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Abstract. In the era of Big Data, managing voluminous and hetero-
geneous data presents significant challenges for organizations. To tackle
these challenges, the concept of a data lake has emerged as a promising
solution, allowing the storage of raw data from diverse sources in their
original format. An efficient metadata management system plays a cru-
cial role in preventing data lake to turn into an unusable data swamp
by providing a structured framework for organizing, categorizing and
establishing relationships between data entities.
In this paper, identify the various relationships from diverse domains
found in the literature. Then, we categorize the types of relationships
and propose a relationship typology that classes relationships by simi-
larity, containment, grouping and provenance. Eventually, we also aim to
check whether goldMEDAL, a state-of-the-art generic metadata manage-
ment model, adequately supports all such relationships. This evaluation
is particularly relevant for Bial-X, which seeks to implement a robust
metadata management system based on goldMEDAL’s concepts.

Keywords: Data lakes · Data discovery· Semantic relationships· Big
data.

1 Introduction

In recent years, there has been a huge increase in global data production and
organizations’ decision-making processes have been revolutionized by the avail-
ability of large volumes of heterogeneous data, known as Big Data. This expo-
nential growth not only presents real opportunities, but also challenges related
to data volume, velocity and variety that exceed the capabilities of traditional
data storage and management systems [18].

To address this issue, James Dixon proposes the concept of a data lake as a
practical solution [6]. A data lake allows storing raw data from heterogeneous
sources in their original format. In the absence of a data schema, the presence of
a robust metadata system is crucial for enabling data queries and thus preventing
the data lake from becoming a data swamp, i.e., an unusable data lake. Moreover,
an efficient metadata system provides users with a unified interface to search,
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explore, and understand the available data entities and the relationships between
them.

Bial-X’s customers require a metadata management system to effectively
manage a data lake and establish semantic relationships between data entities.
Note that there are many terms similar to relationship, e.g., relation, link, linkage
and connection. However, after reviewing the literature, relationship appears to
be the most frequent term. Finding relationships provides users with a global
view of metadata, through which they can interpret said relationships and gain
valuable context into how various data entities are interconnected, facilitating a
deeper understanding of their significance within the data lake. Since the data
lake literature seems unanimous about the importance of a metadata system, we
benchmarked state-of-the-art metadata management systems, i.e., DataGalaxy3,
Atlas4, Open Data Discovery5 and OpenMetadata6. These tools offer various
forms of relationships, including operational and structural relationships, e.g.,
“entity In” and “aggregation”), but also lineage (provenance) relationships, which
are important for understanding the origins and transformations of data entities.

Lineage relationships belong to so-called semantic relationships, but there
are still other semantic relationships that metadata management systems do not
support. Semantic relationships are defined as “any form of hierarchical, generic
or predefined semantic relationships (semantic connections between data sets,
e.g., for provenance or governance)” [14].

Eventually, our contribution is threefold.

1. We survey the various relationships between data entities found in the litera-
ture, notably aiming to pinpoint all semantic relationships that meet Bial-X’s
specific needs.

2. We categorize the types of relationships and propose a relationship typology
that classes relationships by similarity, containment, grouping and prove-
nance.

3. We hypothesize and check that goldMEDAL, a state-of-the-art generic meta-
data management model [24], can adequately support all the relationships we
identify in our survey. This evaluation is crucial for Bial-X, as the company
funded a PhD thesis that was part of goldMEDAL’s design.

In the remainder of this paper, we first explicit our survey methodology and
present the metadata metamodel goldMEDAL that we use throughout this paper
(Section 2). Next, we present and discuss our relationship typology, i.e., similar-
ity, containment, grouping and provenance relationships (Section 3). Finally, we
conclude this paper and hint at future works (Section 4).

3 https://www.datagalaxy.com
4 https://atlas.apache.org
5 https://opendatadiscovery.org
6 https://open-metadata.org
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2 Preliminaries

2.1 Survey Methodology

We conduct a systematic literature review to analyze relevant articles address-
ing specific questions related to relationships between data entities within data
lakes. We adopt the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) protocol [19] to ensure rigor and transparency throughout
the whole process.

Research Questions First, we identify several key questions to guide our lit-
erature review.

– How are relationships between data entities defined in the literature?
– What types of relationships exist between data entities?
– Are there any semantic relationships between data entities?
– How relationships can enhance metadata management models or systems?
– Can goldMEDAL’s concepts support all identified types of relationships?

Sources To address our research questions, we conduct extensive searches across
several academic databases, i.e., the ACM Digital Library, SpringerLink and
IEEE Xplore. Moreover, Google Scholar is occasionally used to access papers not
available in the above databases. Yet, Google Scholar is not a primary source,
because the results it yields includes numerous non-peer-reviewed papers.

Search Strategy Our search strategy involves selecting key terms designed to
capture the full breadth of literature related to data lakes, relationships between
data entities, and dataset discovery. Our search query below incorporates a range
of terms and Boolean combinations to cover all relevant facets of the topic.

"Data lakes" AND
(" relationships" OR "Semantic relationships" OR "Dataset

discovery ") AND
("data entities" OR "datasets" OR "tables ") AND
((" Similarity" OR "Related" OR "Proximity ") OR (" Containment"

OR "Inclusion" OR "Encapsulation ") OR (" Provenance" OR
"Lineage" OR "Tracking ") OR (" Grouping" OR "Clustering"
OR "Categorization "))

These results yield about 500 papers retrieved from ACM (118), IEEE (11),
and Springer (371) databases.

Filtering Applying a date filter onto articles published between 2016 and 2024
reduces the set to 315 papers. Next, we filter by publication type, narrowing
down to 80 from ACM, 9 from IEEE and 199 from Springer. Then, we conduct
an initial screening based on titles and abstracts, focusing on relevant keywords
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from our search query and assessing the alignment of abstracts with the scope
of our study. This process leaves us with 50 articles from ACM, 6 from IEEE
and 70 from Springer for further evaluation. Eventually, we apply inclusion and
exclusion criteria (Table 1). The final result yields 10 papers from ACM, 2 from
IEEE and 7 from Springer, for a total of 19 papers in the final review.

Table 1. Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria
Publication type: conference/journal Brief papers or limited in scope
Publication date: from 2016 to 2024 Language: non-English
Article type: research/survey Named relationship without definition
Relevant keywords Accessibility: paper cannot downloaded

Duplicates

2.2 goldMEDAL and Relationships

goldMEDAL is a generic metadata model that bears a high level of abstraction
to be very flexible for any data lake use case [24]. It encompasses three levels of
modeling (conceptual, logical and physical) and is built upon four core concepts:
data entity, grouping, link and process (Figure 1).

Fig. 1. goldMEDAL conceptual metadata model [24]

Data entities are the basic units of the metadata model. For example, a data
entity can represent both raw data and transformed data. It might be a spread-
sheet file, a textual file, a semi-structured document, an image, a database table,
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a tuple or an entire database. This flexibility enables goldMEDAL to seamlessly
handle data at various levels of granularity. Furthermore, the introduction of any
new element such as file, document, image, etc., into the data lake triggers the
creation of a new data entity.

A grouping involves organizing data entities into sets denoted as groups based
on common properties. For instance, within data lake architectures, the raw and
preprocessed data zones constitute two groups within a zone grouping. Another
example is a grouping of textual documents according to the language of writing.

Links associate either data entities with each other or groups of data entities
with each other. Such links may be either directed or undirected.

A process refers to any transformation or update applied to one or several
data entities to produce a new data entity. It is used to track the relationships
between data entities. Each process connects one or more “parent” data entities
to “children” data entities. Yet, unlike links, processes represent the execution
context of a transformation or modification operation (user, script, etc.).

By leveraging these core concepts, goldMEDAL facilitates the exploration of
relationships between data entities within a data lake ecosystem. For example,
processes can be employed to trace the lineage and parenthood relationships
among data entities, while groupings aid in structuring related data entities,
resulting in the establishment of containment relationships between different
groups within the same grouping. Links can depict hierarchical or semantic con-
nections between data entities or groups.

However, the practical application of these concepts needs to be assessed.
While goldMEDAL offers a high level of abstraction and flexibility, it is essential
to determine whether its core concepts can effectively support the implemen-
tation of all relationship types, including similarity, containment, grouping and
provenance.

Ensuring that goldMEDAL’s theoretical framework can guide the develop-
ment of a metadata management system is vital for our future works. Bial-X
especially needs a tailored and robust metadata management system.

3 Relationship Typology

We architecture our typology in four types of relationships: similarity (Sec-
tion 3.1), containment (Section 3.2), grouping (Section 3.3) and provenance (Sec-
tion 3.4) relationships. Each type of relationships is synthesized in a table with
four columns:

– Relationship name as per the source article;
– bibliographical Ref.;
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– a quote by the authors characterizing the relationship (Authors’ quote);
– the goldMEDAL concept associated with the relationship (gM concept).

The relationships identified in the literature are categorized by the authors’
definitions and descriptions within each paper. Some papers address multiple
types of relationships. However, we do not include in our study named relation-
ships that are not sufficiently defined.

Each identified relationship is classified according to our typology. Finally,
we thoroughly analyze relationship definitions to determine what goldMEDAL
concept can (or not) implement a particular relationship. We now present the
selected papers and discuss them.

3.1 Similarity Relationships

In Table 2, we observe that the similarity relationships found in the literature
may be based on different aspects such as content, structure or both a combina-
tion of content and structure. By classifying relationships into these three types,
we can discern both differences and commonalities between them.

Content similarity Content similarity refers to resemblance or overlap in the
information contained within data entities, particularly in terms of attributes,
values or content. It indicates how closely related or similar two data entities
are based on the content they store. Such similarity can be measured through
various metrics, such as shared attributes, common values or semantic overlaps.

For Halevy et al., content similarity focuses on checksums and Locality Sen-
sitive Hashing (LSH) values as indicators of content similarity [13]. Alserafi et
al. emphasize the overall similarity of real-world objects or concepts stored in
datasets [2]. On the other hand, Ravat and Zhao introduce the concept of partial
overlap, suggesting that content similarity can exist even when data entities over-
lap rather than bearing strictly identical attributes [21]. Additionally, Eltabakh
et al. define content similarity as establishing connections between a text doc-
ument and table based on various criteria such as overlapping values, semantic
similarity or metadata similarity. Moreover, they assess relatedness by assigning
a score to each relationship between the document and table columns [8].

Furthermore, Kaminsky et al. expand the concept of content similarity by
introducing joinability, which refers to the ability to link two similar columns
from the same domain [16].

Structural similarity Structural similarity refers to the resemblance between
data entities based on their structural aspects. It evaluates how data entities are
similar based on their structure, including factors such as the types of variables,
attributes names and data constraints. For Hai et al., a a structural similarity
involves clustering similar schemas together and selecting the core of each clus-
ter as its representation.This process is based on the similarity between schemas
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Table 2. Similarity relationships

Relationship
name

Ref. Authors’ quote gM concept

Content simi-
larity

[13] . . . find datasets with content that is similar or identical to the given dataset, or columns
from other datasets that are similar or identical to columns in the current dataset.

Link

Schema
grouping

[12] . . . clusters the schemas and picks up the core of each cluster as its presentation. The
necessity of grouping depends on the schema similarity calculated over the imported
data sources.

Link

Related [2] . . . Related pairs of datasets describe similar real-world objects or concepts from the same
domain of interest. These datasets store similar information in (some of) their attributes.

Link

Proximity [1] . . .We utilise a novel proximity mining approach to assess the similarity of datasets. Link
Similarity re-
lationship

[5] It’s used to present that an object is “similarTo” another object. Link

Relationship
constraint

[11] . . . the analyst may be interested in finding similar datasets to the ones found so far
to make sure no information is missing (content similarity). Or, having already found
a handful of relevant datasets, the analyst may want to find a join path to join them
together (a primary-key/foreign-key (PK/FK) candidate).

Link

Property con-
straints

[11] . . . selecting columns with unique values, or columns with a string in the schema name,
which are all properties of the data. For instance, the analyst who is building the stock
change prediction model may start with a search for tables that include metrics of rele-
vance. . . (schema similarity).

Link

Content simi-
larity

[20] . . .Which means that different datasets share the same attributes Link

Partial over-
lap

[20] . . . Partial overlap which means that some attributes with corresponding data in different
datasets overlap.

Link

Similarity
Link

[23] . . . Reflect the strength of the similarity between two objects. Unlike object groupings,
similarity relationships refer to the intrinsic properties of objects, such as their content
or structure.

Link

Schema
matching

[1] . . . It seeks to identify schematic overlaps between datasets. This involves detecting re-
lated objects (instances or attributes) and matching instances between two different
schemata.

Link

Union [9] . . . Table union search aims to find all tables that are unionable with the query table. To
determine whether two tables are unionable, existing solutions first identify all pairs of
unionable columns from the two tables based on column representations, such as bag of
tokens or bag of word embeddings.

Link

Doc to Table
(From Docu-
ment to Ta-
bles)

[8] . . . A Table T with column set A is related to a text document D if there exists Ai ∈ A
such that D and Ai are related via overlapping values, semantic similarity, or metadata
similarity, each with a relatedness score.

Link

Table j Table
(Joinable Ta-
bles)

[8] . . . Table T with column set A is joinable to Table T ′ with column set A′ if there exists
Ai ∈ A and some A′

j ∈ A′ such that:

1. Ai and A′
j have value overlap suggesting syntactic join, or

2. Ai and A′
j have semantic overlap suggesting semantic join.

Link

Table U Table
(Unionable
Tables)

[8] . . . Table T with column set A is unionable to Table T ′ with column set A′ if a one-to-one
mapping H : A → A′ exists wherein there exists h ∈ H such that the column pair given
by h exhibits name, value, or semantic similarity.

Link

Joinability re-
lationship

[16]
[26]

. . . Joinability means that two columns can be linked together because they contain sim-
ilar data from the same domain

Link
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calculated over imported data entities [12]. Alserafi et al. emphasize on iden-
tifying overlaps between data entity schemas by detecting related objects or
attributes and matching instances between different schemas [1]. Moreover, the
use of proximity mining adds another criterion by employing proximity scores to
identify similar data entities with respect to structural similarity [1]. Eltabakh
et al. propose joinable tables based on syntactic or semantic overlaps between
columns [8]. Finally, Fernandez et al. introduce a property constraint that focus
on selecting data entities according to specific properties, such as unique values
or schema names, which represent inherent structural features [11].

Hybrid similarity Hybrid similarity combines elements from both content
and structure, offering a more comprehensive perspective on finding relevant
and similar data entities. For Diamantini et al. [5] and Sawadogo et al. [23] sim-
ilarity relationship focus on establishing a relationship between data entities,
considering both their content and structural characteristics. Moreover, Fernan-
dez et al. introduce constraints based on specific properties. such as columns
with unique values or columns with a particular string in the schema name.
These constraints aim to select data entities by integrating both content and
structural aspects [11]. Eventually, Fan et al. [9] and Eltabakh et al. [8], focus
on identifying unionable tables, considering both content and structural overlaps
between their columns to determine similarity.

Despite the different terms used to describe similarity relationships, they
share the common understanding that content or structural similarity is deter-
mined by shared attributes, values, semantic overlaps or structural aspects, using
different methodologies and metrics. The comparison highlights that goldMEDAL’s
concepts can handle diverse similarity relationships. For example, the notion of
data entities corresponds well with content similarity, focusing on the similarity
or overlap in the data they contain. Furthermore, goldMEDAL’s link concept
facilitates the implementation of similarity relationships between data entities.
After analyzing the various similarity relationships outlined in Table 2, it be-
comes evident that goldMEDAL is a robust metamodel to implement these re-
lationships within a data lake.

3.2 Containment Relationships

In the context of data lake management, containment relationship refers to the
hierarchical structure of data entities (Table 3). This relationship indicates how
a data entity can be encapsulated or nested within another, such as sub-data
entities or sub-tables within its structure. It illustrates how data entities are
grouped or organized in a hierarchical manner, with some data entities being
contained within others.

According to Halevy’s et al., a containment relationship refers to how data
entities may contain other data entities, such as bigtable column families [13].
Deng et al. focus on the subsumption relationship, providing a function to iden-
tify data entities or groups of data entities that are contained in or contain other
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Table 3. Containment relationships

Relationship
name

Ref. Authors’ quote gM concept

Dataset con-
tainment

[13] . . . Some datasets may contain other datasets. Link

Subsumption
relationship

[4] . . . a list of tables or groups of tables that have some form of subsumption relationship
(i.e., are contained in or contain) with respect to the reference table;

Link

Structural re-
lationship

[5] . . .Which is used to present that an object “contains” another object. Link

Granularity
Indicator

[7] . . . collecting metadata on different granular levels. These levels are closely tied to some
kind of structure in the data.

Link

Containment
relationship

[15] . . . containment relationship, i.e., a parent entity T may contain another child entity Ti. Link

Containment
fraction

[25] . . . If A and B are schemas, n(B) refers to the length of the flattened schema set in B,
and |A ∩B| refers to the length of the intersection between the flattened schema sets. If
they are tables, n(B) refers to the number of rows in B and |A∩B| refers to the number
of rows common to both tables.

Link

Inclusion de-
pendency

[10] . . .Tu.Av ⊂level Tq.Ar, where each Ti is a table, each Aj is an attribute, and level is the
fraction of the values in Tu.Av that are contained in Tq.Ar. When the level = 1, there is a
full inclusion dependency, and when the level < 1, there is a partial inclusion dependency.

Link

data entities [4]. Additionally, Diamantini et al. present structural relationship,
indicating how an object contains another object, like a relational database con-
taining tables and the same way tables contain attributes [5].

Eichler et al. introduce the granularity indicator entity, enabling the collec-
tion of metadata on multiple granularity levels, closely tied to some kind of
structure in the data, such as object instances or key-value pairs within a JSON
document [7].

Huang et al. describes containment relationships as a parenthood relationship
between two data entities, i.e., a parent entity contains a child entity. Shah et al.
quantify how much a data entity is contained in another, either in terms of their
structure or content [25]. Finally, Fernandes et al. focus on inclusion dependency,
where data values from one data entity are contained within another, either fully
or partially [10].

Overall, these authors agree in their interpretation, collectively defining con-
tainment relationship as a hiearchical link between data entities within data lake,
which align closely with goldMEDAL’s Link concept. Each relationship, focus-
ing on different aspects of containment within data entities, finds resonance in
goldMEDAL’s approach of using links to represent hierarchical and structural
connections between data entities. Consequently, goldMEDAL’s Link concept
effectively captures the essence of these relationships, facilitating their imple-
mentation within data lake.

3.3 Grouping Relationships

Grouping relationships signify how data entities are grouped and classified to-
gether, based on various criteria as outlined in Table 4, enabling a more effective
data management, discovery and analysis within data lakes.

For Hai et al., grouping focuses on clustering schemas based on common
attributes and similarities [12]. Halevy et al. [13] and Ravat et al. [20] group data
entities from the same domain or with similar attributes due to duplication.
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Table 4. Grouping relationships

Relationship
name

Ref. Authors’ quote gM concept

Schema
grouping

[12] . . . clusters the schemas and picks up the core of each cluster as its presentation. The
necessity of grouping depends on the schema similarity calculated over the imported
data sources.

Grouping

Logical clus-
ter

[13] . . .We identify datasets that belong to the same logical cluster. Grouping

Logical clus-
ter

[20] . . .Which means that some datasets are from the same domain (different versions, du-
plication etc.).

Grouping

Objects
groupings

[23] . . . Organize objects into collections, each object being able to belong simultaneously to
several collections.

Grouping

Categorization[7] . . . The categorization entity is a label assigned according to the metadata element’s
context.

Grouping

ZoneIndicator [7] . . . The zoneIndicator entity is a label on the data entity supplying information on the
location of the data element in the data lake’s zone architecture.

Grouping

Outlier
datasets

[1] . . .Which have no similarity with any other dataset in the DL (i.e., no similar attributes
in the DL).

Grouping

Sawadogo et al. propose to organize data entities into collections, where
each data entity can belong to several collections simultaneously. These groups
are generated automatically based on semantic metadata, including tags and
business categories [23]. Eichler et al. introduce two types of grouping relation-
ships [7]. The first one aims to categorize data entities using their metadata
elements with labels based on their context. For example, operational labels for
metadata elements storing access information. The second one aims to assigning
labels to data entities to indicate their location within the data lake’s zone archi-
tecture. In both Categorization and ZoneIndicator, the grouping is only based
on metadata.

Moreover, Al-serafi et al. propose another approach which involves identifying
data entities exhibit no similarity with any other data entities. This lack of
similarity can be used as a criteria to categorize data entities that belong to
no grouping of shared attributes [1]. Despite the diversity in approaches, these
authors converge to the same goal : categorizing data entities into groups or
collections within data lake using different criteria. Furthermore, these different
approaches are not mutually exclusive, rather, they can complement each other,
contributing to an efficient data lake management.

As a conclusion, goldMEDAL’s grouping concept effectively aligns with these
various relationships by providing mechanisms to organize and categorize data
entities into clusters or collections based on their similarities, context, or other
criteria within the data lake.

3.4 Provenance Relationships

Provenance relationships refer to the lineage or origin of data entities, tracing
their evolution within a data lake. Table 5 shows these relationships, which offer
a comprehensive understanding of data origins and transformations, and provide
insights into data entities’ history.

In the context of identifying relationships between data entities, Halevy et
al. suggest content similarity that aims in identifying data entities with similar
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Table 5. Provenance relationships

Relationship
name

Ref. Authors’ quote gM concept

Content similar-
ity

[13] . . . Content similarity—both at the level of dataset as a whole and at the level of individ-
ual columns—is another graph relationship that we extract.. . . we rely on approximate
techniques to determine which datasets are replicas of each other and which have different
content.

Process

Logical cluster [13] . . . Datasets that are versions of the same logical dataset and that are being generated
on a regular basis;datasets that are replicated across different data centers; or datasets
that are sharded into smaller datasets for faster loading.

Process

Duplicated [2] . . . Duplicate pairs of datasets describe the same concepts. They convey the same infor-
mation in most of their attributes, but such information can be stored using differences
in data.

Process

Provenance [13] . . . For each dataset, we maintain the provenance of how the dataset is produced, how it
is consumed, what datasets this dataset depends on, and what other datasets depend on
this dataset.

Process

Tracing and
Provenance

[3] . . . Collect and aggregate tracing metadata (including descriptive, administrative and
temporal metadata and build a provenance graph) for both data and the contextualized
data.

Process

Logical cluster [20] . . .Which means that some datasets are from the same domain (different versions, du-
plication etc.).

Process

Parenthood rela-
tionship

[23] . . . Reflect the fact that an object can be the result of joining several others. There is a
“parenthood” relationship between the combined objects and the resulting object, and a
“co-parenthood” relationship between the merged objects.

Process

Versions [23] . . . Raw data in the lake are often modified through updates that result in the creation
of new versions of the initial data, which can be considered as metadata.

Process

Representations [23] . . . Raw data (especially unstructured data) can be reformatted for a specific use, inducing
the creation of new representations of an object

Process

content [13]. Content similarity indirectly contributes to data provenance by
highlighting data entities that may have originated from the same source or
undergone similar transformations. For Halevy et al. and for Ravat et al., logical
cluster helps in organizing related data entities within the data lake, particularly
those with shared attributes or versions [13, 20]. This organization facilitates the
tracing of data lineage by grouping together data entities that are likely to have
similar origins or same transformations.

Alserafi et al. highlight the importance of recognizing duplicated data entities,
as they may reveal common sources or transformations [2]. Which can helps trace
back to the original sources and gain insights into the data entities’s history and
transformations.

Provenance, as emphasized by Halevy et al., involves tracking the production,
consumption and dependencies of datasets, offering direct insights into their lin-
eage and origins [13]. This explicit documentation provides information on how
datasets are created and used, aiding in understanding their provenance within
the data lake. Beheshti et al. advocate aggregating tracing metadata to build a
thorough provenance graph, facilitating the reconstruction of data lineage within
the data lake [3]. Sawadogo et al. describe the parenthood relationship, which
reflects the connections between combined data entities and their resulting data
entities, offering insights into their dependencies and lineage [23]. Additionally,
Sawadogo et al. highlight the importance of tracking data entities versions and
representations, which provide insights into data evolution and transformations
over time [23]. Versioning and representation tracking contribute to data prove-
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nance and data lineage by documenting changes to data entities and their struc-
tures, allowing for a comprehensive understanding of their history and evolution.

Provenance of data entities holds significant importance in the context of
managing data lakes. goldMEDAL’s process, enables the tracking of data enti-
ties changes over time, their origin, usage, status in the life cycle, aligning well
with the notion of documenting data origins advocated in the literature. Despite
the existence of various approaches, goldMEDAL’s process concept demonstrates
flexibility in implementing different provenance relationships outlined from lit-
erature.

4 Conclusion and Perspectives

One key challenge in data lakes is to find and discover relationships between
different data entities, which facilitate the process of data integration, discovery
and analysis. While various metadata management systems exist, they often do
not address relationships and particularly semantic relationships.

Our primary contribution is an extensive literature review and analysis,
where we identify and categorize relationships based on their underlying charac-
teristics and implications for data management. The outcome is a relationship
typology that shed light on the diverse semantic relationships between data en-
tities within data lakes.

Furthermore, we had hypothesized that goldMEDAL could support all the
relationships found in our survey. Tables 2–5 show that goldMEDAL’s concepts
cover all the types of relationships identified in our survey. It is somehow a
validation that goldMEDAL’s conceptual model provides a flexible and com-
prehensive framework for metadata management and a promising solution for
enhancing data discovery, exploration and analysis in data lake environments.

In future research, we plan to design a metadata management system that
not only supports operational and structural relationships, but also semantic
relationships. As of today, we have not ruled between:

1. contribute to the open source metadata management systems available, i.e.,
Open Data Discovery and OpenMetadata, and extend one of them to support
semantic relationships;

2. build a metadata management system from scratch, based on the goldMEDAL
metadata metamodel.

Furthermore, there are explicit relationships that are easy to spot, e.g., when
designing a database schema. Yet, there are also implicit relationships that are
hidden, especially in data lakes with highly heterogeneous data. Such high-
potential relationships, e.g., similarity relationships, can be mined by machine
learning or Large Language Models (LLMs). The ultimate goal is to interlink
data entities so as to navigate and search data within a whole data lake.

Eventually, we lately identified additional relationships, i.e., causality [17] and
correlation [22]. Of course, they are definitely different, so we need to investigate
these relationships further.
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