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Background and Motivations

Functional Data (FD)

In many applications, observations are realization of functional data
(FD) (curves, time series, signals, images,. . . ).

Functional Data Analysis (FDA) extends multivariate data analysis
techniques to FD or develops specific techniques for FD, see for e.g.
[?, ?].

Objects under study are n real valued functions {xi}i=1,...,n in
L2([0,T ]), where T > 0.

However ∀xi , we only have p measurements {yij}j=1,...,p at discrete
time points {tj}j=1,...,p in [0,T ] and these observations are assumed
to be corrupted by noise εij :

yij = xi (tj) + εij , ∀i ,∀j

where εij are assumed to be independent across i and j .
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Background and Motivations

Functional Data Clustering (FDC)

Given {yij}i ,j find a partition of {xi}i where FD in a class are more
similar to each other than to FD in other classes (see for e.g. [?]).

One possible workflow for FDC is the following one :

Represent the FD in a low-dimensional space using either :

Pre-defined finite set of basis functions such as bsplines.
Data-driven finite set of basis functions such as truncated
Karhunen-Loeve expansion (a.k.a. functional PCA).

Apply multivariate clustering techniques either :

Assuming all FD belong to the whole low-dimensional
representation space (e.g. k-means or hierarchical clustering).
Assuming that each cluster only belong to a subspace of the
representation space (e.g. subspace clustering or model-based
functional clustering techniques).
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Background and Motivations

Example : Berkeley Growth data

{yij}j=1,...,p = heights measured at different times tj .

xi= height function of individual i .
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Background and Motivations

Motivations of our study

Most of previous works do not consider that FD belong to a RKHS.
→ We want to investigate kernel methods for FDC.

E.g. of related work [?, ?].

Most of previous works only use one representation xi xor Dxi the
derivative functions.

→ We want to investigate if information fusion can leverage the
functional nature of the data by considering Sobolev spaces
W1,2([0,T ]).
E.g. of related work [?].
Most of previous works assume that FD belong to linear spaces or
subspaces.

→ We want to investigate further the manifold hypothesis : FD belong
to low-dimensional non-linear manifold.
E.g. of related work [?].

⇒ We investigate these points jointly and from an empirical viewpoint
using 20 benchmarks and by using spectral clustering (SC).
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Spectral clustering

Spectral clustering (SC) in a nutshell

Methods developed in the ML community since the early 2000’s.

Capture the intrinsic geometry of the data.

Similarity, neighbor end Laplacian graphs are important concepts.

Methodology : use the spectral decomposition of the Laplacian
matrix as an embedding of the graph nodes in an Euclidean space
then partition the nodes using k-means.

Motivations : the eigenvalues and eigenvectors of the Laplacian
encode information about the connected components (and more
generally clusters) of the graph, they also provide solutions to
(relaxed) graph cuts problems.

See for e.g. [?] for an introduction.
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Spectral clustering

Similarity and Neighbor graphs

Similarities between objects as a weighted undirected graph
G = (V,E) :

V = {x1, . . . , xn} is the set of nodes : objects to cluster.
E is the set of edges : pairs of objects that are similar to each other.

Edges are weighted : if (xi , xj) ∈ E then K (xi , xj) > 0 is the measure
of the similarity.

G is represented by a weighted adjacency matrix denoted
W = (wij)i ,j=1,...,n with :

wij =

{
K (xi , xj) if (xi , xj) ∈ E
0 else

K is a kernel function : objects belong to an RKHS.

We can sparsify W and have a k nearest neighbor graph in order to
strengthen the manifold hypothesis.
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Spectral clustering

Laplacian matrix and its normalization

Let D = (dij)i ,j=1,...,n be the degree matrix defined by :

dij =

{
di if i = j
0 else

with di =
∑n

j=1 wij ,∀i = 1, . . . , n.

The Laplacian matrix of G denoted L is given by :

L = D−W

Its (symmetric) normalization denoted Lsym is defined by :

Lsym = D−1/2LD−1/2

= I−D−1/2WD−1/2

with I the identity matrix of order n.
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Spectral clustering

Properties of the normalized Laplacian matrix

Property.

Lsym can be viewed as a quadratic form (that we aim at minimizing) :

f>Lsymf =
1

2

n∑
i ,j=1

wij(
fi√
di
−

fj√
dj

)2, ∀f ∈ Rn

Lsym is symmetric and psd :

0 = λ1 ≤ λ2 ≤ . . . ≤ λn

The multiplicity order k of the null eigenvalue is the number of
connected components of G. Let denote the latter subset of nodes
as C1, . . . ,Ck . The eigen subspace associated to λ1 is spanned by
D1/21C1 , . . . ,D

1/21Ck
where 1Cl

is the assignment vector of Cl .
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Spectral clustering

Illustration with a disconnected graph

V = {x1, x2, x3, x4, x5}
E = {(x1, x2)︸ ︷︷ ︸

2

, (x2, x3)︸ ︷︷ ︸
3

, (x4, x5)︸ ︷︷ ︸
2

}

x1 x2

x3 x4 x5

2

3 2

→W =


0 2 0 0 0
2 0 3 0 0
0 3 0 0 0
0 0 0 0 2
0 0 0 2 0

 → D =


2 0 0 0 0
0 5 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2



→ L =


2 −2 0 0 0
−2 5 −3 0 0
0 −3 3 0 0
0 0 0 2 −2
0 0 0 −2 2

 → Lsym =


1 −.63 0 0 0
−.63 1 −.77 0 0

0 −.77 1 0 0
0 0 0 1 −1
0 0 0 −1 1



→ Spectra of Lsym : {2,2,1,0,0} → D1/21C1︸ ︷︷ ︸
f1
0

=


1.41
2.24
1.73

0
0

 and D1/21C2︸ ︷︷ ︸
f2
0

=


0
0
0

1.41
1.41

.
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Spectral clustering
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Experiments and discussion

Workflow

1. Smoothing : from {yij}i ,j to {xi}i :
Basis functions are cubic bspline {φk}k=1,...,q with q = 4 + p :

xi (t) = c>i φ(t) =

q∑
k=1

cikφk(t)

where ci =
(
ci1 . . . ciq

)>
and φ(t) =

(
φ1(t) . . . φq(t)

)> ∈ Rq.
We find ci as follows :

ci = arg min
c∈Rq

p∑
j=1

(yij − xi (tj))2 + λ

∫ T

0

D2xi (t)dt

where D is the differential operator and λ is the smoothing coefficient
selected in {10−4, 10−3, 10−2, 10−1, 100} wrt the GCV criterion.

2. Center the {xi}i and compute derivatives {Dxi}i .
3. Compute the Gram matrix S wrt a given kernel function.
4. Perform clustering procedures.
5. Evaluate clustering outputs and compare the results.
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Experiments and discussion

Kernel/Representation/Sparsification

FD are centered :
∑n

i=1 xi (t) = 0,∀t ∈ [0,T ].

Different Hilbert spaces :
00 xi ∈ L2([0,T ]), e.g. Kl(xi , xj) = 〈xi , xj〉L2 .
11 Dxi ∈ L2([0,T ]), e.g. Kl(xi , xj) = 〈Dxi ,Dxj〉L2 .
01 xi ∈W1,2([0,T ]), e.g. Kl(xi , xj) = 〈xi , xj〉L2 + 〈Dxi ,Dxj〉L2 .

Different kernel functions (RKHS) :

Linear kernel : Kl(xi , xj) = 〈xi , xj〉L2 =
∫ T

0
xi (t)xj(t)dt

Gaussian Kernel [?] : Kg (xi , xj) = exp

(
−‖xi−xj‖

2
L2

σiσj

)
Different sparsifications :

0 “Connected”graph : wij = max(K (xi , xj), 0).
1 k nearest-neighbor graph (with k=7).

⇒ Main questions :
Does basis expansion and RKHS help ?
Does “fusing” both xi and Dxi and work in a Sobolev space help ?
Does sparsification (that emphasizes the manifold hypothesis) help ?
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Experiments and discussion

Clustering procedures

We test the different kernel/representation/sparsification using the
two following clustering procedures. S is the Gram matrix.

Kernel k-means (K km) :

Spectral decomposition of S.
Euclidean embedding : F =

(
f1 . . . fl

)
(all eigenvectors

associated to strictly positive eigenvalues).
Apply k-means to F.

Spectral clustering (SC km) :

From S, determine W (with/without sparsification) and Lsym.
Spectral decomposition of Lsym.
Euclidean embedding : F =

(
f1 . . . fk

)
(k first eigenvectors

associated to the lowest eigenvalues).
Normalize rows of F to have unit norms.
Apply k-means to F.

Baseline : kernel k-means with linear kernel Kl(xi , xj) = 〈xi , xj〉L2 .
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Experiments and discussion

List of the 18 clustering models

Acronym Representation Kernel Clustering proc. Sparsif.

00 linear K km xi ∈ L2([0,T ]) Linear Ker. k-means

00 gaussian K km xi ∈ L2([0,T ]) Gaussian Ker. k-means
11 linear K km Dxi ∈ L2([0,T ]) Linear Ker. k-means
11 gaussian K km Dxi ∈ L2([0,T ]) Gaussian Ker. k-means
01 linear K km xi ∈ W1,2([0,T ]) Linear Ker. k-means
01 gaussian K km xi ∈ W1,2([0,T ]) Gaussian Ker. k-means
00 linear SC km 0 xi ∈ L2([0,T ]) Linear Spectral Clust. Connected

00 gaussian SC km 0 xi ∈ L2([0,T ]) Gaussian Spectral Clust. Connected
11 linear SC km 0 Dxi ∈ L2([0,T ]) Linear Spectral Clust. Connected

11 gaussian SC km 0 Dxi ∈ L2([0,T ]) Gaussian Spectral Clust. Connected
01 linear SC km 0 xi ∈ W1,2([0,T ]) Linear Spectral Clust. Connected

01 gaussian SC km 0 xi ∈ W1,2([0,T ]) Gaussian Spectral Clust. Connected
00 linear SC km 1 xi ∈ L2([0,T ]) Linear Spectral Clust. 7 near. neig.

00 gaussian SC km 1 xi ∈ L2([0,T ]) Gaussian Spectral Clust. 7 near. neig.
11 linear SC km 1 Dxi ∈ L2([0,T ]) Linear Spectral Clust. 7 near. neig.

11 gaussian SC km 1 Dxi ∈ L2([0,T ]) Gaussian Spectral Clust. 7 near. neig.
01 linear SC km 1 xi ∈ W1,2([0,T ]) Linear Spectral Clust. 7 near. neig.

01 gaussian SC km 1 xi ∈ W1,2([0,T ]) Gaussian Spectral Clust. 7 near. neig.
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11 gaussian K km Dxi ∈ L2([0,T ]) Gaussian Ker. k-means
01 linear K km xi ∈ W1,2([0,T ]) Linear Ker. k-means
01 gaussian K km xi ∈ W1,2([0,T ]) Gaussian Ker. k-means
00 linear SC km 0 xi ∈ L2([0,T ]) Linear Spectral Clust. Connected

00 gaussian SC km 0 xi ∈ L2([0,T ]) Gaussian Spectral Clust. Connected
11 linear SC km 0 Dxi ∈ L2([0,T ]) Linear Spectral Clust. Connected

11 gaussian SC km 0 Dxi ∈ L2([0,T ]) Gaussian Spectral Clust. Connected
01 linear SC km 0 xi ∈ W1,2([0,T ]) Linear Spectral Clust. Connected

01 gaussian SC km 0 xi ∈ W1,2([0,T ]) Gaussian Spectral Clust. Connected

00 linear SC km 1 xi ∈ L2([0,T ]) Linear Spectral Clust. 7 near. neig.
00 gaussian SC km 1 xi ∈ L2([0,T ]) Gaussian Spectral Clust. 7 near. neig.
11 linear SC km 1 Dxi ∈ L2([0,T ]) Linear Spectral Clust. 7 near. neig.

11 gaussian SC km 1 Dxi ∈ L2([0,T ]) Gaussian Spectral Clust. 7 near. neig.
01 linear SC km 1 xi ∈ W1,2([0,T ]) Linear Spectral Clust. 7 near. neig.

01 gaussian SC km 1 xi ∈ W1,2([0,T ]) Gaussian Spectral Clust. 7 near. neig.
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Experiments and discussion

20 datasets from fda, fda.usc and UCR TS Archive 2015

Source Type Name Nb of FD Nb of Class Nb of obs.
fda Growth 93 2 31

fda.usc poblenou 115 2 24
fda.usc tecator 215 2 100
fda.usc phoneme 250 5 150

UCR TS Spectro Beef 30 5 470
UCR TS Simulated CBF 30 3 128
UCR TS Spectro Coffee 28 2 286
UCR TS ECG ECG200 100 2 96
UCR TS Image FaceFour 24 4 350
UCR TS Image Fish 175 7 463
UCR TS Motion GunPoint 50 2 150
UCR TS Sensor Lightning2 60 2 637
UCR TS Sensor Lightning7 70 7 319
UCR TS Image MedicalImages 381 10 99
UCR TS Spectro OliveOil 30 4 570
UCR TS Image OSULeaf 200 6 427
UCR TS Image SwedishLeaf 500 15 128
UCR TS Image Symbols 25 6 398
UCR TS Sensor Trace 100 4 275
UCR TS Simulated TwoPatterns 1000 4 128
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Experiments and discussion

Clustering assessment and comparison

Clustering models assessment :

External validation : for each dataset we have the ground truth.
Compare a clustering output against the ground truth using the
Normalized Mutual Information (NMI) criterion. This measure is
between 0 and 1 and the bigger the better.

Comparing the 18 clustering models :

For each pair of clustering models (i , j), we count the nb of times i
beats 1 j among the 20 datasets (each dataset is seen as a “match”).
For an overall ranking of the clustering models, we use Borda’s voting
rule : we rank according to the total nb of wins. Each clustering
model “plays” in total 20× 17 = 340 “matches”.

1. i beats j for a given dataset, if NMI of i > NMI of j
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Experiments and discussion

Examples of results : Growth data
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Experiments and discussion

Examples of results : SwedishLeaf data
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Experiments and discussion

Examples of results : Fish data
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Experiments and discussion

Examples of results : Tecator data
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Experiments and discussion

Overall results : Borda’s ranking

Rank Clustering model Nb of wins Nb of losses

1 01 gaussian SC km 1 206 94
2 11 gaussian K km 195 113
3 00 gaussian K km 182 119
4 00 gaussian SC km 1 179 125
5 01 gaussian SC km 0 175 131
6 11 gaussian SC km 1 174 136
7 01 gaussian K km 170 134
8 00 linear SC km 0 151 143

9 11 gaussian SC km 0 151 159
10 00 linear SC km 1 150 159
11 01 linear SC km 0 148 146
12 01 linear SC km 1 146 157
13 00 gaussian SC km 0 131 167
14 11 linear SC km 0 127 177
15 11 linear K km 117 193
16 01 linear K km 117 190

*17* 00 linear K km 115 193
18 11 linear SC km 1 104 202
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Experiments and discussion

Borda’s ranking visualization
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Experiments and discussion

Wrap up and future work

Given a clustering procedure, say SC km, we observe that :

Gaussian kernel gives better results than linear kernel.

Depending on the datasets xi , Dxi and (xi ,Dxi ) can give variable
results, BUT (xi ,Dxi ) is never the worst performance of the three.
With Gaussian kernel, k = 7 nearest neighbor graph sparsification
always performs better than the “connected” graph sparsification. This
outcome supports the manifold hypothesis.

Future work :

xi and Dxi seems to bring complementary information BUT a “simple”
fusion might degrade the overall performance.

⇒ Sparse clustering in Sobolev spaces : select discriminant features while
performing the clustering.
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Experiments and discussion

Thank you for your attention !
Any question or comment ? :-)
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