
Database programming – Labwork #8 1/2

Département Informatique et Statistique, ICOM, Université Lumière Lyon 2
M1 Informatique – Year 2015-2016
Database programming – Labwork #8: Triggers
J. Darmont (http://eric.univ-lyon2.fr/~jdarmont/), 16/09/16

Memo: Trigger definition

CREATE [OR REPLACE] TRIGGER Trigger_Name
 BEFORE | AFTER
 INSERT | DELETE | UPDATE | [INSERT] [[OR] DELETE] [[OR] UPDATE]
 ON Table_Name
 [FOR EACH ROW]
 -- PL/SQL block

Exercise #1: Automatic primary key generation

Let be any table TBL, whose primary key NumPK is numerical (integer). Define a trigger before
insertion that automatically affects a number to the primary key. The first value must be 1.

1. Create table TBL (NumPK) with SQL.

2. Code the trigger (name it TrigPK) and create it.

3. Insert several rows into table TBL with NULL (or any) values instead of NumPK, which will
automatically fire TrigPK each time. Then, delete one row and insert one last row.

4. Check whether the result is right by listing table TBL’s contents.

Exercise #2: Dynamic domain constraint

Let us consider table BANK_CUSTOMER (CustID, CustName, HusbandWifeID#). We want to
code a trigger before insert or update that controls that the name of a customer’s husband or wife is
the same as the customer’s (pretty conservative, isn’t it?). A fatal error should interrupt data
insertion or update if names differ.

1. With SQL, create the structure of table BANK_CUSTOMER.

2. Code the trigger (name it TrigBank) and create it.

3. Insert and update several rows into table BANK_CUSTOMER. Conclusion?

Exercise #3: Automatic usage statistics

We want to store statistics about data modifications (insertions, updates and deletions) in table
EMP.

1. With SQL, create the structure of table STATS (ModType, ModNumber, ModLastDate) and
populate it as follows.

Database programming – Labwork #8 2/2

ModType ModNumber ModLastDate
INSERT 0 NULL
UPDATE 0 NULL
DELETE 0 NULL

2. Define a trigger after insert or update or delete on table EMP that automatically updates table
STATS. Test its functioning by performing various modifications in table EMP.

Hints:

• Modification type determination (in trigger):
IF INSERTING THEN -- insertion
IF UPDATING THEN -- update
IF DELETING THEN -- deletion

• System date: SYSDATE

3. Test the effect of the presence and absence of clause FOR EACH ROW on the trigger’s behavior by
using a query that updates several rows (e.g., UPDATE EMP SET SAL = SAL * 1.05).

Exercise #4: Materialized view refreshing

1. Copy table DEMO_CUSTOMERS of user DARMONT onto your account.

2. With SQL, create a materialized view (i.e., a table) named CUSTNAMES with respect to query
SELECT CUSTOMER_ID, CUST_FIRST_NAME, CUST_LAST_NAME FROM DEMO_CUSTOMERS.

3. Unlike a classical view, the contents of a materialized views is not recomputed when it is
queried. This helps achieve better response times. However, the materialized view must be
maintained, i.e., it must be updated when its data source is modified. Write a trigger after insert,
update or delete on DEMO_CUSTOMERS that automatically refreshes view CUSTNAMES’ data.
Every inserted, updated or deleted row from DEMO_CUSTOMERS must also be modified in
CUSTNAMES.

4. Test the effects of your trigger by inserting, updating and then deleting a row from table
DEMO_CUSTOMERS. Check at each step whether your update is correctly echoed in
CUSTNAMES.

