FPCA) and was initially introduced in [10]. However, since our
proposal does not rely on this framework we do not review this method in
what follows. The interested reader could refer to [9] for more information.

In this paper, we rather use a set of pre-defined basis functions. Sev-
eral options can be considered in this case: Fourier functions, wavelets, B-
splines. . . Depending on the kind of data, expert knowledge can help to
select the most appropriate type of basis functions. In this contribution,
we consider the commonly used B-splines basis system for its flexibility and
properties that we exhibit subsequently. Since we assume that the deriva-
tives up to the qth order are in L2([0, T ]), then we work with the subspace of
functions spanned by the set of B-splines of order d = q + 2 so as to have a
sufficiently rich framework to represent the functional data. Splines of order
d are piecewise polynomial functions of order d − 1. The domain [0, T ] of
function x is split into several pieces [t1, t2]∪ [t2, t3]∪ . . .∪ [tp−1, tp]. The func-
tion x is defined on each sub-interval by a local polynomial function of order
d− 1. In order to ensure continuity, two consecutive polynomials should be
equal at their junction also called breakpoint. In a similar way, smoothness
is attained by constraining the successive derivatives of two subsequent poly-
nomials to be equal at their junction, up to order d − 2. Given an order d
and a set of p breakpoints {tj}j, the term B-splines refers to a unique set of
spline functions that forms a basis systems for all spline functions of order d
with breakpoints {tj}j. This basis systems is of dimension m = d + p.

Consequently, let {ϕk}k=1,...,m be a set of m B-splines that we also denote
in vectorial form as ϕ = (ϕk)k=1,...,m. We assume that the FD are elements
of the subspace Span(ϕ1, . . . , ϕm). In other words, ∀i = 1, . . . , n:

xi =
m∑

k=1

ci,kϕk = c⊤i ϕ

where ci is the (m × 1) vector of coefficients of xi in the B-splines basis
system.
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The smoothing step consists in estimating ci given the observations {yij}j=1,...,p

for each element xi in the sample. Because the measurements could have
been corrupted by noise, one typically tackles the problem by a least square
approach. However, the number of time points p could be very large, po-
sitioning the approximation problem in a high-dimensional framework. In
order to avoid over-fitting and to have a better control over the smoothness
of the FD, we penalize the sum of squared errors by a roughness penalty
term denoted R. In this case, the lower R(xi) is, the smoother xi will be.

More formally, the spline smoothing procedure amounts to solve:

ĉi = argmin
c∈Rm

p∑
j=1

(yij − xi(tj))
2 + λR(xi) (3)

where xi(tj) =
∑m

k=1 ci,kϕk(tj) and λ > 0 is a tuning parameter estimated
by a cross-validation procedure which is based on the generalized cross-
validation (GCV) criterion in our case.

It is important to note that using a pre-defined set of basis functions
makes it possible to easily determine the successive derivative functions for
each xi. Indeed, thanks to the linearity of the differential operator, it is
sufficient to determine the derivatives of the basis functions only.

2.2. Functional data clustering

Data clustering is the process that aims to partition a set of n elements
into several groups called clusters, such that curves belonging to the same
group are more similar to each other in comparison with other ones.

Clustering procedures are generally classified into two categories depend-
ing on the type of classification schemes they aim at (see for example [11]).
Hierarchical clustering methods output a set of nested partitions that is en-
coded by a binary tree. In contrast, partitional clustering algorithms seek
one partition according to an objective function. One can also make the
distinction between hard and soft clustering methods depending whether an
object exclusively belongs to one cluster or have non-null membership values
with several clusters.

Many multivariate methods have been adapted or extended in order to
cluster FD. Reviews of these approaches can be found in [12, 13].

In this contribution, we are interested in hard partitional clustering tech-
niques. We focus on the k-means algorithm that aims to minimize the sum
of squared errors and which is the most well-known method in this category.
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In this context, we firstly quote [1] and [2] from the literature. In the for-
mer paper, the FD are projected onto a set of B-splines similarly to (3)
whereas in the latter reference, the authors focus on Gaussian random func-
tions and establish the link between the mean curves of each cluster found
by k-means and eigenfunctions of the covariance function. In the work [3],
a re-assignment procedure similar to k-means is carried out. However, each
xi is compared to its projection on the truncated Karhunen-Loève expansion
of each current cluster. This paper is an instance of models that assume
local linear functional subspaces associated to each cluster. Another inter-
esting research work in this scope is [14]. The authors analyse the k-means
problem in Hilbert spaces from a theoretical perspective. By extending the
Johnson-Lindenstrauss lemma to separable Hilbert spaces, they propose yet
another representation for FD based on random projections. In this latter
framework, they provide an upper bound of the expected excess clustering
risk. In the more recent paper [4], the k-means algorithm is also applied
to FD. However, the FD representation is specifically based on a set of ba-
sis functions of an RKHS with a kernel function defined on [0, T ] × [0, T ].
The smoothing procedure is carried out using a least-square approach with
a Tikhonov regularization term following [15]. This projection of the FD on
a RKHS leads to different strategies of dimension reduction (either by using
the representer theorem or by the spectral representation based on the Mer-
cer theorem). The FD are projected on reduced dimension subspaces and
then the usual k-means is applied.

Differently from the latter paper, in our work, we project the FD from
L2([0, T ]) to another RKHS by using kernel functions defined on L2([0, T ])×
L2([0, T ]) and leveraging the kernel trick. Similarly to vectorial data, we
presume that FD can belong to non-linear subspaces and projecting them
in another space can be beneficial. In the case of clustering, we employ the
kernel k-means approach to reach that end. Several research works fall in this
scope. In [4] a kernel k-means method is analyzed but, unlike our method, it
is an approximate version which does not make use of all the data. Another
related paper is [5]. In this work, while the k-means algorithm performs the
partitioning, another variable is estimated at each iteration. It is a weight
function defined on [0, T ] which is aimed at putting a null measure to the
sub-intervals of [0, T ] that present very low variance. This weight function
acts similarly to a feature selection procedure. The authors of [5] actually
extend the framework defined in [16] from the multivariate to the functional
case.
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All previously cited research works apply the basic steps of the k-means
algorithm: after an initialization, it re-assigns objects to their closest cluster,
updates the clusters and their prototype then repeat these last two opera-
tions until convergence. In fact, the differences between these methods are
mainly due to the kind of representation used for FD. In that respect, our
contribution drift away from these works by assuming that the FD belong
to a Sobolev space. This allows us to exploit the information coming from
the derivative functions such as curvature. Moreover, we capitalize on the
richness that RKHS allows through the application of kernel functions to FD.
We elaborate further on this proposal in sub-section 3.2.

2.3. Functional data classification

In the case of classification tasks, we have at our disposal a set of n couples
{(xi, ci)}i=1,...,n of X × C where C is a finite discrete set. {(xi, ci)}i=1,...,n is
called a training set and it is employed in the goal of estimating a mapping
f : X → C that aims to correctly predict c ∈ C for any given x ∈ X.

There are many supervised learning frameworks in the literature. One can
make the distinction between non-parametric and parametric approaches. In
the non-parametric paradigm, there is no strong assumption on the form
of the mapping f . This flexibility allows one to fit very precisely f on the
training set. However, non-parametric techniques can suffer from over-fitting
and finally provide bad predictions on unobserved objects. The interested
reader can refer to [17] for a general treatment of non-parametric techniques
in FDA.

In this paper, we deal with parametric models where the induction phase
amounts to choose an appropriate instance from a class of functions, by min-
imizing a loss function. In this paradigm, there are numerous approaches.
Several, classic multivariate methods have been extended to FD such as
Linear Discriminant Analysis (LDA) [18], Quadratic Discriminant Analy-
sis (QDA) [19] (see also the review paper [20]), logistic regression and more
generally, generalized linear models [21, 22].

Predictive methods that stem from the machine learning community have
also inspired researchers and practitioners dealing with FD. For instance, in
[23], a functional random forest approach was introduced. Another random
forest model for FD was also proposed in [24]. Neural networks and ensemble
methods are other machine learning models that have also been examined in
the case of FD such as in [7, 25, 26] and [27, 28] respectively.
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In this paper, we focus on kernel methods. We firstly quote [29] which
proposes to project FD in an RKHS for the regression and binary classifi-
cation problems. In this latter paper, a penalized logistic loss function is
employed. Next, in [30], the authors address the supervised learning task
where the inputs are vectors of functions and the target output is a function
as well. This framework is out of the scope of this paper since we study the
more restricted case where the inputs are functions and the output is a dis-
crete value. Nonetheless, it is worth noticing that [30] provides an interesting
argumentation of the mutual benefits between FDA and machine learning.

The research work that constitutes a central ingredient of our proposal
for supervised learning is detailed in [8] where the SVM model is discussed
and extended in the context of FD. Let us assume the binary case where the
target variable is in C = {−1, 1}. The SVM method seeks an hyperplane rep-
resented by a linear functional g : L2([0, T ]) → R that separates the training
set by taking into account two criteria. On the one hand, it maximizes the
margin, that is to say, the distance between the hyperplane and the closest
points. This criterion allows a better generalization of the resulting classifier.
On the other hand, it minimizes the hinge loss,

∑
i max(0, 1−cig(xi)), where

g(xi) is related to the distance between xi and the hyperplane defined by g.
The hinge loss is more robust to outliers as compared to the squared loss.
Important features of the SVM method are the following ones. Firstly, it
leads to a convex optimization problem. Secondly, its dual formulation offers
interesting flexibilities: it allows recasting the problem in terms of inner-
products and this opens the gate to kernel functions and implicit non-linear
extensions. In [8], the authors extend these principles for classifying FD. The
functional nature of the data is discussed. In particular, transformations that
are of interest for dealing with FD and which provide meaningful kernels are
highlighted. We quote that projections of FD from an infinite dimensional
Hilbert space to a finite subspace such as smoothing splines with a fixed
subset of basis functions as described in sub-section 2.1 can be considered
as such a transformation. Furthermore, a set of basis functions composed of
splines makes it possible to easily determine the derivative functions. This
feature is especially relevant in our case as already mentioned. Moreover,
[8] establishes the consistency of functional SVM algorithm by adapting the
framework introduced in [31] in the case of nearest neighbors. In our pro-
posal, SVM for FD serves as a base tool in our supervised learning model for
classifying FD in Sobolev spaces. In fact, our contribution, in the supervised
case, can be viewed as a multiple kernel extension of [8].
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2.4. Functional data analysis with derivatives

FD constitute rich objects to analyse. One specific feature is that one can
work with the derivative functions which can encode additional discriminant
information when it comes to clustering FD or learning a classifier from FD.
In the domain of FDA, this was already pointed out at least since [32]. From a
conceptual standpoint, semi-metrics derived from derivatives functions were
emphasized by Ferraty and Vieu in [33, 17].

Regarding FD clustering, the research works described in [6, 17] show
that, in the case of spectrometric data, the 2nd derivative functions can be
more appropriate than the original functions. In the case of electrocardio-
graph curves, [34] shows that a composite distance measure that simply adds
the distance between the original curves and the distance between the 1st
derivative functions, leads to improved pattern recognition with the k-means
algorithm. In [35] as well, it is exhibited that the k-means algorithm with a
composite distance measure that sums up the distances between curves and
between the derivative functions up to the 2nd order, can give better cluster-
ing performances. Both aforementioned papers apply a uniform weight when
aggregating the pairwise proximity measures between the functions and the
ones between the derivative functions. In contrast, the general framework
introduced in [36], emphasizes the use of Sobolev metrics with non-uniform
weights. However, the question of the estimation of the weights is left opened.
In our clustering framework based on multiple kernel k-means, we integrate a
step that estimates the influence of the derivative functions of distinct orders
in the Sobolev metric.

Similarly, in the case of classification problems, quite a few research works
have promoted the use of semi-metrics. The following reference, [37], is par-
ticularly relevant in this case. In the context of binary classification, the
authors propose an LDA approach that learns how to combine discriminant
features based on successive derivative functions. Other multivariate statis-
tical methods extended to FD have also been examined with the integration
of derivative functions. It is the case of the functional logistic regression
(and more generally the generalized functional linear model) in [38], where
derivative functions are included as functional covariates. Concerning ma-
chine learning techniques, we cite the approach introduced in [28] which is
similar in spirit to [37]. In this work, several semi-metrics (ie derivative
functions) with distinct types of distances are used to generate discriminant
features.
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Finally, another paper that studies derivative functions in supervised
learning tasks is [39]. This approach builds upon [40] which define Hq([0, T ])
as a direct sum of two reproducing kernel Hilbert subspaces, one being fi-
nite dimensional with a given set of basis functions and corresponding to the
kernel of a given linear differential operator, and the other one being infinite
dimensional and complementary to the previous one by means of boundary
conditions. In this framework, [40] shows that the closed-form solution of
the smoothing spline estimates of sampled FD can be formalized by a full
rank linear operator from Rp to Hq([0, T ]). Then in [39], the authors use
this solution as a pre-processing of the FD and eventually show that, in the
framework described in [40], the subspace of Hq([0, T ]) consisting of smooth-
ing spline estimates equipped with the metric induced by the kernel function,
is isomorphic to an Euclidean space equipped with a specific metric where
usual multivariate techniques can then be carried out.

Unlike this latter setting, we are interested in individually considering
the derivative functions of distinct orders up to the qth one and in combining
the information they convey by a weighting scheme. In addition, we propose
to project the FD and their derivatives functions in several RKHS using
the kernel trick. To our knowledge, these two points have not been jointly
examined for both the clustering and the classification tasks.

3. Multiple kernel learning methods for clustering and classifying
FD using derivatives

We now introduce in more details the different methods that we extend to
FD. We assume that the FD are from the Sobolev space Wq,2. Our purpose
is to combine the information provided by the successive derivatives of the
FD. Given the sample {xi}i we can determine the derivative functions up
to order q denoted {Dxi}i, {D2xi}i, . . . , {Dqxi}i which are interpreted as
distinct views of the same objects. The different sets of functions can be
implicitly mapped from L2([0, T ]) to a RKHS using the kernel trick. Then
we apply multiple kernel techniques in order to learn how to linearly combine
the different single kernel functions. It should be clear that even though we
suppose that the FD are elements of Wq,2, we do not use the regular Sobolev
metric:

⟨xi, xi′⟩Wq,2 =

q∑
s=0

⟨Dsxi, D
sxi′⟩L2

where D0 is the identity operator.
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Instead, our contribution promotes non-uniform weights since we typically
assume that the information conveyed by the derivatives are complementary
to each other but some orders of derivation might be more important than
other ones and should be more emphasized. Consequently, we assume a more
general metric in Wq,2 :

⟨xi, xi′⟩Wq,2 =

q∑
s=0

ws⟨Dsxi, D
sxi′⟩L2 (4)

where w = (w0, . . . , wq) and ws ≥ 0,∀s = 0, . . . , q.
In this context, as far as the the clustering task is concerned, we learn how

to weight each kernel function by looking at how they can further minimize
the sum of squared errors given a partition. The underlying model is the
multiple kernel k-means algorithm that we review in the case of multivariate
data before its extension to our context.

Regarding the classification problem, we focus on the multiple kernel
SVM approach. In the same spirit, in order to assign weights to the kernel
functions associated to the derivative functions of different orders, we look
at how the weights allow improving the SVM objective function.

Before introducing our extension of the multiple kernel k-means and the
multiple kernel SVM for Sobolev functions in sub-sections 3.2 and 3.3, we
introduce a common result to both models. It concerns the solution to the
problem of learning the weight vector whose values are assigned to the dif-
ferent views given a separable cost function and under a ℓr norm constraint
with r > 1. It is noteworthy that we discard the ℓ1 norm which provides
sparse solutions. Indeed, our hypothesis is that the derivative functions of
several orders are complementary to each other and our purpose is to design
an aggregation scheme rather than a selection strategy.

3.1. Learning how to combine different views

In this sub-section, we assume that we are given a non-negative vector1

z = (zs)s=0,...,q and we want to solve the following problem

max
w∈Rq+1

w⊤z (5)

s.t. w ≥ 0, ∥w∥ℓr ≤ 1

1This vector will be properly defined in regard to the clustering and classification models
we use, subsequently.
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where w = (ws)s=0,...,q, w ≥ 0 is a shortcut for ws ≥ 0,∀s = 0, . . . , q and

∥w∥ℓr = (
∑

sw
r
s)

1
r .

In our context, zs reprensents the partial contribution of the sth view
{Dsxi}i=1,...,n to a given separable objective function, while the unknown ws

is the weight that indicates the importance that should be assigned to this
latter view if one seeks to optimize w⊤z.

The weight vector should be non-negative and in order to bound the
problem, we constrain the ℓr norm of w to not exceed 1. Problem (5) is
convex and the following result establishes its closed-form solution.

Proposition 1. Assuming z ≥ 0 and r > 1, the solution to Problem (5) is
given by, ∀s = 0, . . . , q:

ws =
z

1
r−1
s(∑q

s′=1 z
r

r−1

s′

) 1
r

(6)

Proof. The Lagrangian function of Problem (5) reads:

L(w,α, β) = w⊤z+w⊤α+ β(1− ∥w∥ℓr)

where α ∈ Rn and β ∈ R are the Lagrange multipliers which should be non-
negative. Setting the derivative of L with respect to the primal variable to
zero, it comes:

∂L

∂w
(w,α, β) = 0 ⇔ z+α− β

wr−1

∥w∥r−1
ℓr

= 0

⇔ wr−1

∥w∥r−1
ℓr

=
z+α

β

where, by a slight abuse of notation, wr−1 = (wr−1
s )s=0,...,q.

Clearly, β should be strictly greater than 0 and by the complementary con-
ditions of the KKT conditions, this implies ∥w∥ℓr = 1. Consequently, the
previous equation simplifies into:

wr−1 =
z+α

β
, that is to say, wr−1

s =
zs + αs

β
,∀s = 0, . . . , q

By hypothesis zs ≥ 0 and r > 1. This implies ws ≥ 0 and thus, by the
complementary conditions of the KKT conditions again, we deduce that αs =

12



0,∀s = 0, . . . , q. From this reasoning, we obtain:

w =
z

1
r−1

β
1

r−1

, that is to say, ws =
z

1
r−1
s

β
1

r−1

,∀s = 0, . . . , q (7)

Now, using the activated constraint ∥w∥ℓr = 1 again, it comes:(∑
s

wr
s

) 1
r

= 1 ⇔

(∑
s

(
zs
β

) r
r−1

) 1
r

= 1

⇔

(∑
s

zs
r

r−1

) 1
r

= β
1

r−1 (8)

Finally by plugging (8) into (7) we obtain the claimed solution.

We further specify in what follows, how this result instantiates in the case
of our clustering and classification models.

3.2. Multiple kernel k-means for FD

In the data mining community the idea to combine different views of
the same set of elements in order to boost the performances of clustering
methods dates back at least to [41]. The ever growing generation of ob-
jects presenting several representations such as web pages, annotated images
or videos. . . , have encouraged the multi-view clustering research topic. A
recent survey of methods is provided in [42]. In our case, we employ the mul-
tiple kernel k-means algorithm that was initially discussed in [43, 44] in the
multivariate case. In [43], the estimation of the weights is computationally
prohibitive unlike the closed-form solution that we emphasized in the pre-
vious sub-section. The authors of [44] introduced a so-called multiple view
kernel k-means framework for multivariate data which also relies on an al-
ternating optimization approach and on closed-form solutions. Nonetheless,
their approach differs from our modeling and their solution is similar to that
of the determination of the membership value of each object to each cluster
in the fuzzy c-means method which was introduced in [45]. In this context,
r is akin to the hyper-parameter which controls the partition fuzziness.

In our work, we propose to apply the multiple kernel k-means to FD in
Wq,2 where each set of derivative functions of order s = 1, . . . , q is considered
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as a distinct view. More formally, the multiple kernel k-means problem that
we address can be casted as follows:

min
C,w

k∑
l=1

1

2|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

q∑
s=0

ws∥ψs(Dsxi)− ψs(Dsxi′)∥2Fs (9)

s.t.

{
C = {C1, . . . , Ck} is a partition,
w ≥ 0, ∥w∥ℓr ≤ 1.

where Fs is an RKHS onto which the functions {Dsxi}i are projected by
means of the mapping ψs : L2 → Fs.

The loss function is the within cluster variance which is a weighted mean
of the within variance of each cluster Cl with l = 1, . . . , k. In order to
establish a graph-based formulation that relies on kernel matrices, we express
the within variance in a pairwise manner. We also make explicit the fact
that the objective function is separable with respect to the different views
s = 0, . . . , q.

Thanks to the decomposition of the total variance into the sum of the
within and between clusters variances, we can maximize the between cluster
variance instead and the previous problem is equivalent to the following one:

max
C,w

1

2n2

n∑
i=1

n∑
i′=1

q∑
s=0

ws∥ψs(Dsxi)− ψs(Dsxi′)∥2Fs (10)

−
k∑

l=1

1

2|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

q∑
s=0

ws∥ψs(Dsxi)− ψs(Dsxi′)∥2Fs

s.t.

{
C = {C1, . . . , Ck} is a partition,
w ≥ 0, ∥w∥ℓr ≤ 1.

Next, by expanding the squared distances in the previous objective func-
tion in terms of kernel functions ks(Dsx,Dsy) = ⟨ψs(Dsx), ψs(Dsy)⟩Fs and
by denoting the evaluation of the latter expression for all pairs {(xi, xi′)}i,i′=1,...,n

of the sample by means of the square matrixKs = (Ks
ii′)i,i′=1,...,n = (ks(Dsxi, D

sxi′))i,i′=1,...,n,
it is not difficult to show that Problem (10) can be formulated as follows:

max
C,w

q∑
s=0

ws

 k∑
l=1

1

n|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

Ks
ii′ −

1

n2

n∑
i=1

n∑
i′=1

Ks
ii′

 (11)

s.t.

{
C = {C1, . . . , Ck} is a partition,
w ≥ 0, ∥w∥ℓr ≤ 1.

14



We apply the mainstream strategy for solving such kinds of multiple
kernel learning problems which consists in alternating between maximizing
with respect to C while keeping w fixed and then maximizing with respect
to w while keeping C fixed. In the former case, a usual kernel k-means
algorithm is employed to determine C. In the latter case, we have a closed-
form solution following the materials we exposed previously. Let us introduce
the following variable:

zs =
k∑

l=1

1

n|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

Ks
ii′ −

1

n2

n∑
i=1

n∑
i′=1

Ks
ii′ , ∀s = 0, . . . , q (12)

Note that zs ≥ 0,∀s = 0, . . . , q. Then by applying Proposition 1, we get
the following result.

Corollary 1. Let C = {C1, . . . , Ck} be fixed and r > 1, then the following
optimization problem:

max
w

q∑
s=0

ws

 k∑
l=1

1

n|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

Ks
ii′ −

1

n2

n∑
i=1

n∑
i′=1

Ks
ii′


s.t. w ≥ 0, ∥w∥ℓr ≤ 1.

is convex and the optimal solution is given by, ∀s = 0, . . . , q:

w∗
s =

(∑k
l=1

1
n|Cl|

∑
i:xi∈Cl

∑
i′:xi′∈Cl

Ks
ii′ − 1

n2

∑n
i=1

∑n
i′=1 K

s
ii′

) 1
r−1

(∑q
s′=1

(∑k
l=1

1
n|Cl|

∑
i:xi∈Cl

∑
i′:xi′∈Cl

Ks′
ii′ − 1

n2

∑n
i=1

∑n
i′=1K

s′
ii′

) r
r−1

) 1
r

It is worth mentioning that the range of each kernel values ks for s =
1, . . . , q can strongly vary. Accordingly, before combining the different kernel
matrices {Ks}s=1,...,q, it might be important to carry out a normalization
procedure so as to make them more comparable to each other.

We denote our method by SF-MK-KM for Sobolev functions multiple
kernel k-means and we wrap up its procedure in Algorithm 1.

Since the alternating procedure described in Algorithm 1 improves the
objective function of Problem (11) at each iteration, it converges to a local
optimum.
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Algorithm 1: Sobolev functions multiple kernel k-means (SF-MK-
KM).

Input: {yij}i=1,...,n;j=1,...,p (sampled values of FD), q ≥ 0 (maximum
order of derivative), r > 1 (ℓr norm, default 2), {ks}s=0,...,q

(kernel functions, default Gaussian), σ (kernel
hyper-parameter if any, default 1), k ≥ 2 (number of
clusters)

Output: C (partition of FD), w (weight vector of size q + 1)
1 Project the sampled FD onto a pre-defined set of q + 2 + p B-splines

of order q + 2 and determine {xi}i=1,...,n by solving (3);
2 Determine {Dsxi}i=1,...,n,∀s = 1, . . . , q;
3 Determine {Ks = (ks(Dsxi, D

sxi′))i,i′=1,...,n}, ∀s = 0, . . . , q;
4 Normalize the kernel matrices Ks,∀s = 0, . . . , q (optional);
5 Initialize a uniform weight vector w;
6 while Stopping condition not reached do
7 Fix w and apply the kernel k-means algorithm with multiple

kernel K =
∑q

s=0wsK
s to determine a new C (if applicable, use

the previous C as for initialization);
8 Fix C and apply Corollary 1 to determine a new w;

9 end
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3.3. Multiple kernel SVM for FD

We already provided in sub-section 2.3 some background regarding the
extension of the SVM model to FD following the work introduced in [8]. We
now give a more formal presentation of the SVM technique by recalling the
dual optimization problem that makes it possible to employ kernel functions.

Given a training set {(xi, ci)}i=1,...,n the SVM approach consists in solving
the following (primal) convex optimization problem:

min
a0∈R,a∈L2

1

2
∥a∥2L2 + µ

n∑
i=1

ξi (13)

s.t.

{
ci (a0 + ⟨a, xi⟩L2) ≥ 1− ξi,∀i = 1, . . . , n;
ξi ≥ 0,∀i = 1, . . . , n.

where µ ≥ 0 is a hyper-parameter that controls the balance between the soft-
margin which is inversely proportional to ∥a∥2L2 and the soft-error

∑n
i=1 ξi.

The previous constrained optimization problem is equivalent to the fol-
lowing unconstrained problem:

min
a0∈R,a∈L2

1

2
∥a∥2L2 + µ

n∑
i=1

max (0, 1− ci (a0 + ⟨a, xi⟩L2)) (14)

One major interest of the SVM methodology resides in its dual problem
which is stated as follows:

max
α∈Rn

n∑
i=1

αi −
n∑

i=1

n∑
i′=1

αiαi′cici′⟨xi, xi′⟩L2 (15)

s.t.

{ ∑n
i=1 αici = 0;

0 ≤ αi ≤ µ,∀i = 1, . . . , n.

The duality allows transforming the primal problem in an infinite di-
mensional space L2, into a dual problem in a finite dimensional space Rn.
Furthermore, the dual solely depends on the inner-products between pairs of
objects in the training sample. This feature makes it possible to implicitly
project the FD in a RKHS thanks to the kernel trick. Let K be a square
matrix of order n with general termKii′ = ⟨ψ(xi), ψ(xi′)⟩F = k(xi, xi′), where
F is a RKHS with reproducing kernel function k and ψ its associated fea-
ture map. Consequently, the general form of the SVM approach in its dual
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expression is given by:

max
α∈Rn

n∑
i=1

αi −
n∑

i=1

n∑
i′=1

αiαi′cici′Kii′ (16)

s.t.

{ ∑n
i=1 αici = 0;

0 ≤ αi ≤ µ,∀i = 1, . . . , n.

As mentioned previously in sub-section 2.3, the adaptation of the SVM
technique to FD was already introduced in [8]. Our proposal is an extension
to the multiple kernel framework in the goal of leveraging the functional
nature of the objects we deal with. Assuming the FD belong to Wq,2, we
propose to employ a multiple kernel matrix:

K =

q∑
s=0

wsK
s (17)

where ws ≥ 0,∀s = 1, . . . , q, and for all couples (xi, xi′) in the training set,
Ks

ii′ = ⟨ψs(Dsxi), ψ
s(Dsxi′)⟩Fs = ks(Dsxi, D

sxi′) with the same definitions
for ψs and Fs as given in sub-section 3.2.

Similarly to the unsupervised case, we exploit the fact that the derivative
functions provide other views of the original objects and apply the multiple
kernel learning paradigm to combine those distinct sources of information.
Moreover, we project each set {Dsxi}i for all s = 0, . . . , q, from L2([0, T ]) to
an RKHS by means of the mapping functions ψs. This feature is important
when classes are not linearly separable. Overall, our framework provides a
flexible representation of FD for classification purposes.

In the classification case, we also suppose that the kernel matrices {Ks}s=1,...,q

should be mixed in a complementary way instead of being in competition with
each other. Therefore, we focus on the general approach studied in [46, 47]
which highlights a ℓr regularization with r > 1 by constraining ∥w∥ℓr ≤ 1. In
fact, we extend the latter model from the multivariate case to the functional
one and this amounts to solve the following problem:

min
w∈Rq+1

max
α∈Rn

n∑
i=1

αi −
n∑

i=1

n∑
i′=1

αiαi′cici′

q∑
s=0

wsK
s
ii′ (18)

s.t.


∑n

i=1 αici = 0;
0 ≤ αi ≤ C, ∀i = 1, . . . , n;
w ≥ 0, ∥w∥ℓr ≤ 1.
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The optimization procedure is alike the unsupervised case and consists
in alternating between maximizing with respect to α with a fixed w (using
the regular SVM algorithm) then minimizing according to w with a fixed
α. The second problem has a closed-form solution that can be stated using
Proposition 1 by considering the opposite of the minimization in w, and with
the following definition:

zs =
n∑

i=1

n∑
i′=1

αiαi′cici′K
s
ii′ ,∀s = 0, . . . , q (19)

Corollary 2. Let α be fixed and r > 1, then the following optimization
problem:

min
w∈Rq+1

n∑
i=1

αi −
n∑

i=1

n∑
i′=1

αiαi′cici′

q∑
s=0

wsK
s
ii′

s.t. w ≥ 0, ∥w∥ℓr ≤ 1.

is convex and the optimal solution is given by, ∀s = 0, . . . , q:

w∗
s =

(
∑n

i=1

∑n
i′=1 αiαi′cici′K

s
ii′)

1
r−1(∑q

s′=0(
∑n

i=1

∑n
i′=1 αiαi′cici′Ks′

ii′)
r

r−1

) 1
r

In Algorithm 2 we give the pseudo-code of our multiple kernel SVM pro-
cedure for Sobolev functions (SF-MK-SVM). Similarly to the clustering case,
the overall objective function is improved at each iteration, therefore, Algo-
rithm 2 converges to a local optimum.

4. Experiments

In this section we experiment with the models that we have introduced
previously using simulated and real-world data. For both cases, we investi-
gate the clustering and the classification tasks. Our theoretical framework
supposes a flexible q, the upper bound of the derivation order we integrate in
the representation. Nonetheless, we only examine the cases q = 1 and q = 2
in our empirical work. Likewise, even though the theoretical results given in
Proposition 1 is valid for all r > 1, we set r = 2 in all the experiments we
present subsequently. Besides, in all tests, the stopping condition in Algo-
rithms 1 and 2 is triggered if a precision of 10−5 is reached for the objective
function, or a maximal number of 10 iterations is achieved.
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Algorithm 2: Sobolev functions multiple kernel SVM (SF-MK-
SVM).

Input: {yij}i=1,...,n;j=1,...,p (sampled values of FD), q ≥ 0 (maximum
order of derivative), r > 1 (ℓr norm, default 2), {ks}s=0,...,q

(kernel functions, default Gaussian), σ (kernel
hyper-parameter if any)

Output: α (support vectors’s weight), w (weight vector of size
q + 1)

1 Project the sampled FD onto a pre-defined set of q + 2 + p B-splines
of order q + 2 and determine {xi}i=1,...,n by solving (3);

2 Determine {Dsxi}i=1,...,n,∀s = 1, . . . , q;
3 Determine {Ks = (ks(Dsxi, D

sxi′))i,i′=1,...,n},∀s = 0, . . . , q;
4 Normalize the kernel matrices Ks,∀s = 0, . . . , q (optional);
5 Initialize a uniform weight vector w;
6 while Stopping condition not reached do
7 Fix w and apply the SVM algorithm with multiple kernel

K =
∑q

s=0wsK
s to determine a new α;

8 Fix α and apply Corollary 2 to determine a new w;

9 end
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Figure 1: Gaussian functions in group 1 (left), in group 2 (middle), in both groups 1, 2
along with mean functions of group 1, 2 in white (right).

4.1. Simulated data

Firstly, we use a dataset of simulated Gaussian density functions on the
domain [−4, 4]. We consider two groups 1 and 2, which are respectively asso-
ciated to two distinct sets of parameters (µ1, σ1) = (0, 1) and (µ2, σ2) = (0, 2)
along with the following random noises ϵµ1 , ϵµ2 ∼ N (0, 0.15), ϵσ1 ∼ N (1, 0.1)
and ϵσ2 ∼ N (1.2, 0.1). Furthermore, we add an extra source of variability
for the second group by considering a random offset ϵa ∼ N (0.005, 0.01).
Thereby, the first group of Gaussian curves is sampled as follows:

x(t) = N (t;µ1 + ϵµ1 , σ1 + ϵσ1) (20)

=
1

(σ1 + ϵσ1)
√
2π

exp

(
−1

2

(t− (µ1 + ϵµ1))
2

(σ1 + ϵσ1)
2

)
,

while the generative procedure for the Gaussian functions of group 2 is :

x(t) = N (t;µ2 + ϵµ2 , σ2 + ϵσ2) + ϵa (21)

=
1

(σ2 + ϵσ2)
√
2π

exp

(
−1

2

(t− (µ2 + ϵµ2))
2

(σ2 + ϵσ2)
2

)
+ ϵa

We represent 100 curves from each group 1 and 2 in Figure 1. It appears
that making the distinction between the two sets is not completely straight-
forward since their bell shapes are pretty similar. However, in Figure 2, we
respectively plotted the curves of the 1st and 2nd derivative functions (top
and bottom rows respectively) of the two groups. We argue that using these

21



latter curves along with the original functions can help represent the FD
more effectively for pattern recognition.

Indeed, in the graph on the right hand side of Figure 1, we plotted in white
the Gaussian mean functions of the two groups and one can observe that they
mainly differ around their common inflection point 0. Given the relationships
between Gaussian density functions N (t;µ, σ) with Hermite polynomials, it
comes that the 1st and 2nd derivative functions have two and three inflection
points which are {−σ, σ} and {−

√
3σ, 0,

√
3σ} respectively. In Figure 2 we

also observe that differences between the mean curves of the derivatives of
the two groups are more pronounced around the aforementioned inflection
points. In our perspective, this suggests that the derivative functions provide
representations that can exhibit additional discriminative features that one
could exploit.
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Figure 2: From top to bottom : 1st derivative functions (top row), 2nd derivative functions
(bottom row). From left to right : curves in group 1 (left column), curves in group 2
(middle column), curves in both groups and mean functions of groups 1 and 2 in white
(right column).

In what follows, our goal is to empirically study two research questions.
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Firstly, can we improve pattern recognition of groups of functional data by
by projecting them in RKHS ? This is related to the manifold hypothe-
sis and our use of kernel methods : even though data are element of high
dimensional spaces, in practice, it is often the case that they actually be-
long to non-linear manifolds with lower dimensions. Secondly, for functional
clustering and classification tasks, is it beneficial to combine functions with
their derivatives functions by using the multiple kernel techniques that we
introduced previously ?

4.1.1. Clustering task

We start by studying the previous points in the case of clustering task.
We take the previous sample of 100 functions of group 1 mixed with a 100
curves of group 2. Then, we alternatively applied the SF-MK-KM approach
depicted in Algorithm 1 with k = 2, using the following linear kernel matrices
which are given acronyms for notational purposes :

� 00 : K00 = (⟨xi, xi′⟩L2)i,i′=1,...,n,

� 11 : K11 = (⟨Dxi, Dxi′⟩L2)i,i′=1,...,n,

� 22 : K22 = (⟨D2xi, D
2xi′⟩L2)i,i′=1,...,n,

� 01 : K01 = K00 +K11,

� 02 : K02 = K00 +K11 +K22.

Note that the kernel matrices K01 and K02 are equivalent to using the
regular Sobolev metric of W1,2 and W2,2, given in (3).

The clustering performances are assessed using external validation cri-
teria where we compare the partition C obtained by the clustering method
against the ground-truth that we denote by L. We use two conventional
evaluation measures, the purity and the normalized mutual information. Let
L = {L1, . . . , Lk} and C = {C1, . . . , Ck} denote the true classes and the found
clusters respectively. Then, the Purity and the NMI assessment measures are
defined by:

Purity(C,L) =
1

n

k∑
l=1

max
m=1,...,k

(|Cl ∩ Lm|) (22)

NMI(C,L) =
2MI(C,L)

H(C) + L(C)
(23)
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where H(C) is the entropy of C given by H(C) = −
∑k

l=1(|Cl|/n) log((|Cl|/n)),
and MI(C,L) is the mutual information between C and L expressed by
MI(C,L) =

∑k
l,m=1(|Cl ∩ Lm|/n) log(n|Cl ∩ Lm|/(|Cl||Lm|)).

Purity and NMI scores are in [0, 1] and the higher the value is, the closer
the two partitions are and the better the clustering solution is.

SF-MK-KM relies on the k-means heuristic and it is well-known that
the random initialization of this clustering algorithm leads to different local
optima. In order to address this source of variability, we ran SF-MK-KM 50
times on matrices K00,K11,K22,K01 and K02.

The box plots of the Purity and NMI measures obtained from our exper-
iments are depicted in Figure 3. Note that we also provide the mean value,
shown by a red triangle.

Let us first discuss the results obtained using the single kernel matrices
K00,K11,K22. The three different views provide distinct performances. For
the sample under study, the 1st derivative functions is ranked 1st, followed
by the original functions and finally the 2nd derivative functions. If we uni-
formly add K00 to K11 to form the multiple kernel matrix K01, then the
performances are comparable to K11 which are the two best overall repre-
sentations. If we look at K02 = K00 + K11 + K22, then it is a little bit
“contaminated” by the lower assessment values of K22. Nonetheless, we ar-
gue that K02 allows combining the three single kernel matrices in a positive
way in the sense that its evaluation scores are not lower than the minimum
values of the single kernel matrices.

The next point that we address is the application of a kernel function
in order to evaluate the manifold hypothesis on the simulated dataset. To
this end, we use the Gaussian kernel which is given as follows for a couple of
curves (xi, xi′):

Kii′ = exp

(−∥xi − xi′∥2L2

σ2

)
(24)

where σ > 0 is an hyper-parameter controlling the neighborhood width.
This proximity measure was used for all single representations K00, K11,

K22 and consequently for the multiple kernel matrices K01 and K02 as well.
After some preliminary tests, we found that σ = 1 was a good setting.

Therefore, we use this value in all the experiments in this sub-section when
using the Gaussian kernel. The clustering performances we obtained are
exposed in Figure 4. By comparing the ranges of the values in the y axes of
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Figure 3: Box plots of Purity (left) and NMI (right) measures of SF-MK-KM without
weight optimization and using linear kernels.

Figures 3 and 4, one can note that the Gaussian kernel outperforms the linear
kernel for all representations except for 00. This shows that representing
functional data in RKHS using kernel functions can lead to better clustering
solutions.

Next, we investigate the weight optimization procedure when linearly
combining the single kernel matrices. We introduce additional notations :

� 01o : K01o = w0K
00 + w1K

11,

� 02o : K02o = w0K
00 + w1K

11 + w2K
22.

where w = (ws) is the vector of positive weights that is updated at each
iteration of Algorithm 1.

In Figure 6, we show the comparison between the Purity and the NMI
values obtained with SF-MK-KM without weight optimization (02), and with
weight optimization (02o). Clearly, optimizing the weights allows enhancing
both evaluation criteria. Another interesting effect that is worth empha-
sizing is that it also reduces the variability caused by the k-means random
initialization. Indeed, almost all 50 trials converge to the same performance
measure for 02o.

In order to have a more global assessment of the SF-MK-KM approach, we
generated 100 samples of the same kind of datasets as previously (100 curves
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Figure 4: Box plots of Purity (left) and NMI (right) measures of SF-MK-KM without
weight optimization and using the Gaussian kernel.
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Figure 5: Box plots of Purity (left) and NMI (right) measures of SF-MK-KM without (02)
and with (02o) weight optimization and using Gaussian kernels.

per group). We apply the same representations and parameters as before
except for the number of random initializations. Indeed, for each sample,
SF-MK-KM is run 10 times instead of 50. We averaged the performance
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measures over these 10 trials.
In Figure 6, we plotted the box plots of the measures derived from the

100 samples for both the linear and Gaussian kernels whose results are indi-
cated with prefix l and prefix g respectively. It allows us to confirm that the
Gaussian kernel scores are superior to the linear kernel ones. The baseline
representation 00 is somewhat an exception since both kernels give com-
parable results. Moreover, Figure 6 exhibits the positive effect of weight
optimization since g01o outperforms g01 and so is the case when comparing
g02o and g02. Overall, g02o (right most box plot in Figure 6) is the SF-MK-
KM setting that provides the best results if we consider the mean values (red
triangles).
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Figure 6: Box plots of averaged Purity (left) and averaged NMI (right) measures of SF-
MK-KM tested on 100 samples of 200 curves (100 in each group) using linear and Gaussian
kernels. The prefix l and g respectively stand for linear and Gaussian kernels. The suffix
o stands for weights optimization.

4.1.2. Classification task

In this paragraph, we examine the classification task using the same sim-
ulated data as previously in order to evaluate the SF-MK-SVM model. The
same representations 00, 11, 22, 01, 02, 01o, 02o, and both the linear and the
Gaussian kernels were tested. Similarly to the clustering task, we set σ = 1
for the Gaussian kernel hyper-parameter. In the supervised learning context,
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he evaluation criterion we used is the accuracy rate given by :

Accuracy(C,L) =
1

n

k∑
l=1

|Cl ∩ Ll| (25)

where L is the true class distribution and C is the the one predicted by
SF-MK-SVM.

In regard to the hyper-parameter µ in the SVM objective function, we
tested the following values, µ ∈ {0.1, 1, 10}, in a grid search fashion. In other
words, we kept the best test error measure among the three alternatives.
Furthermore, we applied a 10-fold cross-validation procedure.

The box plots in Figure 7 expose the accuracy dispersions among the 10
folds and the red triangles indicate the mean values.

The range of the y values between the two plots are different. Focusing
on the median and mean accuracy scores, one can note that the measures on
the left graph are lower than the ones on the right. Therefore, the Gaussian
kernel provides better results in comparison to the linear kernel for the classi-
fication task as well. However, concerning the impact of combining different
views of the curves based on their derivative functions, the observations are
different from the clustering case. For the linear kernel (left graph in Figure
7), the results are negative : optimizing the weights hurt the performances.
Our explanation for this phenomenon is that the single linear kernel matrices
K00, K11 and K22, have heterogeneous ranges and caused a distortion in the
importance of the different views in the combination. On the contrary, the
Gaussian kernels are non-negative cosine measures whatever the representa-
tions. For the three single kernel matrices, their diagonal is 1. This implies
that Gaussian kernel matrices are comparable to each other unlike the linear
kernel matrices. As a consequence, the weight optimization in this case does
not provide under-performances as depicted in the right graph of Figure 7.
Nonetheless, it does not boost the accuracy measures neither. If we look at
the median scores, they are all equal to 0.95 whatever the representation.

Likewise the clustering task, we tested our model more globally by ap-
plying it to 100 simulated samples in the same setting as described previ-
ously. The results are exhibited in Figure 8. It allows us to confirm that
the Gaussian kernel gives better results than the linear kernel. However, the
weight optimization did not provide any improvement and tend to degrade
the performances a little bit. Still, we argue that the outcomes are pretty
comparable among g00, g01, g02, g01o and g02o. Our explanation, in this
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Figure 7: Box plots of Accuracy values of SF-MK-SVM given by a 10-fold cross-validation
using the linear kernel (left) and the Gaussian kernel (right).

case, is that the weight optimization might suffer from over-fitting. We shall
see in the next section that on some real datasets SF-MK-SVM using weight
optimization can improve the performances.

4.2. Real-world data

In this paragraph, we report on the performances of SF-MK-KM and
SF-MK-SVM on the 6 real-world datasets whose characteristics are given
in Table 1. These data are all publicly available and come from either the
fda R package [48], the fda.usc R package [49] or the UEA and UCR TS
Classification Repository [50]. Here is a brief description of the datasets :

� Growth : it contains measurements of the heights of 39 boys and 54
girls from age 1 to 18. The measurements are taken at regular intervals.
The task consists in separating boys and girls growth curves.

� Trace : it is a synthetic dataset designed to simulate instrumentation
failures in a nuclear power plant. There are 4 different transient classes
corresponding to distinct curve shapes.

� poblenou : it corresponds to NOx levels measured every hour by a
control station in Poblenou in Barcelona (Spain). The goal is to dis-
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Figure 8: Box plots of averaged Accuracy values of SF-MK-SVM tested on 100 samples
of 200 curves (100 in each group) using linear and Gaussian kernels. The prefix l and
g respectively stand for linear and Gaussian kernels. The suffix o stands for weights
optimization.

criminate air pollution trajectories during working days from the ones
during non-working days.

� Meat : it concerns food spectrographs used in chemometrics to clas-
sify food types. The data are obtained using Fourier transform in-
frared (FTIR) spectroscopy with attenuated total reflectance (ATR)
sampling. There are 3 classes : chicken, pork and turkey.

� phoneme : it contains 250 speech frames with class membership: “sh”,
“iy”, “dcl”, “aa” and “ao”. From each speech frame, a log-periodogram
of length 150 has been stored. The goal is to predict the class mem-
bership.

� SwedishLeaf : it is a set of swedish tree leaf outlines where contour
images are transformed into time series. There are 15 different species.
We used the 500 observations of the test subset provided in the dataset
repository.

We explained in sub-section 2.1, the pre-processing procedure we apply
in order to reconstruct the functional form of the discretized observations.
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Source Type Name Nb of Nb of Nb of
FD Class time pts

fda Growth curve Growth 93 2 31
UCR TS Sensor Trace 100 4 275
fda.usc Air pollution poblenou 115 2 24
UCR TS Spectroscopy Meat 120 3 448
fda.usc Acoustic phoneme 250 5 150
UCR TS Image SwedishLeaf 500 15 128

Table 1: List of real-world datasets used in our experiments.

For all datasets, we used a B-splines basis systems of order d = q + 2 with
m = d+p basis functions where p is the number of time points that depends
on the dataset. A spline smoothing is carried out with a roughness penalty
R(xi) = ∥D4xi∥2L2

since we aim to study up to the 2nd derivative function
(see for example [9, Chapter 5]). The hyper-parameter λ in (3) was selected
among the values λ ∈ {10−4, 10−3, 10−2, 10−1, 1, 10} by means of the GCV
criterion.

For each dataset, we examined both the unsupervised and the supervised
tasks using SF-MK-KM and SF-MK-SVM respectively. The setting is the
same as for the simulated data. However, we experimented only with the
Gaussian kernel. In that respect, the σ value in (24) needs to be adapted in
regard to the different datasets. To this end, we adopted a general strategy
for auto-tuning this hyper-parameter which is inspired from [51]. In the latter
paper, the authors propose a local scaling for each pair (xi, xi′) and found
that replacing σ2 with σiσi′ in (24), where σi is the distance value from
xi to its 7th nearest-neighbor, was a good strategy in practice. However,
the resulting affinity matrix is not guaranteed to be positive semi-definite.
Yet, this latter condition is a requirement for the SVM model. In order to
circumvent this issue, we determined the distribution of the distances to the
7th nearest neighbors of all elements and set the global σ value to the median
estimate.

Regarding the clustering task, for each dataset and each representation
00, 11, 22, 01, 02, 01o, 02o, we provide the box plots of the Purity and NMI
values given by 10 different initializations of SF-MK-KM. In the case of the
classification task, the box plots are related to the values provided by the
10-fold cross-validation procedure.
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The results of the clustering and classification performances of the distinct
datasets are given in Figures 9, 10, 11, 12, 13, and 14.

In the subsequent paragraphs we comment on the results obtained for
the clustering and the classification problems respectively in a synthesized
fashion.
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Figure 9: Growth - Box plots of measures of Purity (left) and NMI (middle) given by
SF-MK-KM using several initializations ; and box plot of measures of Accuracy (right)
given by SF-MK-SVM using cross-validation.
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Figure 10: Trace - Box plots of measures of Purity (left) and NMI (middle) given by
SF-MK-KM using several initializations ; and box plot of measures of Accuracy (right)
given by SF-MK-SVM using cross-validation.

4.2.1. Clustering tasks

The observations that we can draw from our experiments on real-world
data for the unsupervised task are summarized below:
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Figure 11: poblenou - Box plots of measures of Purity (left) and NMI (middle) given by
SF-MK-KM using several initializations ; and box plot of measures of Accuracy (right)
given by SF-MK-SVM using cross-validation.
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Figure 12: Meat - Box plots of measures of Purity (left) and NMI (middle) given by SF-
MK-KM using several initializations ; and box plot of measures of Accuracy (right) given
by SF-MK-SVM using cross-validation.

� The individual scores of single kernel matrices 00, 11 and 22 can vary
greatly. This situation exposes the practitioner to a certain risk when
choosing only one among the three alternatives, for representing the
FD.

� Combining the three different views allows one to reduce this risk.
Indeed, the results reached by the representations 01 and 02 (no weight
optimization) are close to the best scores among the cases 00, 11 and
22. This is the case for poblenou, phoneme and SwedishLeaf. For the
remaining datasets, combining the different views allows improving the
performances of the single representations. Indeed, for Growth, Trace
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Figure 13: phoneme - Box plots of measures of Purity (left) and NMI (middle) given by
SF-MK-KM using several initializations ; and box plot of measures of Accuracy (right)
given by SF-MK-SVM using cross-validation.
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Figure 14: SwedishLeaf - Box plots of measures of Purity (left) and NMI (middle) given
by SF-MK-KM using several initializations ; and box plot of measures of Accuracy (right)
given by SF-MK-SVM using cross-validation.

(mean Purity values only) and Meat, the evaluation criteria of 01 and
02 tend to be higher than any measures obtained with 00, 11 or 22.

� In general, optimizing the weight and inferring a weighted Sobolev
metric 01o and 02o enhances even more the values reached by 01 and
02 respectively. Exceptions concern Growth for which he Purity and
NMI scores for 01o are lower than those of 01; and for Trace where the
Purity values for 01o tend to be lower than for 01.

� For all datasets, the dispersion of the performances are tighter when
weight optimization is performed. This was already underline in the
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case of simulated data. It is an interesting feature of our framework :
by maximizing the weights, the SF-MK-KM approach which relies on
the k-means procedure is much less sensitive in regard to the partition
random initialization.

� If we consider the mean or the median values of Purity or NMI, we
can say that the setting 02o gives top performances for the follow-
ing datasets : Growth, poblenou, Meat. For the cases, phoneme and
SwedishLeaf, it is the 01o model that provides the best outcomes. Only
for the Trace case, a single kernel matrix (11) outperforms all other
representations. Yet, we note that the NMI score of 02o is the second
best for this dataset.

� The question of fixing q to 1 or 2, is an open question. Without any
expertise on this concern, we argue that choosing q = 2 and applying
the weight optimization can be considered as a default robust strategy.

4.2.2. Classification tasks

As for as the supervised problem is concerned, we make the following
comments on the results we obtained on the 6 datasets. In this case, our
observations are based on the graph on the right of all Figures 9, 10, 11, 12,
13, and 14. We recall that the variability of the Accuracy is related to the
10-fold cross-validation.

� Similarly to the clustering task, it is less risky to use the multiple kernel
matrices instead of choosing a single view, since the performances of
01 and 02 are, in many cases, close to the best among the ones reached
by 00 or 11 or 22.

� However, unlike the unsupervised case, 01 and 02 rarely outperform
the best performance among 00, 11 and 22. Only for Trace (01) and
poblenou (01 and 02), SF-MK-SVM were able to improve the pattern
recognition. Yet, as mentioned in the previous point, combining the
distinct views provide assessment scores that are rather close to the
best one observed among the single views.

� Weight optimization can improve the performances : the mean or me-
dian Accuracy scores obtained with 01o are greater than those of 01 for
Trace, poblenou, phoneme and SwedishLeaf. When comparing 02 and
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02o, we also note an increased performance for Growth, Trace, poblenou,
phoneme and SwedishLeaf. In the latter case, the gain is particularly
important. Indeed, 02o is the best model for the SwedishLeaf dataset.
The only bad but limited impact of weight optimization is for Growth
in the case of 01 versus 01o and for Meat in the context of 01 versus
01o as well.

� All tasks except the SwedishLeaf one, achieve very high accuracy rates.
In the majority of cases, at least one representation among 00, 11 or 22
already allows a pretty precise pattern recognition. But, as emphasized
in paragraph 4.2.1, without any expertise, one might not know which
one of the three alternatives to choose. For the classification task too,
we argue that a default robust strategy is to apply SF-MK-SVM with
weight optimization.

� The SwedishLeaf dataset presents a rather high number of classes (15)
as compared to the other cases. This feature might explain the difficulty
of the learning task. Indeed, the scores reached by the single views
are very low. Despite this fact, 02o was able to dramatically increase
the Accuracy measure. Our supervised model that promotes weight
optimization seems to be efficient in such cases but we need further
experiments to confirm this point.

5. Conclusion and future work

FDA makes it possible to study continuous phenomena using statistical
and machine learning approaches augmented with tools from functional anal-
ysis. In this paper, we assume that FD are elements of Sobolev spaces Wq,2

and we apply successively the differential operator in order to obtain deriva-
tive functions up to order q. Then, we introduce learning methods that aim
to infer a rich representation of FD in an appropriate functional space. To
this end, we propose two main ingredients. Firstly, we apply kernel methods
in order to implicitly map the FD and their derivative functions in separate
RKHS. Secondly, we propose to learn how to combine the resulting kernel
functions for unsupervised and supervised learning tasks. More precisely, our
contribution from a methodological standpoint is twofold. On the one hand,
we introduce SF-MK-KM (Sobolev Functions - Multiple Kernel - k-Means)
for clustering problems. On the other hand, we extend to Sobolev functions
the multiple kernel SVM method that we denote by SF-MK-SVM. Both
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techniques amount to learn weighted Sobolev metrics where the derivative
functions of order s = 0, . . . , q can have different impacts.

In the goal of testing our methods, we experimented with simulated and
real-world data. Our empirical work shows that applying a Gaussian kernel
can improve the clustering and the classification performances in compari-
son to the linear kernel. Moreover, the weight optimization principle exhibit
interesting features. For the clustering task, it refines even more the clus-
tering outcomes. Furthermore, we empirically demonstrate that SF-MK-KM
becomes less sensitive to the random initialization inherent to the underly-
ing k-means procedure it is based upon. Regarding the classification prob-
lem, SF-MK-SVM with weight optimization does not always give the overall
best accuracy scores but, in our experiments, its performances are generally
close to the best representation among the single views {xi}i xor {Dxi}i xor
{D2xi}i. In the situation where a practitioner does not have any evidence
for selecting one over the three alternatives, we argue that our methods, that
learn how to combine the three views, are robust with respect to the unknown
quality of the single representations for clustering or classification purposes.

As future work, we intend to extend our framework by using weight func-
tions rather than weight scalars for balancing each derivation order. In that
perspective, the sparse clustering framework designed in [5] and the inter-
pretable SVM technique for FD introduced in [52] would be worth consid-
ering. Besides, it is worth mentioning that the techniques that we have in-
troduced can be naturally extended to more general scenarios. In particular,
they can address multivariate functional data which are de facto multiview
learning problems. Another intriguing research line is physics informed ma-
chine learning. In this context, we are interested in examining a principled
way to integrate more general differential operators in our framework in order
to leverage physics constraints in the learning procedure.
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