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Motivations

Multi-criteria Decision Making (MCDM) using aggregation operators

The Choquet integral (CI) wrt a capacity is a versatile approach :
I A capacity allows modelling the interactions between criteria
I A capacity assigns non-negative weights to all subsets of criteria :

2n − 1 values to set
I The scores should be in a commensurable unipolar (non-negative) scale

In many situations, human decision makings are easier using bipolar
scales (negative, neutral and positive parts) :

I Bi-capacities (BC) allows extending CI to bipolar scales
I But the nb of weights to set is bigger : 3n − 1

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 2



Motivations

Multi-criteria Decision Making (MCDM) using aggregation operators

The Choquet integral (CI) wrt a capacity is a versatile approach :

I A capacity allows modelling the interactions between criteria
I A capacity assigns non-negative weights to all subsets of criteria :

2n − 1 values to set
I The scores should be in a commensurable unipolar (non-negative) scale

In many situations, human decision makings are easier using bipolar
scales (negative, neutral and positive parts) :

I Bi-capacities (BC) allows extending CI to bipolar scales
I But the nb of weights to set is bigger : 3n − 1

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 2



Motivations

Multi-criteria Decision Making (MCDM) using aggregation operators

The Choquet integral (CI) wrt a capacity is a versatile approach :
I A capacity allows modelling the interactions between criteria

I A capacity assigns non-negative weights to all subsets of criteria :
2n − 1 values to set

I The scores should be in a commensurable unipolar (non-negative) scale

In many situations, human decision makings are easier using bipolar
scales (negative, neutral and positive parts) :

I Bi-capacities (BC) allows extending CI to bipolar scales
I But the nb of weights to set is bigger : 3n − 1

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 2



Motivations

Multi-criteria Decision Making (MCDM) using aggregation operators

The Choquet integral (CI) wrt a capacity is a versatile approach :
I A capacity allows modelling the interactions between criteria
I A capacity assigns non-negative weights to all subsets of criteria :

2n − 1 values to set

I The scores should be in a commensurable unipolar (non-negative) scale

In many situations, human decision makings are easier using bipolar
scales (negative, neutral and positive parts) :

I Bi-capacities (BC) allows extending CI to bipolar scales
I But the nb of weights to set is bigger : 3n − 1

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 2



Motivations

Multi-criteria Decision Making (MCDM) using aggregation operators

The Choquet integral (CI) wrt a capacity is a versatile approach :
I A capacity allows modelling the interactions between criteria
I A capacity assigns non-negative weights to all subsets of criteria :

2n − 1 values to set
I The scores should be in a commensurable unipolar (non-negative) scale

In many situations, human decision makings are easier using bipolar
scales (negative, neutral and positive parts) :

I Bi-capacities (BC) allows extending CI to bipolar scales
I But the nb of weights to set is bigger : 3n − 1

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 2



Motivations

Multi-criteria Decision Making (MCDM) using aggregation operators

The Choquet integral (CI) wrt a capacity is a versatile approach :
I A capacity allows modelling the interactions between criteria
I A capacity assigns non-negative weights to all subsets of criteria :

2n − 1 values to set
I The scores should be in a commensurable unipolar (non-negative) scale

In many situations, human decision makings are easier using bipolar
scales (negative, neutral and positive parts) :

I Bi-capacities (BC) allows extending CI to bipolar scales
I But the nb of weights to set is bigger : 3n − 1

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 2



Motivations

Multi-criteria Decision Making (MCDM) using aggregation operators

The Choquet integral (CI) wrt a capacity is a versatile approach :
I A capacity allows modelling the interactions between criteria
I A capacity assigns non-negative weights to all subsets of criteria :

2n − 1 values to set
I The scores should be in a commensurable unipolar (non-negative) scale

In many situations, human decision makings are easier using bipolar
scales (negative, neutral and positive parts) :

I Bi-capacities (BC) allows extending CI to bipolar scales

I But the nb of weights to set is bigger : 3n − 1

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 2



Motivations

Multi-criteria Decision Making (MCDM) using aggregation operators

The Choquet integral (CI) wrt a capacity is a versatile approach :
I A capacity allows modelling the interactions between criteria
I A capacity assigns non-negative weights to all subsets of criteria :

2n − 1 values to set
I The scores should be in a commensurable unipolar (non-negative) scale

In many situations, human decision makings are easier using bipolar
scales (negative, neutral and positive parts) :

I Bi-capacities (BC) allows extending CI to bipolar scales
I But the nb of weights to set is bigger : 3n − 1

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 2



Contributions

We use the bipolar Choquet integral (BCI) as an aggregation operator
in MCDM

Due to the combinatorial complexity, we restrict ourselves to
2-additive BC (2A-BC) which require 2n2 + 1 weights to set

Then, we propose to elicit the 2A-BC modelling the preference model
of a decision maker. The elicitation process is based on already judged
alternatives (either fictitious or real)

We propose optimization problems to elicit the values of a 2A-BC

Our framework presents several common points with supervised
machine learning tasks and we underline these points
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Outline

1 Bi-capacities and bipolar Choquet integrals

2 Identifying a 2-additive bi-capacity

3 An illustrative example

4 Relationships with supervised learning tasks in machine learning

5 Conclusion and future work
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Bi-capacities and bipolar Choquet integrals

Notations

N = {1, . . . , n} is a finite set of n criteria

x is an alternative defined by its score distribution x = (x1, . . . , xn)
where xi ∈ R is the value of x for the criterion i

2N := {S ⊆ N} is the set of subsets of N

3N := {(A,B) ∈ 2N × 2N : A ∩ B = ∅} is the set of couples of
subsets of N with an empty intersection

On 3N , the relation v is such that
(A1,A2) v (B1,B2)⇔ A1 ⊆ B1 ∧ B2 ⊆ A2
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Bi-capacities and bipolar Choquet integrals

Examples of 2N , 3N and instances of v

N = {1, 2, 3}

2N = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
3N is given by pairs indicated by

√
in the following indicator matrix :


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({1, 2}, {3}) v ({1, 2}, {∅}) v ({1, 2, 3}, {∅})
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Bi-capacities and bipolar Choquet integrals

Bi-capacity (BC)

A set function ν : 3N → R is a bi-capacity (BC) on 3N if it satisfies
the following two conditions [Grabisch and Labreuche, 2005b],
[Grabisch and Labreuche, 2008] :

I Null weight for empty sets :

ν(∅, ∅) = 0

I Monotonicity : ∀(A1,A2), (B1,B2) ∈ 3N :

(A1,A2) v (B1,B2)⇒ ν(A1,A2) ≤ ν(B1,B2)

Ex. 1 : ν({1, 2}, {3}) ≤ ν({1, 2}, {∅}) (“less criteria in the - part”)
Ex. 2 : ν({1, 2}, ∅) ≤ ν({1, 2, 3}, {∅}) (“more criteria in the + part”)

ν is said to be normalized if in addition, it holds :

ν(N, ∅) = 1 ∧ ν(∅,N) = −1

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 8
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Bi-capacities and bipolar Choquet integrals

Bipolar Möbius transform (BMT) of a BC

A BC ν can be associated to its bipolar Möbius transform (BMT)
denoted b and defined by [Fujimoto, 2004, Fujimoto, 2007] :

b(A1,A2) :=
∑

B1 ⊆ A1
B2 ⊆ A2

(−1)|A1\B1|+|A2\B2|ν(B1,B2)

=
∑

(∅,A2)v(B1,B2)v(A1,∅)

(−1)|A1\B1|+|A2\B2|ν(B1,B2)

There is a one-to-one relation between ν and b and the converse
relation is given by :

ν(A1,A2) :=
∑

B1 ⊆ A1
B2 ⊆ A2

b(B1,B2)

B1 Note that the property ν(∅, ∅) = 0 translates into :

b(∅, ∅) = 0
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Bi-capacities and bipolar Choquet integrals

k-additivity

A BC requires 3n − 1 values to be set

To reduce this complexity, we can use the concept of k-additivity
[Grabisch and Labreuche, 2005a, Grabisch and Labreuche, 2005b] and
[Grabisch and Labreuche, 2008]

Given a positive integer k < n, a BC ν is k-additive iff the two
following conditions are satisfied [Fujimoto, 2007] :

B2 b = 0 if the nb of criteria involved in (A1,A2) is greater than k :

∀(A1,A2) ∈ 3N : |A1 ∪ A2| > k ⇒ b(A1,A2) = 0

B3 b 6= 0 for at least one pair such that the nb of criteria involved is k :

∃(A1,A2) ∈ 3N : |A1 ∪ A2| = k ∧ b(A1,A2) 6= 0
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Bi-capacities and bipolar Choquet integrals

2-additive BC

1-additive BC assume the criteria are independent and boil down to
linear aggregation operators

Thus we deal with 2-additive BC (2A-BC) to have a richer
aggregation function. Henceforth, b is the BMT of a 2A-BC ν

In this case, only subsets with at most two criteria matter

To lighten the notations we will take :

bi | = b({i}, ∅) ; bij | = b({i , j}, ∅) ; bi |j = b({i}, {j})
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Bi-capacities and bipolar Choquet integrals

Example of the BMT of a 2A-BC

N = {1, 2, 3}
We assume b is a BMT of a 2A-BC ν√

are (possibly) non null elements and x are (necessarily) null
elements :

b =



(A,B) ∅ 1 2 3 12 13 23 123

∅
√ √ √ √ √ √ √

x
1

√
.
√ √

. . x .
2

√ √
.
√

. x . .
3

√ √ √
. x . . .

12
√

. . x . . . .
13

√
. x . . . . .

23
√

x . . . . . .
123 x . . . . . . .



The nb of elements to be set for b reduces from 3n to 2n2 + 1
(27 vs 19 in this example)
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Bi-capacities and bipolar Choquet integrals

2-additive BC (cont’d)

P1 The monotonicity property reduces to [Mayag et al, 2012] :

∀(A,B) ∈ 3N ,∀k ∈ A : bk| +
∑
j∈B

bk|j +
∑
i∈A\k

bik| ≥ 0

∀(A,B) ∈ 3N ,∀k ∈ A : b|k +
∑
j∈B

bj |k +
∑
i∈A\k

b|ik ≤ 0

P2 The normalization property reduces to [Mayag et al, 2012] :∑
i∈N

bi | +
∑
{i ,j}⊆N

bij | = 1

∑
i∈N

b|i +
∑
{i ,j}⊆N

b|ij = −1
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Bi-capacities and bipolar Choquet integrals

Bipolar Choquet integral (BCI) wrt a 2A-BC

P3 The bipolar Choquet integral (BCI) wrt b denoted Cb is given by :

Cb(x) =
n∑

i=1

bi | x+
i +

n∑
i=1

b|i x−i +
n∑

i ,j=1

bi |j (x+
i ∧ x−j )

+
∑
{i ,j}⊆N

bij | (x+
i ∧ x+

j ) +
∑
{i ,j}⊆N

b|ij (x−i ∧ x−j )

where x+
i =

{
xi if xi > 0
0 if xi ≤ 0

and x−i =

{
−xi if xi < 0
0 if xi ≥ 0

and a ∧ b = min(a, b)
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Identifying a 2-additive bi-capacity

Outline

1 Bi-capacities and bipolar Choquet integrals

2 Identifying a 2-additive bi-capacity

3 An illustrative example

4 Relationships with supervised learning tasks in machine learning

5 Conclusion and future work
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Identifying a 2-additive bi-capacity

Elicitation process

The preferences model of the DM is modeled by a 2A-BC ν
represented by its BMT b

The DM provides a subset of alternatives X ′ ⊆ X and ∀x ∈ X ′ we are
given :

I the scores distribution x = (x1, . . . , xn)
I the overall score S(x) that is the aggregated value for x

Let us denote by T the set of pairs {((x1, . . . , xn), S(x))}x∈X ′
No extra information is provided

No interaction loop with the DM is assumed
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Identifying a 2-additive bi-capacity

Taking into account preference relations

Our goal is to identify a 2A-BC that is consistent with T

Being consistent with T implies that we need to respect the
preference relations provided by T as much as possible

C1 The BCI Cb wrt b should satisfy the given preference relations :

∀x , x ′ ∈ X ′, x 6= x ′ : S(x)− S(x ′) ≥ 0⇒ Cb(x)− Cb(x ′) ≥ 0

However it might happen that it is impossible to satisfy these
constraints for all pairs :

I Our restriction to 2A-BC might be too strong and more general BC
could better fit the problem

I The DM could provide scores and preferences that present incoherences
and which are not fully representable by any BC

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 17
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Identifying a 2-additive bi-capacity

Taking into account preference relations (cont’d)

C2 If C1 cannot be satisfied, we replace it with more flexible constraints :

∀x , x ′ ∈ X ′, x 6= x ′ : S(x)− S(x ′) ≥ 0⇒ Cb(x)− Cb(x ′) ≥ −ξxx ′

where ξxx ′ ≥ 0 are slack variables of the model

ξxx ′ allow inconsistencies :
I if ξxx′ = 0 then b provides no incoherence with (x , x ′)
I if 0 < ξxx′ then b cannot reproduce the preference relation for (x , x ′)

L1 We could also impose Cb to be bounded :

∀x ∈ X ′ : lb ≤ Cb(x) ≤ ub
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I if 0 < ξxx′ then b cannot reproduce the preference relation for (x , x ′)

L1 We could also impose Cb to be bounded :

∀x ∈ X ′ : lb ≤ Cb(x) ≤ ub
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Identifying a 2-additive bi-capacity

The split approach

C3 We add a variable ε ≥ 0 that reflects the difference between Cb(x)
and Cb(x ′) :

∀x , x ′ ∈ X ′, x 6= x ′ : S(x)− S(x ′) ≥ 0⇒ Cb(x)− Cb(x ′) ≥ ε

We want ε to be as big as possible :

max ε

subject to :
I B1 : b(∅, ∅) = 0
I B2 : 2-additivity
I P1 : monotonicity
I P2 : normalization
I P3 : computation of Cb
I L1 : Cb bounded
I C3 : preference relations “with ε”

This is a linear program
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Identifying a 2-additive bi-capacity

A flexible version of the split approach

In case of inconsistencies, we use the following objective function :

max

ε− ∑
x ,x ′:S(x)≥S(x ′)

ξxx ′


subject to :

I B1 : b(∅, ∅) = 0
I B2 : 2-additivity
I P1 : monotonicity
I P2 : normalization
I P3 : computation of Cb
I L1 : Cb bounded
I C4 : preference relations “with ε− ξxx′”

∀x , x ′ ∈ X ′, x 6= x ′ : S(x)− S(x ′) ≥ 0⇒ Cb(x)− Cb(x ′) ≥ ε− ξxx′

This is a linear program
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Identifying a 2-additive bi-capacity

Regression like approach

We could also minimize the residual sum of squares

We define the following objective function :

min
∑
x∈X ′

(S(x)− Cb(x))2

subject to :
I B1 : b(∅, ∅) = 0
I B2 : 2-additivity
I P1 : monotonicity
I P2 : normalization
I P3 : computation of Cb
I L1 : Cb bounded
I C1 : preference relations

This is a quadratic program
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Identifying a 2-additive bi-capacity

A flexible version of the regression like approach

In case of incoherences, we optimize the following objective function :

min

∑
x∈X ′

(S(x)− Cb(x))2 +
∑

x ,x ′:S(x)≥S(x ′)

ξxx ′


subject to :

I B1 : b(∅, ∅) = 0
I B2 : 2-additivity
I P1 : monotonicity
I P2 : normalization
I P3 : computation of Cb
I L1 : Cb bounded
I C2 : preference relations “with −ξxx′”

This is a quadratic program
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An illustrative example
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An illustrative example

An example without incoherence

It concerns the grades (scores) obtained by 7 students (alternatives)
for n = 5 subjects (criteria) : statistics (S), probability (P), economics
(E), management (M), and English (En).

The scores are given in a bipolar scale [−4, 4]

Stu. S P E M En

a 4 -3 -3 -3 4
b 4 -3 4 -3 -3
c -3 -3 4 -3 4
d 4 4 -3 -3 -3
e -3 -3 4 4 -3
f -3 -3 4 -3 -3
g -3 -3 -3 -3 4

S

1
0.5
0

-0.5
-1
-1.5
-2

split

1.68
1.04
0.41
-0.23
-0.86
-1.5
-2.14

split
flex

1.02
0.38
-0.25
-0.89
-1.53
-2.16
-2.8

rss

1
0.5
0

-0.5
-1
-1.5
-2

rss
flex

1
0.5
0

-0.5
-1
-1.5
-2
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An illustrative example

An example with an incoherence

We change S into S ′ and the only difference is S ′(g) = 0.5 while
S(g) = −2. There is an incoherence between c and g : S ′(g) > S ′(c)
while g is Pareto dominated by c

Stu. S P E M En

a 4 -3 -3 -3 4
b 4 -3 4 -3 -3
c -3 -3 4 -3 4
d 4 4 -3 -3 -3
e -3 -3 4 4 -3
f -3 -3 4 -3 -3
g -3 -3 -3 -3 4

S ′

1
0.5
0

-0.5
-1
-1.5
0.5

split

.

.

.

.

.

.

.

split
flex

0.22
-0.28
-0.78
-1.28
-1.78
-2.28
-0.78

rss

.

.

.

.

.

.

.

rss
flex

1.12
0.62
0.12
-0.5
-1
-1.5
0.12

For split flex and rss flex , ξgc > 0 while for other pairs the slack
variables are null
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Relationships with supervised learning tasks in machine learning

Relationships with supervised Learning (SL)

The addressed task has many similarities with supervised learning
(SL) tasks in machine learning (ML)

The set T is similar as a training set in SL

Eliciting the parameters of the preference model (b) and the
aggregation operator (Cb) is similar as inferring the parameters of a
SL model (like the coefficients of the linear regression)

Allowing incoherences in our elicitation framework is similar as
permitting errors in SL models. Thus the flexible versions of the split
and the regression like methods are similar to SL approaches

2A-BC is a less vast family of preference models than unconstrained
BC. Thus constraining the BC to be 2-additive is like choosing a
family of hypothesis with potentially greater bias but lower variance
(we expect better generalization for unseen alternatives)
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permitting errors in SL models. Thus the flexible versions of the split
and the regression like methods are similar to SL approaches

2A-BC is a less vast family of preference models than unconstrained
BC. Thus constraining the BC to be 2-additive is like choosing a
family of hypothesis with potentially greater bias but lower variance
(we expect better generalization for unseen alternatives)

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 27



Relationships with supervised learning tasks in machine learning

Relationships with supervised Learning (SL)

The addressed task has many similarities with supervised learning
(SL) tasks in machine learning (ML)

The set T is similar as a training set in SL

Eliciting the parameters of the preference model (b) and the
aggregation operator (Cb) is similar as inferring the parameters of a
SL model (like the coefficients of the linear regression)

Allowing incoherences in our elicitation framework is similar as
permitting errors in SL models. Thus the flexible versions of the split
and the regression like methods are similar to SL approaches

2A-BC is a less vast family of preference models than unconstrained
BC. Thus constraining the BC to be 2-additive is like choosing a
family of hypothesis with potentially greater bias but lower variance
(we expect better generalization for unseen alternatives)

Ah-Pine, Mayag, Rolland Identification of a 2A-BC ADT13 / 27



Relationships with supervised learning tasks in machine learning

Relationships with supervised Learning (SL) (cont’d)

As for 2-additivity, we integrate the constraint B2 but not B3 :

B2 b = 0 if the nb of criteria involved in (A1,A2) is greater than k :

∀(A1,A2) ∈ 3N : |A1 ∪ A2| > k ⇒ b(A1,A2) = 0

B3 b 6= 0 for at least one pair such that the nb of criteria involved is k :

∃(A1,A2) ∈ 3N : |A1 ∪ A2| = k ∧ b(A1,A2) 6= 0

Thus, the model can be a 1-additive BC and not necessarily a 2A-BC

But, this is not guaranteed : we need to add a penalty term to favor
sparse solutions

The slack variables ξxx ′ and the constraints C1, C2, C3, C4 have
relationships with SVM (margin, structured SVM)
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Conclusion and future work

Conclusion and future work

We proposed to use the BCI wrt a 2A-BC as a preference model in
MCDM

We introduced two kinds of optimization problems to elicit a 2A-BC

Our models allows dealing with inconsistencies

Our setting and elicitation model has several common points with
supervised learning

As for ongoing and future work :
I Further exploit ML concepts in MCDM like adding a penalty term to

have sparse b
I Have a better understanding of the behavior of b and ν provided by the

different methods
I Extend our elicitation framework to integrate other information

provided by the DM such as the importance or the interaction between
criteria
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Conclusion and future work

Thank you for your attention ! Questions ?
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