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Abstract. Analyzing textual data is a very challenging task because
of the huge volume of data generated daily. Fundamental issues in text
analysis include the lack of structure in document datasets, the need
for various preprocessing steps and performance and scaling issues. Ex-
isting text analysis architectures partly solve these issues, providing re-
strictive data schemas, addressing only one aspect of text preprocessing
and focusing on one single task when dealing with performance opti-
mization. Thus, we propose in this paper a new generic text analysis
architecture, where document structure is flexible, many preprocessing
techniques are integrated and textual datasets are indexed for efficient ac-
cess. We implement our conceptual architecture using both a relational
and a document-oriented database. Our experiments demonstrate the
feasibility of our approach and the superiority of the document-oriented
logical and physical implementation.
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1 Introduction

A vast amount of textual data is generated daily and it is really challenging to
develop efficient models and systems to enhance processing performance while
doing accurate text analysis. The most fundamental challenges when working
with large volumes of heterogeneous text datasets include the lack of structure
of textual corpora, the various required preprocessing steps, the need for efficient
access and the ability to scale up.

Structural issues may be addressed by resorting to textual data warehous-
ing and On-Line Analytical Processing (OLAP). However, such approaches only
partially solve the problem because they use a structured schema that falls short
when applied to large, heterogeneous volumes of data. Moreover, using a prede-
fined schema makes them extremely dataset-specific.

Moreover, when dealing with textual data, we distinguish different prepro-
cessing levels: quite basic operations (e.g., cleaning HTML tags, tokenization,



language identification); intermediate operations (e.g., stemming, lemmatization,
indexing); and advanced operations (e.g., part of speech tagging, named entity
recognition, topic modeling). Each complexity layer in this process requires the
previous layer and all operations must remain tractable in terms of memory and
CPU time. To the best of our knowledge, no text analysis tool implements all
layers, nor any processing workflow.

Finally, when working on performance and scaling issues, state-of-the-art
research focuses on one aspect of text analysis, e.g., aggregation, top-k keyword
extraction and text indexing. However, text processing techniques used in a
single application may be many and, as we mention above, interdependent.

Hence, we present in this paper a scalable text analysis architecture that
addresses all these issues. More precisely, we deal with the lack of structure
by adopting a novel generic, document-oriented data model that allows storing
heterogeneous textural corpora with no predefined structure. We also integrate
in our framework all the preprocessing methods that are useful for information
retrieval, data mining, text analysis and knowledge discovery. We also propose
a new compact data structure to minimize index storage space and the response
time of create, read, update and delete (CRUD) operations. Such indexes benefit
to text preprocessing, querying and further analysis, and adequately contribute
to global scaling.

The remainder of this paper is organized as follows. In Section 2, we discuss
related works. In Section 3, we present the architecture and implementation of
our approach. In Section 4, we experimentally validate our proposal. In Section 5,
we finally conclude this paper and hint at future research.

2 Related Works

2.1 Text Cubes and OLAP

Extensive work on information retrieval (IR) and text analysis have been done
using OLAP. Most proposals use Text Cubes for OLAPing multidimensional
text databases [20]. Lin et al. focus on optimizing query processing and reducing
storage costs of Text Cubes [12]. They experimentally show that average query
time and storage cost are related to a cube’s number of dimensions. Zhang et
al. use Text Cubes for topic modeling [20] and experimentally show that their
approach is much faster than computing each topic cube from scratch. Finally,
Ding et al. address the problem of keyword search and top-k document ranking
using Text Cubes [7]. Their algorithms perform well in terms of query response
and memory cost when the number of search terms is small.

Ben Kraiem et al. propose a generic multidimensional model for OLAP on
tweets [2]. Their experiments show some promising results for knowledge discov-
ery when applying OLAP on a small corpus, but query performance decreases
when data volume increases. Bringay et al. propose a data warehouse model to
analyze large volumes of tweets [4]. They introduce different operators to identify
trends using the top-k most significant words over a period of time for a specific



geographical location, as well as the impact of hierarchies on such operators.
Unfortunately, no time performance and storage cost analysis is provided.

In conclusion, research done so far on text analysis and OLAP focuses on
small, structured datasets and scaling up is not guaranteed.

2.2 Text Preprocessing and Analysis

Managing morphological variation of search terms in IR has been quite ex-
tensively studied [11, 10]. The main successful methods are stemming [14] and
lemmatization, which are used to optimize search, minimize the space allocated
to inverted indexes (Section 2.3) and, in the case of lemmatization, to add lin-
guistic information. Lemmatization is useful for different types of advanced text
analysis, e.g., named entity recognition, automatic domain specific multi-term
extraction and part of speech (PoS) tagging. Moreover, lemmatization is easier
of use than stemming, saves storage and improves retrieval performance [11].

Topic modeling is a statistical model for discovering hidden themes that
occur in a collections of documents. In recent years, it has been extensively
studied, showing the usefulness of analyzing latent topics and discovering topic
patterns [3, 16]. Popular approaches for topic modeling are latent semantic index-
ing (LSI) [6], latent Dirichlet allocation (LDA) [3], the non-parametric extension
hierarchical Dirichlet process (HDP) [16] and non-negative matrix factorization
(NMF) [1].

2.3 Document Indexing

Inverted indexes are data structures used in search engines, whose main purpose
is to optimize query response speed. Basic inverted indexes store terms, a list of
documents where each term appears and a weight. Weight measures the number
of occurrences of the term in a document, e.g., raw term frequency/word co-
occurrence (TF), normalized Term Frequency (TFn), etc. In the various methods
for managing inverted indexes, great emphasis is put on storage space reduction.
For instance, a pruning algorithm based on term frequency-inverse document
frequency (TF*IDF) can be used to minimize index size [19]. Yet, updating an
inverted index is also a problem, because it is dependent on documents. The
index must indeed be updated each time documents are added or deleted.

3 Proposed Approach and Implementation

3.1 Approach Overview

The approach we propose (Figure 1) is subdivided into four steps: 1) clean and
preprocess documents using natural language processing (NLP) and store the
information in a database; 2) construct indexes; 3) analyze data, e.g., with topic
modeling, etc.; 4) query and search data, extract top-k most relevant documents,
create visualizations and analyses. We construct the inverted index, vocabulary,



PoS and named entities (NE) indexes during the index construction step. Indexes
may be used afterward by data mining, text analysis, search and visualization.
The search engine sorts documents based on a ranking function (e.g., TF*IDF,
Okapi or BM25) to extract the top-k documents.

Fig. 1: System architecture

To implement our document-oriented approach, we quite naturally rely on a
document-oriented database management system (DODBMS). DODBMSs are a
class of NoSQL systems that aim to store, manage and process data using a semi-
structured model. DODBMSs encapsulate data in collections of documents [8].
A document can contain other nested documents, which turns out to be very
flexible [17].

One feature of DODBMSs is that they are often optimized for create and read
operations, while offering reduced functionality for update and delete queries.
DODBMSs are designed to work with large amounts of data and the main focus
is on the efficiency of data storage, access and analysis [13].Another key feature
of DODBMSs is the distribution of data across multiple sites. In particular,
DODBMSs can horizontally scale CRUD operations throughput [5]. Moreover,
decentralized data stores provide good mechanisms for fail-over, removing the
single point of failure, due to their scalability and flexibility [9].

We selected MongoDB as our DODBMS, since it beats the best mean time
performances for CRUD operations both in single and distributed environments
[17]. Moreover, we also implemented our approach with PostgreSQL, to pro-
vide a point of comparison with a well-established, efficient relational database
management system (RDBMS) (Section 4).



3.2 Data Models

We design a generic model to store heterogeneous text data using a data ware-
house snowflake schema (Figure 2). The central component of the model is the
documents entity, where we store basic information and metadata about a doc-
ument, e.g., timestamp, title, raw, clean and lemmatized text, etc. The docu-
ment tags entity is used to store metadata represented by tags, which can be
existing tags, hashtags or at tags. The vocabulary entity links documents to infor-
mation extracted or inferred from the text, which helps enhancing metadata with
different weights and tags, e.g., PoS, TF, TFn, lemmas, etc. The named entities
entity stores all the information about entities automatically extracted from the
original corpus.

Fig. 2: Conceptual model

The DODBMS schemaless design takes all the information presented in the
relational schema and stores it for each document in a record of the collec-
tion. Using this design, all one-to-many and many-to-many relationships be-
come either vectors (e.g., hashtags, at tags) or nested documents (e.g., words,
named entities). Where the information is not present, these vectors and nested
documents may be missing thanks to the flexibility of schemaless database de-
sign. A problem that arises is duplication, as multiple records can bear the same
metadata, since all the information for a document is stored in one single record.
The vocabulary entity is constructed as a separate collection. This entity is con-
structed dynamically, taking user input constraints into account, e.g. date, tags,
search words, named-entities.

Interaction with the database is achieved through CRUD operations, aggre-
gation functions and views. We use read operations for information extraction
and data visualization. Aggregation functions are used for constructing indexes,
searching and preprocessing data for text analysis. We make use of MapRe-
duce for this purpose when using the document-oriented database architecture.
Dynamically materialized cubes are constructed using views with aggregation
functions, fine-graining query results using different measures, e.g., timestamps,
locations, lemmas, tags, named entities.



3.3 Text Preprocessing

The data cleaning module serves three functions: 1) corpus standardization,
2) text preprocessing using NLP to enrich data, and 3) entity creation and
information insertion into the database.

The entire corpus is standardized by determining all the fields of a document,
including metadata and the labels of documents. Then, during the preprocess-
ing step, the following techniques are applied: 1) text cleaning by removing
HTML/XML tags and scripts; 2) language identification; 3) expanding contrac-
tions; 4) extracting features, e.g., PoS, lemmas and named entities; 5) removing
stop words and punctuation; 6) computing term weights. We use a multithread-
ing architecture for data cleaning to cope with large data volumes and scale up
vertically. At the end of each thread, the information is stored in a dictionary,
together with other metadata. We choose to use asynchronous threads because,
after a worker thread finishes, a new job can be assigned to it without waiting
for the other worker threads to finish. This is made possible because each task
is independent. At the end of this step, a record of the documents collection is
created and inserted into the database. The record contains all labels from the
first step and the information extracted using NLP from the second one.

In the DODBMS implementation, a record stores all the information because
its attributes are created dynamically. In contrast, the RDBMS architecture can
only store predefined fields due to its rigid schema. Thus, undefined fields are
omitted.

The RDBMS approach merges the data cleaning step with the index con-
struction step, because many-to-many relationships between entities, translated
as bridge tables, are indexes as well. We could not use a multithreading approach
here because information could be lost. Multiple threads could indeed check at
the same time whether the information is present and receive a negative re-
sponse. A constraint violation error could appear and the transaction terminate
by a rollback. If constraints are missing, then duplicate information could appear
and this would impact text analysis.

3.4 Index Management

We propose several indexes for document aggregation, search, extraction of the
top-k most signification terms and text analysis, e.g., topic modeling, document
clustering. These new indexing structures minimize storage costs and maximize
the time performance of CRUD operations.

Index construction in the DODBMS architecture is done using the MapRe-
duce framework. Four indexes are created: 1) an inverted index that stores, for
each term, a list of corresponding documents; 2) a vocabulary, a novel inverted
index with additional information for each term in the corpus, e.g., list of docu-
ments where the term is found, the TF and TFn of the term for a document and
IDF; 3) a PoS index that stores the part of speech of each term; 4) a named-
entity index used for storing named entities. There are no integrity constraints



between these collections to improve query response time. Moreover, the struc-
ture proposed for the vocabulary facilitates query response time, aggregation and
search (Figure 3). MapReduce is used to construct all indexes. It is also central
in aggregation queries needed by the search algorithms. To improve index con-
struction and query response times, we horizontally scale the database, and by
doing so add more MapReduce worker.

In the RDBMS architecture, indexes are the bridge tables translating many-
to-many relationships between entities. The vocabulary is the bridge table be-
tween the documents table and the words table. The PoS index is the bridge
table between the vocabulary table and the pos table. In this case, the index also
contains the TF and IDF of each term.

Fig. 3: Vocabulary index structure

The number of entries in the indexes constructed for the DODBMS is equal
to the number of terms in the entire corpus. In the RDBMS, the inverted index
has more entries, i.e.,

∑
d∈D | t : t ∈ d | , where D is the corpus and | t : t ∈ d |

is the number of distinct terms that appear in document d.
Updating indexes in the DODBMS is based on document insertion date. The

update method we use constructs an intermediary index for new documents, and
then it updates the primary index by appending the new documents’ ID and TF
to existing labels. Then, the IDF of each term is updated for the whole index.
When documents are deleted, we apply a bulk delete operation. In this case, a
list of deleted document IDs is stored, which helps update the index structure
by removing the deleted documents and then updating the IDF of each term.

Updating indexes in the RDBMS implementation is easier thanks to the
database’s structure. When documents are added, indexes are automatically up-
dated based on the insertion date of the last added documents. When documents
are removed, the corresponding index entries are also removed. For both opera-
tions, the IDF of each term must be recalculated.

4 Experimental Validation

In this section, we test each step of our approach and we compare the results
achieved by the two instances we developed, i.e., the DODBMS version imple-



mented with MongoDB and the RDBMS version implemented with PostgreSQL.
Tests are done using a news corpus consisting of 110,000 articles1, a corpus of
5,000,000 tweets2 and a scientific corpus of 20,000 abstracts from [15]. The size
of these corpora, some would argue, is rather small with respect to Big Data.
Yet, it is sufficient to illustrate our architecture’s good time performance. Text
analysis is indeed not usually done on large corpora. Moreover, other corpora
used in the literature are smaller, e.g., 3,000 documents [20], 2,013 records [12],
65,333 tweets [2], 1,801,810 tweets [4].

Our architecture can be deployed in a cloud environment if all the require-
ments are met, i.e., if Python packages, PostgreSQL, and MongoDB are available.
Tests are done on machines that reside in an OpenStack private cloud platform.
We purposely selected this hardware architecture and dataset sizes to show that
our architecture can achieve good performance even on end-user workstations, as
it is sometimes not desirable to send data online due to privacy issues. Moreover,
end-users presumably cannot afford very powerful, parallel computers.

4.1 News Articles Corpus Experiments

The first set of experiments are done using two computers with the same hard-
ware configuration: 4 GB RAM and 1 CPU with two 2.2 GHz cores. We choose
this hardware architecture to show that our method gives good results on sim-
ple computers. Using the initial news articles corpus, seven corpora are cre-
ated consisting of 100 to 110,000 documents. They are referred to as Cor-
pus i, i ∈ {1, 2, ..., 7}. For comparison reasons, experiments are done using a
single-thread approach.

Figure 4a presents the average time (in seconds) for populating the databases.
Duplicate documents are removed in this step. This is done by checking whether
an article already exists in the database based on its title. If the document
does not exist, then a new record is added. Otherwise, tags are verified so that
metadata are not omitted, as the same article could have more tags for different
instances found in the corpus. The second set of tests evaluates the efficiency of
text cleaning and index construction (Figure 4b).

Figure 4c shows the total storage space (in MB) for all corpora. To respect
database normalization in PostgreSQL, bridge tables materializing many-to-
many relations have to be added. In MongoDB, such relationships translate
into vectors or nested documents inside collections. For example, the documents
collection contains the authors table as an array of nested documents and the
tags table as an array. This brings the issue of duplicates, as we may have the
same tags for different document that would be stored in each element of the
collection. However, it is a small cost to pay as, using this structure, joins are
removed, whereas join is the costliest operation in RDBMSs.

Experimental results show that MongoDB efficiently stores the data, mini-
mizing storage space by 30% with respect to PostgreSQL. Moreover, based on

1 http://www.corpora.heliohost.org
2 Collected with Twitter’s tools at https://dev.twitter.com
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Fig. 4: Performance comparison

the number of records in each collection, from a computational point of view, a
select operation performed on a smaller entity shows faster response times than
one performed on an entity with a lot of records. For example, it is faster to query
the vocabulary collection than to interrogate the vocabulary table, because the
table contains more records than the collection.

Figure 4d presents the mean time for extracting the top-k documents. Tests
are performed on Corpus 7 with k = 20. After each search, the database cache
and buffers are cleared so that the comparison is accurate. MongoDB is from 86%
faster than PostgreSQL for one term-search to over 50% faster for five terms.

Table 1a presents mean text cleaning and index construction times, as index
construction is done separately in MongoDB. MapReduce functions were devel-
oped to further improve performance. Our results show that text cleaning and
index creation is improved by 94% with MongoDB (Figure 4b). Moreover, index
update is an important feature in a system where new documents are added or
deleted. We use new corpora of 500 to 5,000 articles from Corpus 5 to test this
feature in MongoDB. For comparison purposes, for each operation, we tested
the performance of updating and rebuilding the entire index. Updating the in-
verted index and the PoS index (Table 1b) works fast if the number of added
documents is small, but time performance shifts for bigger corpora. Then, it is
better to rebuild the entire index. If documents are deleted, it is faster to rebuild
the inverted index (Table 1c). Little improvement is seen between updating and



Table 1: Index building and updating in MongoDB (seconds)

(a) Text cleaning and index construction

Corpora Clean Text PoS Index Inverted Index Vocabulary

Corpus 1 25.36 4.95 5.94 6.57

Corpus 2 103.74 12.63 16.15 19.26

Corpus 3 204.91 20.10 25.36 32.95

Corpus 4 934.56 57.74 81.46 117.15

Corpus 5 1 805.27 103.38 141.81 209.14

Corpus 6 2 524.33 148.69 212.16 312.61

Corpus 7 3 564.07 216.34 311.88 461.88

(b) After new documents are added

No.
Documents

Inverted Index Vocabulary PoS Index
Update Rebuild Update Rebuild Update Rebuild

500 37.65 123.63 1 163.95 189.62 33.53 91.52

1 000 76.54 126.16 1 214.20 208.47 67.79 93.08

2 500 144.56 126.07 1 303.89 204.18 129.44 95.24

5 000 201.26 130.16 1 395.10 201.51 179.90 97.72

(c) After documents are removed

No.
Documents

Inverted Index Vocabulary PoS Index
Update Rebuild Update Rebuild Update Rebuild

500 1.08 122.36 1 129.35 198.35 91.33 91.91

1000 1.38 123.42 1 135.08 199.20 92.00 92.88

2500 1.51 126.64 1 160.26 195.09 93.15 94.52

5000 1.60 129.76 1 202.71 203.01 96.03 97.40

rebuilding the PoS index (Table 1c) when documents are deleted. Concerning
vocabulary, it is faster to rebuild the entire index than to update it, because the
IDF must be recomputed for each element in the collection (Tables 1b and 1c).

4.2 Twitter Corpus Experiments

This set of experiments is carried out using one machine with the following hard-
ware configuration: 12 GB RAM and 3 CPU with 4 2.6 GHz cores. We choose
this hardware configuration to prove that our architecture does not require spe-
cialized hardware to have good time performance. We work on 5,000,000 tweets
in these experiments.

Figure 5a presents the results obtained when using a multithreading archi-
tecture. The improvement obtained from switching from a single thread to a
12-thread implementation is 90%, lowering preprocessing time by a factor of 10.
We can observe that the number of nodes used by MongoDB directly impacts
performance and enhances response time, especially for large numbers of tweets.
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Fig. 5: Index construction comparison

The construction time of the vocabulary index improves significantly, by over
59% (Figure 5c). The same happens with the named entities index, with an im-
provement over 40% (Figure 5d). Keyword search performance remains constant
when we scale the database horizontally (Figure 5b).

4.3 Scientific Articles Corpus Experiments

This set of experiments uses the scientific corpus and is carried out using the same
hardware configuration as in Section 4.2. These experiments are designed to test
the time performance for constructing the vectorization matrices and extract-
ing topics. Figure 6a displays construction time for four different vectorization
matrices, namely TF, TFn, TF*IDF and Okapi BM25. The best performance
is obtained by the TFn vectorization matrix because all the information exists
in the vocabulary index. TF*IDF and Okapi BM25 vectorizations are slower be-
cause they must be computed for each element during matrix construction. The
second set of tests presents the performance time of extracting topics from the
entire corpus (6b). LSI is faster then LDA and HDP by a factor of 21 and 13,
respectively. NMF achieves the best performance.
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Fig. 6: Topic modeling comparison

5 Conclusion

In this paper, we present a new, complete architecture for text analysis that im-
proves search performance, minimizes storage cost through efficient document-
oriented storage, and scales up horizontally and vertically. Moreover, by exploit-
ing MapReduce to parallelize index construction and by designing new structures
for indexing and decreasing the number of records stored in the database, we
minimize the number of CRUD operations and further enhance performance.
Finally, the algorithm we propose for extracting top-k documents for a given
search phrase also considerably improves query response time.

Our experimental results show that a document-oriented architecture is best-
suited and improves performances when working with large volumes of text when
adding documents into the database, cleaning text and constructing indexes.
For all test cases, the mean time for populating the DODBMS is half that of
the RDBMS. Cleaning texts and constructing inverted indexes is also faster
when using a DODBMS. Although duplicates can be found inside a DODBMS,
storage costs are significantly lower than with a RDBMS. A demo application
that further shows the capabilities of this architecture is presented in [18].

In future work, we plan to add new features to our framework, such as auto-
matic domain specific multiterm extraction, cross-language IR, word embedding
and new topic models, e.g., dynamic topic modeling.From an architectural point
of view, we also want to parallelize the algorithms and use a GPU for computa-
tions.
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