
Database programming - Labwork #1 1/3

Département Informatique et Statistique, ICOM, Université Lumière Lyon 2
M1 Informatique – Year 2015-2016
Database programming – Labwork #1: Simple queries and cursors
J. Darmont (http://eric.univ-lyon2.fr/~jdarmont/), 16/09/16

PL/SQL memo

PL/SQL block DECLARE

 -- Constants/variables declaration
BEGIN
 -- Statements
EXCEPTION
 -- Run-time error handling
END;

Variable declaration my_variable VARIABLE_TYPE;

Affectation my_variable := value;

SELECT attribute INTO my_variable FROM table;

Tests IF condition1 THEN
 -- Statements
ELSIF condition2 THEN -- (Optional)
 -- Statements
ELSE -- (Optional)
 -- Statements
END IF;

Loops FOR iterator IN [REVERSE] min..max LOOP
 -- Statements
END LOOP;

WHILE condition LOOP
 -- Statements
END LOOP;

Cursors - Declaration

 - Usage

CURSOR my_cursor IS SQL_query;

FOR tuple IN my_cursor LOOP
 -- Statements
 -- Ex. my_variable := tuple.attribute;
END LOOP;-- Note: tuple is of type my_cursor%ROWTYP E

Exceptions - Declare

 - Raise

 - Process

my_exception EXCEPTION;

RAISE my_exception;

WHEN my_exception THEN -- Statements;

PL/SQL documentation http://docs.oracle.com/database/121/LNPLS/toc.htm

Client software: SQL Developer

• Menu “Démarrer / Tous les programmes / Oracle – OraClientversion / Développement
d’applications”.

• Execute a PL/SQL block from the SQL window: F5.

• Activate output in result window: DBMS Output (“Sortie SGBD”) tab / icon .

Database programming - Labwork #1 2/3

Exercise #1

1. Copy table PARTS of user DARMONT into table PARTS on your account (in SQL: CREATE

TABLE parts AS SELECT * FROM darmont.parts).

2. Write an anonymous PL/SQL block that displays a message on screen. The message must be
stored in a string variable initialized to “Hello World!”, for instance. Test!

3. In the same PL/SQL block, define an integer variable and store in it the total number of parts
from table PARTS. Display the result with respect to format “Number of parts = XX”. Test!

4. In case the number of parts is greater than 5, raise an exception and do not display the number of
parts. Processing this exception must interrupt the program (fatal error; too many parts in the
warehouse): use the predefined procedure RAISE_APPLICATION_ERROR. Test!

5. At the end of the PL/SQL block, add in the code to display on screen the description of a part
whose number is entered on keyboard (use the condition WHERE partno = '&enter_partno').
Modify the exception condition such that this part of the code is executed (e.g., number of parts
greater than 50). Test! What happens when the input part number does not exist?

Exercise #2

1. Create any view (e.g., in SQL: CREATE VIEW part_desc AS SELECT description FROM

parts).

2. Write an anonymous PL/SQL block that displays your system catalog (list of tables and views on
your account — available through system view TAB) with respect to the following format.
 Object ONE_TABLE is of type TABLE.
 Object ANOTHER_TABLE is of type TABLE.
 Object ONE_VIEW is of type VIEW.
 …

Hints:

• First check with SQL the result of query SELECT * FROM TAB to see what the contents of
view TAB is.

• Exploiting a query that returns more than one row requires the use of a cursor.

Exercise #3

1. Copy table DEPT of user DARMONT into table DEPT on your account.

2. Write an anonymous PL/SQL block that displays on screen departments of table DEPT with
respect to format “number: name (location)”. Test!

3. In case table DEPT is empty, display a warning on screen (exception), but do not raise a fatal
error. Test whether your code works by following the procedure below.

1. Validate all previous updates with the COMMIT SQL statement (or F11).
2. Delete table DEPT’s contents (in SQL: DELETE FROM dept).
3. Run the PL/SQL block.

Database programming - Labwork #1 3/3

4. Cancel the deletion of table DEPT’s contents with ROLLBACK SQL statement (or F12).

Exercise #4

1. Copy table EMP of user DARMONT into table EMP on your account.

2. Write an anonymous PL/SQL block that adds $1000 to the salary of all employees from
department 20 whose salary is already greater than $1500. Test!

3. Add an exception to your code: if the new salary of an employee becomes greater than or equal
to the highest salary in the company, raise a fatal error. Run your program until this exception is
triggered. Were salary updates taken into account?

