
1

Advanced Databases
IUP ISEA

Year 2003-2004
Jérôme Darmont

http://eric.univ-lyon2.fr/~jdarmont/?lang=eng

School of Economics and Business Administration

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 1

Introduction

Transaction management

Performance optimization

Outline

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 2

Introduction

Transaction management

Performance optimization

Outline

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 3

The field of databases is not reduced to:
Database conceptual design (E/R, UML…)
Database interrogation (SQL)

Lots of other issues exist
Database administration, System issues
Performance issues
Advanced databases (e.g., object-relational
databases, XML databases, web-based data
warehouses…)

Short track motivation

…

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 4

Transaction management
Transaction concepts
Recovery techniques
Concurrency control techniques

Performance optimization
Indexing
Materialized views
Buffering
Clustering
Query optimization

Detailed outline

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 5

Introduction

Transaction management

Performance optimization

Outline

2

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 6

Transaction: Logical unit of database
processing that includes one or more
access operations (read, write, or update)
A transaction may be

Stand-alone (e.g., submitted interactively
in SQL)
Embedded with a program (e.g., a PHP
script). A program may contain several
transactions.

Concept of transaction

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 7

Example of transactions

Transaction
#1.1

Transaction
#1.3

Transaction
#1.2

Upd
ate

Read W
rite Read W

rite W
rite

W
rite Read Upd

ate

User #1

User #2

Transaction
#2.1

Transaction
#2.3

Transaction
#2.2

Note: Transactions may be concurrent (i.e.,
several transactions are executed at the same time).

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 8

Atomicity: A transaction is an atomic unit of
processing. It is either performed in its entirety, or
not performed at all.
Consistency: A correct transaction execution must
leave the database in a consistent state.
Isolation: A transaction must not make its updates
visible to other transactions until it is entirely and
successfully finished.
Durability: Once a transaction changes the database
successfully, these changes must never be lost
because of subsequent failure.

ACID properties of transactions

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 9

begin_transaction: Marks the beginning of
transaction execution

read_item(X): Reads a database item named
X into a program variable (named X too)

Finds the address of the disk block (basic I/O unit)
that contains item X
Copies that block into a buffer in main memory (if
it is not already in the buffer)
Copies item X from the buffer to variable X

Transaction operations (1/3)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 10

Read operation detail

X

Database

Block

…

X

Buffer

X

Memory
Disk

Main memory
Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 11

write_item(X): Writes the value of program
variable X into database item X.

Finds the address of the disk block that contains
item X
Copies that block into a buffer in main memory (if
it is not already in the buffer)
Copies item X from the program variable to its
correct location in the buffer
Stores the updated block from the buffer back to
disk (immediately or later)

Transaction operations (2/3)

3

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 12

Write operation detail

X

Database

Block

…

X

Buffer

X

Memory

Read

Write

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 13

end_transaction: Marks the end limit of
transaction execution
commit_transaction: Signals a successful
end of the transaction. Any update to the
database will not be undone.
rollback (or abort): Signals an unsuccessful
end of the transaction. Any update to the
database is canceled.
undo: Cancel one single operation.
redo: Re-execute one single operation.

Transaction operations (3/3)

used
for
recovery

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 14

What causes a transaction to fail ?
Computer failure (system crash): Everything
in memory is lost.
Transaction or system error (logical error):
E.g., division by zero, integer overflow…
Local error or exception: E.g., data is not
found.
Disk failure: Some disk blocks loose their
data when read or written.
…

Need for recovery techniques

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 15

System log (or journal): Keeps track of all
transaction operations (read, write, commit,
etc.) that affect the values of database items
File that is stored on disk, so that it is not
affected by failures except disk failures
The log is normally periodically backed up to
an off-line archive
Each transaction is associated to a transaction
identifier (generated by the system)

System log

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 16

begin_transaction (T1)
read_item (T1, X)
write_item (T1, X, old_value, new_value)
commit_transaction (T1)
begin_transaction (T2)
write_item (T2, X, old_value, new_value)
write_item (T2, Y, old_value, new_value)
write_item (T2, Z, old_value, new_value)
abort (T2)

System log example

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 17

Two strategies to recover to a consistent
database state in case of system crash:
Cancel transaction: Undo every write
operation of every unfinished transaction by
tracing backward through the log and reset all
items changed to their old_value.
Complete transaction: Redo every write
operation of every unfinished transaction by
tracing forward through the log and set all
items changed to their new_value.

Recovery using log records

4

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 18

Transaction T is composed of 100 write
operations
The system log is completely written
While T is executed, the system crashes after
50 operations are completed

Recovery example

T

Crash!

Strategy #1: Cancel
Undo first 50 operations

Strategy #2: Complete
Redo last 50 operations

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 19

Lost update problem
Let X be a database item. X = 0.
Let T1 and T2 be two transactions that add 1 to X.
T1 and T2 are submitted at approximately the
same time and their operations are interleaved.
read_item (T1, X) // X = 0
read_item (T2, X) // X = 0
write_item (T1, X, 0, 1) // X = 1
write_item (T2, X, 0, 1) // X = 1 instead of 2 !
The updated value resulting from T1 is lost.

Concurrency problems (1/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 20

Temporary update (dirty read) problem
Transaction T1 updates a database item
Transaction T1 fails
The item is accessed by transaction T2 before it is changed
back to its original value
The item value read by T2 is called dirty data

Incorrect summary problem
Transaction T1 is calculating an aggregate function
(COUNT, SUM, AVG, etc.) on a set of database items
Transaction T2 is updating these items at the same time
The aggregate function may calculate some values before
they are updated and other values after they are updated

Concurrency problems (2/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 21

Locking data items to prevent multiple from
accessing them concurrently.

Using timestamps (unique transaction
identifiers generated by the system)

…

Concurrency control techniques

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 22

Lock: Status variable associated with a data
item with respect to possible operations that
can be applied to the item.
Granularity of locking: Tuple, set of tuples,
table, database.
Types of locks:

Binary locks: Two states only, too simple, not
used in practice
Shared/Exclusive locks: More general, used in real
DBMSs (Database Management Systems)

Locks

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 23

Two states: locked and unlocked

Enforces mutual exclusion on the data item:
only one transaction can hold the lock at a
time and access the item

Every item in the database is associated to a
distinct lock

Binary locks

5

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 24

lock_item(X): Access request to item X
If X is already locked, the transaction waits.
Otherwise, X is locked and the transaction can proceed.
A transaction must issue the operation lock_item(X)
before any read_item(X) or write_item(X) operations are
performed.

unlock_item(X): Release lock on item X
X is set to "unlocked".
Other transactions can access X.
A transaction must issue the operation unlock_item(X)
after all read_item(X) and write_item(X) operations are
completed.

Operations on binary locks

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 25

Three states:
read-locked (or shared-locked): Other
transactions are allowed to read the item, but not
to write it.
write-locked (or exclusive-locked): No other
transaction is allowed to access the item (neither
read, nor write).
unlocked

Operations:
read_lock(X): Issued before read_item(X)
write_lock(X): Issued before write_item(X)

Shared/Exclusive locks

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 26

Principle: All locking operations (read_lock,
write_lock) precede the first unlock operation.
Phase #1 – Expanding phase: New locks on
items can be acquired, but none can be
released.
Phase #2 – Shrinking phase: Existing locks
can be released, but no new lock can be
acquired
2-phase locking enforces transaction
serializability.

Two-phase locking protocol

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 27

Transaction T1 must read items X and Y
Transaction T2 must read X and write Y
T1: read_lock(X) OK
T1: read_lock(Y) OK
T2: read_lock(X) OK
T2: write_lock(Y) Y is locked, T2 waits
T1: release(X)
T1: release(Y)
T2 can proceed in a new 2-phase process

2-phase locking example

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 28

Holding lock unnecessarily/locking too early:
A transaction T may not be able to release an item X
after it has finished with it if T must lock another item
Y later on.
T must lock Y before it needs it to be able to release
X.

Penalty to other transactions:
A transaction T' seeking to access X may be forced to
wait even though T has finished with X.
If Y is locked too early by T, and T' seeks to access Y,
T' is forced to wait even though T does not use Y yet.

Problems with 2-phase locking

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 29

Example of deadlock:
T1: lock(X)
T2: lock(Y)
T1: lock(Y) T1 waits
T2: lock(X) T2 waits too! Problem!

Deadlock prevention:
Conservative locking: Every transaction locks all
the items it needs in advance. If one item cannot
be locked, none is locked and the transaction
waits. Not used in practice.

Deadlocks (1/3)

6

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 30

Item ordering: A transaction that needs several
items locks them according to the order.
Ex. X is rank 1, Y is rank 2.

T1: lock(X)
T2: lock(X) T2 waits
T1: lock(Y) Deadlock avoided

Transaction timestamp: TS(T) = T starting time
T1 tries to lock on X but T2 already holds the lock
Strategy #1 – wait-die: if TS(T1)<TS(T2) then T1 waits

else abort T1 and restart it later
Strategy #2 – wound-wait:

if TS(T1)<TS(T2) then abort T2 and restart it later
else T1 waits

Deadlocks (2/3)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 31

No waiting: In case of inability to obtain a lock,
the transaction aborts and restarts later. Causes
many needless aborts.
Cautious waiting:
if T2 is not blocked then T1 waits
else abort T1

Timeouts: If a transaction waits for a period longer
than a system-defined timeout period, it is
assumed to be deadlocked and it is aborted.
Problem: some long transactions that are not
deadlocked may be aborted.

Deadlocks (3/3)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 32

A transaction is starved if it waits indefinitely
while other transactions are running.
Starvation cases:

Waiting scheme for locked item is unfair (some
transactions have priority over others)
Deadlock prevention algorithm always aborts the
same transaction (which thus never ends)

Starvation prevention:
First-come first-serve locking queue: Fair locking
scheme

Starvation (1/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 33

Allow priorities, but increase the priority of a
transaction the longer it waits

Deadlock prevention algorithm affects higher
priorities for transactions that have been aborted
multiple times

wait-die and wound-die avoid starvation

Starvation (2/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 34

Each transaction T is associated to a unique
identifier (timestamp) TS(T).
No lock ⇒ no deadlock
Two timestamps values are associated to each
database item X:

Read timestamp: read_TS(X) = TS(TY) where TY
is the youngest (latest) transaction that has read X
successfully;
Write timestamp: write_TS(X) = TS(TY) where
TY is the youngest (latest) transaction that has
written X successfully.

Timestamp concurrency control

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 35

Principle: Order the transaction based on
their timestamp.
Write: T issues a write_item(X) operation
if read_TS(X) > TS(T) or write_TS(X) > TS(T) then

abort(T) and re-run with new timestamp
else if not_reading(X) and not_writing(X) then

write_item(X)
write_TS(X) = TS(T)

else
T waits (waiting queue ordered by timestamp)

end if

Basic timestamp ordering (1/2)

7

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 36

Read: T issues a read_item(X) operation

if write_TS(X) > TS(T) then
abort(T) and re-run with new timestamp

else if not_reading(X) then
read_item(X)
read_TS(X) = max(TS(T), read_TS(X))

else
T waits (waiting queue ordered by timestamp)

end if

Basic timestamp ordering (2/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 37

T1 must read items X and Y, TS(T1) = 1
T2 must read X and write Y, TS(T2) = 2

T1: read_item(X)
write_TS(X) = 0 ≤ TS(T1) ⇒ OK
read_TS(X) = max (TS(T1), read_TS(X)) = 1

T2: read_item(X)
write_TS(X) = 0 ≤ TS(T2) ⇒ OK
read_TS(X) = max (TS(T2), read_TS(X)) = 2

Timestamp CC example (1/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 38

T1: read_item(Y)
write_TS(Y) = 0 ≤ TS(T1) ⇒ OK
read_TS(Y) = max (TS(T1), read_TS(Y)) = 1
T2: write_item(Y)
read_TS(Y) = 1 ≤ TS(T2) ⇒ OK
write_TS(Y) = 0 ≤ TS(T2) ⇒ OK
If T1 has finished reading X:

write_TS(Y) = TS(T2) = 2
Otherwise:

T2 must wait

Timestamp CC example (2/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 39

Introduction

Transaction management

Performance optimization

Outline

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 40

Input/Output

Database

Block

…

Buffer

Block read and write = disk access (I/O)

Write

Read

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 41

Each read/write operation may trigger an I/O
1 I/O ≈ several milliseconds
1 memory operation ≈ several microseconds

⇒ Minimizing the number of I/Os improves the
performances

Performance issue

8

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 42

Sequential access
Example: SELECT * FROM table

WHERE id = id_value

id Other attributes
1 …
2 …
3 …
4 …

…
N …

N/2 read operations
on average

(1 + log2 N with
a dichotomy search

on sorted data)
Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 43

B-tree indexing
B-tree node: P1 K1 P2 K2 P3 … Pn-1 Kn-1 Pn

Sample B-tree Searching for key 12
4<12 10<12 16>12

P3

11<1212=12!

Number of I/Os (indices are files) = B-tree depth at most
Sequential search in N tuples (M<N blocks) = M/2 I/Os

1 block = 1 I/O

1 block = 1 I/O

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 44

Table of 1.000.000 tuples (N = 1.000.000)
Record of 1024 bytes (R = 1024)
Disk block of 4096 bytes (B = 4096)
Sequential scan: M = N / (B / R)

= 250.000
NIO = M / 2
(on average) = 125.000

B-tree index: H ≤ logT ((N + 1) / 2)
T: Min. number of children per node (T = 10)
(B-tree degree) NIO = H ≤ 5,7

I/O comparison

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 45

Indexing all the attributes of a table sounds like a
good idea.
However, each time an new record is inserted in an
indexed table, the corresponding index file must be
updated. This has a non-negligible cost.
Indexing all the attributes of a frequently updated
table might actually degrades the performances if
maintenance cost is greater than performance
increase.
Index selection problem: Select a set of indices
whose maintenance cost is (much) lower than the
performance increase they induce.

Index maintenance and selection

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 46

B-trees indexing (and extensions, mostly) are
intensively used in relational DBMSs
Extensions include join indices that improve
the performance of the costly join operations

DBMS Indexing

Data warehouses require specific indexing
schemes due to their architecture and the huge
volumes of data (e.g., bitmap indices)

Nation index
UK 1
US 2

Stock index
UK 10
US 20
US 30

Join index
1 10
2 20
2 30

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 47

View ≈ query result than can be accessed just
like a table
Very useful to pre-compute partial results
from a large table, especially aggregates (in
data warehouses)
However, each time a view is accessed, the
query is re-executed, which is costly
Solution: Materialize the view, i.e.,
permanently store the result of the associated
query (materialized views are tables, in practice)

Materialized views (1/2)

9

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 48

Problem: Materialized view refreshment
when source data are updated is not automatic
Refreshment is easy and cheap for non-
aggregated data (triggers), but elaborated
strategies are needed for aggregated data
Efficient access to materialized views involves
the use of indices
Materialized views and index selection is a
important problem in the data warehousing
context

Materialized views (2/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 49

Principle of buffering

Buffer

Read

Database

Block

… X

X

Read block X : 1 I/O
Read block X again : no I/O (X is already in memory)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 50

Problem: The buffer is full and a new block
must be loaded in memory. What block must
be replaced by the new one?

Replacement strategies:
RANDOM: The replaced block is picked up
at random. Easy, but not really efficient.

Block replacement strategies (1/7)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 51

FIFO (First In, First Out): The block that has
been in the buffer for the longest time is
replaced. Only appropriate to sequential
treatments.

Block replacement strategies (2/7)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 52

LFU (Least Frequently Used): A usage
counter is maintained for each block. The
page with the lowest counter value is replaced,
whatever its "age".

Block replacement strategies (3/7)

5 1 9 2 41 123

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 53

LRU (Least Recently Used): The block that
has the oldest usage date is replaced. LRU-
queue: when a block is requested, it is placed
at the head the queue. It gets out of the queue
when time passes, except if it has been used
again and placed at the head again. Used a lot.

Block replacement strategies (4/7)

12345 67345 68

10

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 54

LRU-K: Generalization of LRU with storage
of the last K usage dates. Usage distances are
cumulated for each block. The block with the
highest cumulated usage distance is replaced.
The higher K is, the costlier this algorithm is.

Block replacement strategies (5/7)

5
7 2

0
5 5

5
6 1

1
4 3

6
7 1

-
8 0 K = 2

-
8 0

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 55

CLOCK ("second chance"): Variation of FIFO that
mimics LRU. Each block is associated to a usage
flag that is set to 1 when the page is used. To select
the block to replace, all the blocks are scanned in a
predefined order (clock concept). The first one to
have its flag to 0 is replaced. Blocks with flag set to 1
have it reset to 0, but remain in the buffer.

Block replacement strategies (6/7)

1 1 1 1 10 1 1 1 10 0 1 1 10 0 0 1 10 0 0 0 10 0 0 0 010 1 0 0 010 0 0 0 01 1

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 56

GCLOCK (Generalized CLOCK): Combines
the concepts of LFU and CLOCK. The flag
associated to each block is replaced by a usage
counter. During "clock scans", these counters
are decreased. The first page with a counter
set to 0 is replaced. GCLOCK is much better
than LFU.

Block replacement strategies (7/7)

1 9 1 5 40 9 1 5 40 8 1 5 40 8 0 5 40 8 0 4 40 8 0 4 310 7 0 4 31 1

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 57

Principle: Store together on disk data items
that are accessed together
Data items: Records or tables
Example:
SELECT * FROM personne WHERE id IN (001, 039, 314)

Clustering (1/2)

Disk
Without

clustering
Memory

001 039 314

001 039 314

3 I/Os

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 58

Clustering is even more efficient in conjunction with
an ad-hoc buffering strategy
Problems:

Physical database reorganizations are costly. Clustering
overhead must be lower than gain.
Clustering criterion choice

Clustering (2/2)

Disk
With

clustering
Memory

001
039
314

1 I/O
001
039
314

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 59

Problem: Let's consider the following SQL
query over table employee with N records

SELECT name FROM employee
WHERE salary > (

SELECT MAX(salary)
FROM employee)

It can be decomposed into two sub-queries
SELECT name FROM employee
WHERE salary > constant (Q1)
SELECT MAX(salary)
FROM employee (Q2)

Query decomposition

11

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 60

If Q1 is executed first:
N read operations to retrieve employees
Constant must be recomputed each time (N
read operations each time)
Total read operations: N2

If Q2 is executed first:
N read operations to compute max salary
N read operations to retrieve employees
Total read operations: 2N

Cost evaluation (1/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 61

0
50

100
150
200
250
300
350
400
450

0 5 10 15 20 25

2N
N2

Cost evaluation (2/2)

Cost diagram
Order of execution is important!

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 62

Query redaction order is important
Example:
SELECT * FROM t1 WHERE id_t1 IN (

SELECT foreign_id FROM T2
WHERE foreign_id > 100)

provides the same result, but is better than
SELECT * FROM t1 WHERE id_t1 IN (

SELECT foreign_id FROM T2)
WHERE id_t1 > 100

Query optimization (1/2)

N1

M2 ≤ N2

N1
N2

N1 * M2 ≤ N1 * N2
Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 63

Most full DBMSs (DB2, Oracle, SQL Server)
include a query optimizer that:

Decomposes a query into sub-queries
Translates the sub-queries into relational algebra
Organizes the atomic operations into an execution
tree that lists all the possible sequences
Uses a cost model to find out the best
query execution plan out of the execution tree

Others DBMS do not feature a query
optimizer (Access, MySQL…). Beware!

Query optimization (2/2)

Advanced Databases http://eric.univ-lyon2.fr/~jdarmont/ 64

Introduction

Transaction management

Performance optimization

Any question

Outline

Time for the quiz!

