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Abstract. This paper introduces Experiversum, a lakehouse-based ecosys-
tem that supports the curation, documentation and reproducibility of ex-
ploratory experiments. Experiversum enables structured research through
iterative data cycles, while capturing metadata and collaborative de-
cisions. Demonstrated through case studies in Earth, Life and Politi-
cal Sciences, Experiversum promotes transparent workflows and multi-
perspective result interpretation. Experiversum bridges exploratory and
reproducible research, encouraging accountable and robust data-driven
practices across disciplines.

Keywords: Data and experiment curation · Reproducible research ·
Lakehouse architecture · Data processing pipelines · Metadata.

1 Introduction

Massive data production is increasingly vital in experimental sciences such as
life, earth, social sciences and humanities, where large-scale, cost-effective data
acquisition is now possible. Such fields generate diverse datasets of varying qual-
ity, enabling multifaceted analyses. Traditional schema-on-write methods such
as ETL (Extraction, Transformation, Loading) struggle with such heterogeneity.
Data lakes provide a flexible alternative by storing raw data in original formats,
but require effective metadata extraction to integrate data and ensure repro-
ducibility.
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Open science demands not just data sharing, but also the documentation of
experimental context, including conditions and decisions. This requires detailed
metadata that captures both data and the knowledge production process. The
main challenge is twofold: designing metadata models that represent both data
and processing workflows, and implementing ELT (Extraction, Loading, Trans-
formation) pipelines that support experiment curation and track how decisions
impact outcomes. Metadata must serve as an execution guide for ELT processes
to ensure reproducibility.

This paper introduces Experiversum, a lakehouse prototype system that ap-
plies a metamodel to curate and manage data-driven experiments. Experiversum
enables researchers to explore, analyse and reuse experiments with rich meta-
data, in alignment with open science principles. Consequently, the remainder of
the paper is structured as follows. Section 2 reviews related works on metadata,
provenance and reproducibility. Section 3 introduces the Experiversum ecosys-
tem. Section 4 details the system’s architecture, curation processes and explo-
ration functions. Section 5 presents use cases in social, earth, and life sciences.
Section 6 concludes and outlines future work.

2 Related Works

This section reviews key approaches for curating experimental data and pro-
cesses, covering storage and management systems such as data warehouses, data
lakes, lakehouses and dataverses [15, 18]. We also compares data lake solutions
used in earth, life, and social sciences.
The Evolving Practice of Data Curation. Data curation has evolved from focus-
ing on preservation and quality control [10, 13] to a value-added process that
includes metadata enrichment and contextualization [14]. In fields of earth sci-
ences and biodiversity, this shift supports reusability and clear provenance [5].
Modern platforms such as dataverse combine automation with expert oversight
to support the full research lifecycle [20].
Infrastructure for Modern Research. Managing today’s research data, ranging
from structured tables to unstructured content, requires flexible systems. Data
warehouses are optimized for structured analytics, but lack support for diverse
formats [3]. Data lakes address this with schema-on-read flexibility [9]. How-
ever, without proper governance, data lakes risk becoming “data swamps” [2].
The lakehouse model combines the strengths of both warehouses and lakes [1],
while dataverses offer curated, citable storage [6, 12]. Our work advocates for
integrating a lakehouse and a dataverse approaches in earth and life sciences.
Discipline-Specific Data Challenges. Different disciplines require tailored infras-
tructures. In natural sciences, repositories support metadata standards for repro-
ducibility [16]. In social sciences, data is often qualitative and harder to stan-
dardize. Data lakes offer needed flexibility [8], but must preserve context and
consider ethical issues, especially with personal or indigenous data [4]. Hybrid
solutions aim to balance scale and detail [7, 19].
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Innovations and Remaining Challenges. Emerging technologies such as conversa-
tional analytics using Large Language Models (LLMs) are reshaping interaction
with data8. While promising, LLMs raise concerns about accuracy and trust9. In-
teroperability remains difficult across disciplines and data types [17]. Ultimately,
success depends not only on technical solutions but also on institutional support
and user adoption [11].

3 Curating Data-Driven Experiments

A data-driven experiment consists of three key elements: (1) raw data from
empirical sources, (2) the research team responsible for data selection, methods,
and validation, and (3) contextual metadata describing collection, processing,
and analysis conditions. Curation ensures all components are documented for
transparency and reproducibility. We define a metadata model structured around
three concepts: raw content, experimental specifications and context. Figure 3
in Appendix A illustrates this model.
Level 1: Raw content. The blue classes in Figure 3 represent data ingested or
produced during experiments. Metadata are extracted through automated and
manual processes, capturing summaries, distributions and structure, e.g., column
types and format. Each release is profiled, e.g., licensing, size and provenance;
and can include tabular, textual or signal data. Items can also be annotated with
multimedia or textual comments to enhance interpretability.
Level 2: Experimental specifications. This level documents actions performed
on datasets, whether manual or automated. Actions produce artefacts or mod-
els, with metadata describing structure, execution and provenance. Parameters,
evaluation criteria and validation protocols are recorded to trace how and why
actions were performed or repeated.
Level 3: Experiment context. Metadata describe the research team’s composition
, e.g., roles and seniority; responsibilities and the guiding research question. It
captures the decision-making context and provides a basis for comparing exper-
iments.

4 Experiversum: experiments and data universum
environment

The Experiversum environment ensures preservation, documentation and repro-
ducibility of scientific experiments using a lakehouse infrastructure (Figure 1).

Extraction and Loading. Raw data such as seismic signals or social media posts
are ingested in their original format, e.g., signals, text and media. Subsets are
grouped into catalogues based on attributes such as ingestion date, size, format
and quantitative traits.
8 Nguyen 2024; Kerner 2023; Dubey 2024
9 Ghodsi et al., 2023
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Fig. 1. Experiversum Architecture

Metadata Management. This module links metadata from raw and processed
data to the experimental context, supporting reproducibility. Scientists can nav-
igate datasets using quantitative summaries and relevant descriptors. Metadata
is extracted following the curation model, normalized, and stored in a metadata
repository, enabling comparison and exploration across experiments.
Experiment Curation. Researchers can specify experimental parameters such as
selection criteria, team roles, questions and performance constraints. They can
explore experiments on similar topics conducted under different conditions, re-
view methods and assess outcomes—supporting comparative analysis and en-
hancing reproducibility.
Experiversum management. This component orchestrates Experiversum pip-
elines, managing seamless data flow from ingestion to analysis. It ensures con-
sistency, performance, and smooth transitions across the infrastructure.
Extraction and Loading Pipeline. The EL pipeline handles data ingestion, clean-
ing and transformation before loading it for analysis—crucial for any data work-
flow. Key steps include (i) data extraction retrieves raw data from sources such
as APIs, sensors, databases or unstructured files, e.g., seismic logs and social me-
dia; (ii) data cleaning removes duplicates, errors and inconsistencies; (iii) data
enrichment adds contextual details such as timestamps or geolocations reliabil-
ity; (iv) data loading stores data with associated structural and quantitative
metadata in organized collections.
Tagging Experimental Processes Pipeline. improves reproducibility and collab-
oration by assigning structured tags to experimental workflows. It consists of
three tasks. (i) experiment specification records metadata such as experiment
ID, name and date to link processes and data; (ii tagging applies algorithmic or
user-defined tags to annotate datasets and processes; (iii) tag storage maintains
tag traceability for reuse and reference.
Transformation Pipeline converts raw or semi-structured data into usable for-
mats aligned with the metadata model. It consists of three tasks. (i) structuring
maps text, signals and media to metadata entities; (ii) contextual enrichment
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adds metadata to reflect experimental settings; (iii) preparation formats data
for analytics, machine learning or further experimentation.
Exploring and Querying Processes. The exploration and analytics pipeline
enables users to query, analyze and visualize curated datasets. It supports ex-
ploratory data analysis (EDA), statistical modeling and machine learning to
uncover insights. There are five tasks.
- Experiment Querying and Retrieval: access datasets by filtering parameters
such as time, location or experiment settings for efficient data selection.
- Filtering and Aggregation: refine data by extracting relevant subsets and aggre-
gating across dimensions, e.g., time and region) to produce summary metrics.
- Descriptive and Predictive Analytics: perform statistical analysis (averages,
correlations, trends) and advanced tasks (classification, regression, clustering,
anomaly detection...) for pattern discovery and forecasting.
- Data Visualisation: display results using graphs, charts and heatmaps to sim-
plify interpretation, trend spotting and anomaly identification.
- Collaboration and Sharing: share results, export outputs and integrate findings
into reports or publications to support teamwork and dissemination.

5 Use Case-Based Validation

The first prototype of Experiversum is implemented using SQLite3 as the storage
backend. Pipelines are developed in Python and three demonstration scenarios
(biodiversity, seismic data and graffiti analysis) are built using Flask, Bootstrap
and executable Jupyter notebooks.
Tracking “Caravelas Portuguesas” along the Brazilian Coast. This use
case classifies sightings of the jellyfish Physalia physalis along Brazil’s coast10.
Raw data extraction and loading. Instagram posts tagged with relevant hash-
tags (#aguaviva, #caravelaportuguesa, etc.) are extracted, converted into CSVs
containing metadata (ID, source, location, media URL) and uploaded into Ex-
periversum.
Data transformation. CSV headers are mapped to our metadata model, e.g.,
experiment, media, content and tags). Unstructured and imprecise geo-temporal
data, e.g., “last summer” or inaccurate locations, is cleaned and corrected. Each
transformation is registered and results in derived datasets.
Experimental settings. Two research teams collaborate: data scientists use ma-
chine learning models to classify posts, while biologists manually tag and define
classification categories. Settings include inclusion criteria, e.g., location/time)
gender of the affected person, model calibration and performance thresholds.
Exploration and querying. Users query jellyfish occurrences by time and region,
explore ecological associations and compare human and machine learning clas-
sifications to study methodological differences.
Classification of Seismic Activity in Northeast Brazil. This case curates
seismic data to differentiate natural from anthropogenic events, producing vali-
dated bulletins summarising seismic activity.
10 https://es.wikipedia.org/wiki/Physalia_physalis
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Experiment setup. Participants include seismographs (data generation), data col-
lectors (retrieval), junior analysts (event detection) and senior analysts (review
and bulletin publication).
Data extraction and loading. SAC files are uploaded and validated. Amplitude
values (by axis: X, Y, Z) are extracted and stored along with metadata such as
station_id, channel_id and timestamps.
Data transformation and tagging. Junior analysts plot waveforms to detect and
tag events. Each event is annotated by station, year and magnitude. Analysts
identify P and S wave arrivals. A triangulated event list forms the basis of the
official bulletin, validated by a senior analyst.
Exploration. Waveforms and results are visualised through a Web interface. An-
alysts can share or publish curated outcomes.
Graffiti Analysis for Political Messaging. A two-member team (junior +
senior) conduct qualitative analysis to classify political graffiti across a city.
Research framing. Over two cycles, the team refines the central question: “Can
political messages be traced through graffiti?” They define inclusion criteria and
political graffiti indicators through discussion.
Data collection. The junior researcher photographed 1,050 graffiti images across
districts. After review, 546 were validated and shared on Instagram (link upon
acceptance).
Analysis. Manual classification is complemented by unsupervised machine learn-
ing (k-means and hierarchical clustering via Orange). Results from both are
iteratively refined and interpreted collaboratively.
Results. Narratives and metadata are compiled through successive review rounds.
Final deliverables include classifications, summaries and reproducibility docu-
mentation.
Lessons Learned. Developing an experiment curation system reveals key in-
sights into the challenges and benefits of structuring data-driven research. It
underscores how data, metadata and decisions intersect, and the importance of
systematic curation for transparency, reproducibility and collaboration.
Curation and Reproducibility. Experiversum supports the curation of varied data
types (seismic signals, social media and multimedia) through ingestion, trans-
formation and tagging pipelines. These pipelines enrich content with contex-
tual metadata, enabling reproducible experiments and traceable results. Lesson:
Metadata models are crucial for linking data with experiments, ensuring inter-
pretability beyond storage.
Data Transformation and Tagging. While structured data such as seismic sig-
nals are easily processed, tagging unstructured content, e.g., social media, prove
more difficult, requiring advanced techniques. Lesson: Automated tagging suits
structured data. Unstructured sources need robust Natural Language Processing
(NLP) methods.
Using Metadata to Understand Experiments. Figure 2 illustrates metadata-driven
queries across three use cases. The first chart shows political graffiti labels by an-
notator, with juniors contributing most tags, indicating their key role in interpre-
tation. The second chart compares human and machine classifications in seismic
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monitoring, showing 90% agreement but highlighting some discrepancies needing
expert review. The third chart displays confidence scores for species classifica-
tion, while many fall in the 0.8–1.0 range, lower-confidence cases (<0.6) point
to the need for manual checks. Such visualisations show how curated metadata
improves analysis, validation and understanding across complex experiments.

6 Conclusion and Future Work

This paper introduces Experiversum, a lakehouse-based platform for curating,
exploring and reproducing data-driven experiments. Experiversum integrates
ELT pipelines with a structured metamodel to link raw data to experimental
intent, enabling workflow reuse across disciplines. Case studies with biodiversity
and seismic data highlight its flexibility for interdisciplinary research. The main
insight is that reproducibility requires preserving full experimental context, not
just raw data. Our metadata model and curated workflows improve traceability
and reuse across diverse data types.

Future work includes extending metadata coverage, using NLP and graph
techniques for tagging, adding privacy-aware analytics, and deploying the plat-
form in real infrastructures to support open, collaborative science.
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A Appendix A

DataCollection

id: URL
name: String
provider: String
licence:  {public, restricted}
size: Int
author: String
description: String

Release 

id: URL
name: String
release: Int
publicationDate: Date
size: Float
license: String
provenance: String

DataItem 

id: URL
name : String
name: String
attributes: List()
type: String
format: String

1..* 1..*

ReleaseView 

id: URL
version: Int
publicationDate: Date
size: Int

AttributeDescriptor 

id: URL 
name: String 
type: String 
valueDistribution: Histogram 
nullValue: Int
absentValue: Int
minValue: Type 
maxValue: Type 
mean: Type
median: Type 
mode: Type 
std: Type 
count: Int

*

View 

id: URL
name: String 
provider: String 
author: String 
description: String
code: Code 
releaseSelecRules: Function
source: String 
default: version.id

Comment

content: String
type: MediaType

ResearchMember

id: String
role: String
affiliation: String

Stats

numRecords: Int
numColumns: Int
columnTypes: List
categoricalDistributions: Dict 
numericDistributions: Dict

Action

id: String
method: String
parameters: Dict
resourcesUsed: Resources
output: DataCollection
input: DataCollection/Model

Experiment

id: String
researchQuestion: String
description: String

1..*
author

*1

1

*

1 1

1 1 1

*

ExperimentPhase

id: String
name: String
goal: String

1

1

1

1

1

1

*
ResearchTeam

id: String
name: String

conducts

Model

header: String
input: DataCollection
output: Function
parameters: {Parameter}
provider: LibraryName EvaluationCriteria

thresholds: Dict
validationProtocol: String
scores: List()

isA
sse

stB
y

Resources

executionTime: Float
memoryUsage: Float

consumes

1 1..*

1..*

1..*
1

*
* 1

1

Fig. 3. Data Metamodel UML Class Diagram


