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Abstract. zhang2011handling combining naive bayes and em, li2015trip
combining dependencies and web information, zhang2019learning com-
bining KNN and Regression, song2020imputing combining KNN and
likelihood maximization, chhabra2018missing combining k-means and
association rules, aydilek2013hybrid combining fuzzy c-means, support
vector regression and genetic algorithm, etc. There are also hybrid ap-
proaches which use techniques of the same category like latifi2012evaluation
combining knn and random forest and wang2017cosset combining crowd-
sourcing and knowledge base, etc.
Nowadays, it is difficult for companies and organisations without Busi-
ness Intelligence (BI) experts to carry out data analyses. Existing au-
tomatic data warehouse design methods cannot treat with tabular data
commonly defined without schema. Dimensions and hierarchies can still
be deduced by detecting functional dependencies, but the detection of
measures remains a challenge. To solve this issue, we propose a machine
learning-based method to detect measures by defining three categories
of features for numerical columns. The method is tested on real-world
datasets and with various machine learning algorithms, concluding that
random forest performs best for measure detection.
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1 Introduction

Business Intelligence (BI) plays an important role in numerous companies and or-
ganizations to efficiently support decision making processes. In classical BI archi-
tectures, data from heterogeneous sources are integrated into a Data Warehouse
(DW) usually modeled in a multidimensional way, allowing decision makers to
analyze data by On-Line Analytical Processing (OLAP) [11]. A multidimensional
DW organizes data according to analysis subjects (facts) associated with anal-
ysis axes (dimensions). Dimension attributes may be ordered according to their
granularity (hierarchies) and each fact is composed of indicators (measures).
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With the development of information systems and the availability of numer-
ous open datasets, various data become much more accessible to enterprises,
organizations and even individuals, who have data analysis needs to help them
take decisions [1]. However, the design of a DW is typically carried out manu-
ally, requires expert knowledge and BI experience [26], may be time-consuming
and costly. Thence, automating the DW design process is desirable to allow
businesses and organizations take advantage of BI.

There are different automatic or semi-automatic approaches for the design
of multidimensional DW schemas [25]. However most of these methods focus on
data sources with explicit schema: relational data with Entity-Relationship (ER)
schema, XML data with Document Type Definitions (DTDs), etc. Nevertheless,
tabular data such as spreadsheet data and Comma Separated Value (CSV) files
are very common in enterprises, and even more in the open data world. They
may also be DW data sources, but whose schema is not available. Building
dimensions and hierarchies for tabular data can be done by detecting functional
dependencies [32]. In the existing methods for other sources, measures are defined
manually by users or are detected with respect to data types (numerical values)
and cardinalities, which is impractical for tabular data without schema. Yet,
measures remain central elements in multidimensional models, as they are the
indicators that assess the analyzed activities. Therefore, measure detection
for automatic DW design from tabular data is an important task. To
the best of our knowledge, there is no specific approach addressing this challenge.

Tabular data may bear quite simple or very complex structures [2]. Simple
structures consist of one header row followed by rows containing data values.
Headers label the data rows below, while data rows contain tuples akin to rela-
tional database tuples. Most CSV files bear a simple structure, while spreadsheet
files and HTML tables can be more complex, e.g., cross tables [17]. Such tables
contain two or several dimensions, and may also contain several dimension lev-
els. Moreover, there also exists other complex structures such as concise tables,
nested tables, multivalued tables and split tables [17].

The data region can be extracted from a cross tables by some algorithms
[5,6,16,31] where measures are located. The other types of complex structures
can be converted into simple structures [6]. However, for simple-structured tab-
ular data, DW elements cannot be directly extracted either without a schema
or metadata, as the data do not bear a particular layout. Measures are usually
numerical data, but numerical columns are not necessarily measures, since there
also exists descriptive numerical attributes. Thus, we intend to find the numer-
ical columns that conform to the characteristics of measures. We hypothesize
that there are differences in terms of features between numerical data that are
potential measures and those that are not. Therefore, in this paper, we de-
fine specific features for numerical columns and propose a machine
learning-based method to automatically detect measures.

The remainder of this paper is organized as follows. In Section 2, we review
the related works about measure selection for automatic DW design. In Sec-
tion 3, we detail and discuss the measure detection process and the features we
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propose. In Section 4, we present and interpret our experimental results. Finally,
in Section 5, we conclude this paper and hint at future research.

2 Related Works

There are various methods dedicated to automatic or semi-automatic DW schema
design, with different measure selection approaches. Since the selected measures
should correspond to business requirements, in many methods [8,9,14,27], they
are assigned directly by the users.

In a semi-automatic method to model DW from E/R diagrams [13], the fact
table is selected by calculating the Connection Topology Value (CTV) of each
entity, which is a composite function of the topology value of direct and indirect
one-to-many relationships. Measures are still chosen manually by the user, but
the scope of the choice is reduced. Moreover, another approach fully automates
DW design from an E/R schema [22]. In contrast, some approaches aim at dis-
covering measures, including 1) selecting many-to-many relationships containing
numeric and additive non-key facts [15]; 2) analyzing business queries for data
items indicating business performance [4]; 3) basing on most frequently updated
entities [10]; or 4) selecting the numerical data that can be aggregated [30]. All
these approaches work in the context of automatic DW design based on E/R
schemas. However, the constraints and relationships mentioned in such methods
cannot be directly applied on tabular data.

Another trend is using knowledge-based methods for automatic DW de-
sign [28]. Key information on measures and dimensions are extracted through a
Natural Language Processing (NLP) model based on sentences from the busi-
ness requirements. Candidate measures are all numerical column and are then
validated by some constraints in a predefined domain ontology and by checking
whether they can be aggregated. However, the method needs business require-
ments to train the NLP model. Defining the domain ontology is also difficult.

In summary, there is no specific method to automatically detect measures
from tabular data in the absence of schema and explicit business requirements.
Thus, we propose a machine learning-based method for measure detection from
tabular data.

3 Measure Detection

3.1 Overview

Figure 1 shows an overview of our measure detection process for tabular data.
If tabular data bear a complex structure, we use table structure detection algo-
rithms [5,6,16,31] to verify whether data lie in a cross table. If so, measures are
extracted from the data region, save aggregated values are excluded. Otherwise,
data are converted by the algorithm proposed in [6] into a simple structure that
is formally defined in Definition 2.
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Fig. 1: Measure detection for tabular data

Definition 1. Measures are numerical and quantitative attributes of the anal-
ysis subject evaluating the activities of an organisation and that can be aggre-
gated with respect to dimensions. They can be additive, semi-additive or non-
additive [12].

Definition 2. A tabular dataset of simple structure TS is defined as {C,R,A,
V}, where:

– C = {C1, C2, ...Cnc
} is a set of columns, where nc is the number of columns

in TS. For a given column Ci ∈ C, index i corresponds to the column’s
position in TS. The number of non-null values in column Ci is denoted as
nt(Ci). The number of non-null distinct values is denoted as nu(Ci);

– R = {R1, R2, ..., Rnr
} is a set of rows (excluding the first, header row),

where nr is the number of non-header rows in TS. For a given row Rj ∈ R,
j represents the index of the row corresponding to its position in TS;

– A = {AC1
, AC2

, ..., ACnc
} is a set of attribute headers. For a given attribute

header ACi ∈ A, Ci represents the column labeled by ACi ;
– V is a matrix of cell values whose dimension is nr × nc. For a given cell

value VRj ,Ci
∈ V, Rj and Ci are the row and the column where the cell is

located, respectively.

In the following sections, we focus on measure detection for tabular data of
simple structure. Since measures are numerical, we regard all numerical columns
as candidates. Yet, preprocessing the dataset is necessary for the selection of
numerical columns. Then, to distinguish between measure and non-measure nu-
merical columns we extract features from numerical columns and use machine
learning classifiers to estimate whether they are measures.

3.2 Preprocessing

As candidate measures are numerical columns, we must first identify numerical
columns. If all values of a column are numerical, we easily identify numerical
columns. However, there are sometimes columns containing numerical values
with their unit, or columns containing both numerical and textual values used
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for replacing empty cells. Such mixed values must lead to numerical columns
and require preprocessing.

Columns containing values with a unit are identified by verifying whether
each cell obear the same structure, e.g., “text + number” or “number + text”.
We also verify whether the text of each column is the same or if it is categori-
cal by using the algorithm proposed by [3]. Then, we extract numerical values
via regular expressions and tag the column as numerical. Eventually, numerical
columns containing empty values replaced by some text, e.g., “n/a”, “null” or
“unknown”, are treated as numerical, with textual values being removed.

3.3 Feature Extraction

After the preprocessing phase, we extract the numerical columns’ features. When
defining features, we analyze both general information and some statistical char-
acteristics of numerical columns. Since tabular data of simple structure are usu-
ally relational and may exhibit specific column positional habits, we also consider
column inter-relationships. Features are thus subdivided into three categories:
general features, statistical features and inter-column features. For a given nu-
merical column Ci, we define the following features.

General Features These features reflect basic information on numerical columns.
Such general features may help check whether a numerical column is likely to
be quantitative and help evaluate business activities. General features follow.

– Data type: type =

{
1 if type(Ci) = integer
0 if type(Ci) = float

, where type(Ci) is Ci’s data

type.

Intuitively, float data are more likely to be quantitative and to allow evaluat-
ing activities. For example, temperature, salary and sales amount are float data
can be considered as measures in most cases.

– Positive/Negative/Zero value ratio: rpos =
npos(Ci)

nt(Ci)
, rneg =

nneg(Ci)

nt(Ci)
,

rzero =
nzero(Ci)

nt(Ci)
, where npos(Ci), nneg(Ci) and nzero(Ci) are the number

of positive, negative and zero values in Ci, respectively, and nt(Ci) is the
number of non-null values in Ci.

These features may help identifying both qualitative and quantitative columns.
Qualitative data values, e.g., ID or zip code, are rarely negative or equal to zero.
Thus, when there are many zero and negative values in a column, it is more
likely to be a measure.

– Unique value ratio: runique =
nu(Ci)

nt(Ci)
.
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The unique value ratio can reveal some typological information about a col-
umn. For example, in a descriptive dataset, IDs are always unique, so the unique
value ratio is always 1. In a dataset containing fact table data, keys and descrip-
tive data may be repetitive, but equal measures should be quite scarce.

– Same digital number:

sdn =

1 if ∀i ∈ [1, nt(Ci)− 1], ndRj ,Ci
= ndRj+1,Ci

∧ type(Ci) = integer
0 if (∃i ∈ [1, nt(Ci)− 1], ndRj ,Ci

̸= ndRj+1,Ci
∧ type(Ci) = integer)

∨(type(Ci) = float)
where ndRj ,Ci

is the number of digits in cell value VRj ,Ci
, which is calculated

as ndRj ,Ci
= floor(log

VRj,Ci

10 ) + 1.

This feature tells whether all the values of an integer column have the same
number of digits. If it is the case, the column is likely to be a nominal number [3]
representing the name or identifier of an element that cannot be a measure. For
example, the French social security number always contains 15 digits.

Statistical Features Since candidate columns are numerical, statistical fea-
tures must be considered. They can indeed reflect the distribution of column
values. Statistical features follow.

– Average/Minimum/Maximum/Median/Upper quartile/Lower qu-
artile values: avg = avg(Ci), min = min(Ci), max = max(Ci), median =
median(Ci), upquar = upquar(Ci) and lowquar = lowquar(Ci) represent
the average, minimum, maximum, median, upper quartile and lower quartile
of Ci, respectively.

We consider these basic statistical metrics as features. In some specific columns,
their values always vary in a certain range. Using these features can thus be help-
ful for capturing such statistical behaviours.

– Coefficient of variation:

coevar =


standdev(Ci) if avg(Ci) = 0
standdev(Ci)

avg(Ci)
if avg(Ci) ̸= 0

where standdev(Ci) is Ci’s standard deviation.

The standard deviation can depict the amount of dispersion of a column
values. Measures or descriptive attributes may have different degrees of disper-
sion, but by using the coefficient of variation, which is the ratio of the standard
deviation by the average, we achieve a standardized degree of dispersion. For
example, given two attributes “price of phone” and “temperature of city”, the
average price is much higher than that of temperature. A price variation of 10 is
relatively much lower than that of tempera. Since the coefficient of variation is a
ratio, when the average is equal to 0, it does not exist. Here, we define that when
the average is 0, the feature is equal to the standard deviation of the column.
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– Range ratio: rrange =
max−min

nu(Ci)
.

The range ratio calculates the range of values with respect to the number
of distinct values. It is useful to identify some ordinal data, even if they occur
repetitively. For example, if we have student numbers ranging from 1000 to
2000 in a tabular dataset, but also courses and grades, a student number may
occur many times while the range ratio is always 1 no matter the number of
occurrences.

Inter-Column Features Measures are aggregatable and are normally accom-
panied with attributes by which they are aggregated, as per the “group by”
SQL clause. Typically, attributes linked to aggregations are located before mea-
sures in the source file. Therefore, we consider inter-column features that take
inter-column relationships into account in the whole dataset.

– Location ratio: rloc =
i− 1

nc − 1
.

In many tables, the identifier and some other basic information usually lie
at the beginning positions, while measures are usually in the latter positions.
Thus, we also take column location into account. However, different datasets
have different number of columns, so we must normalize the location feature as
a ratio ranging between 0 and 1.

– Numerical column ratio: rnum =
nnum

nc
, where nnum is the number of

numerical columns in the whole dataset.

The ratio of numerical column number by total column number is a table
feature. While there are tabular data that only contain descriptive information,
others include numerical columns that may be measures.

– Multiple functional dependencies:

severalfds =

{
1 if ∃fd ∈ fdset, (fd.rhs = ACi) ∧ (size(fd.lhs) > 1)
0 else

where fdset is the functional dependency set of the dataset, fd.rhs is the
right hand side attribute of functional dependency fd and size(fd.lhs) is
the number of attributes in the left hand side of fd.

In existing methods that exploit data sources with schemas, many-to-many
relationships are usually employed for measure detection. In a DW, we usually
analyze a fact with respect to different dimensions and measure values depend
on dimensions’ primary keys. Thus, we consider whether there is a functional
dependency with ACi

depending on several attributes as a feature.
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– Numerical neighbor:

numn =


1 if (i = 1 ∧ type(Ci+1) ∈ num) ∨ (i = nc ∧ type(Ci−1) ∈ num)

∨(i ̸= 1 ∧ i ̸= nc ∧ type(Ci+1) ∈ num ∧ type(Ci−1) ∈ num)
0.5 if (i ̸= 1 ∧ i ̸= nc ∧ type(Ci+1) ∈ num ∧ type(Ci−1) ̸∈ num)

∨(i ̸= 1 ∧ i ̸= nc ∧ type(Ci+1) ̸∈ num ∧ type(Ci−1) ∈ num)
0 else

where num = {integer, float}.

In a tabular dataset, the columns describing similar information are often
clustered together. Measures are also likely to be located close together, meaning
that there are numerical columns in neighboring positions. Thus, we define this
feature to see if neighbors of a column are also numerical. If so, the column is
likely to be a measure.

4 Experimental Validation and Discussion

4.1 Experimental Conditions

Our experiments are conducted on an Intel(R) Core(TM) i5-10210U 1.60 GHz
CPU with a 16 GB RAM. We use 9 datasets in our experiments, from the
governmental open data sites of France (FR), Canada (CA), UK (UK) and US
(US), the French Development Agency (AFD), the New Zealand’s official data
agency (NZ), the American Center for Disease Control and Prevention (CDC),
the World Bank (WB) and Kaggle (KG). Each dataset contains numerous tables
with numerical columns on which features are extracted to feed the algorithms.
Moreover, they are classified into five domains (Table 3) including Economy
(ECO), Health (HLT), Government (GOV), Environment (ENV) and Society
(SOC). Complete information about these datasets are provided in Appendix.

We apply the following widely used Machine Learning (ML) classification al-
gorithms [29] (available in Python 3.7): 1) an SVM classifier with an RBF kernel
(SVM), 2) a decision tree classifier based on the CART algorithm (DT), 3) a
random forest classifier (RF) and 4) a k-nearest neighbors classifier (KNN).
Deep learning models are not employed because they are more suitable for in-
terpreting images, sounds and texts [18], while we analyze numerical columns.

We define the ground truth by analyzing each dataset context according to
its website’s description, header semantics and metadata. We also uphold the
criteria from Definition 1. Thence, for each dataset, we compute all our proposed
features (Section 3.3) for each numerical column, and label them to build training
and test sets. Empty values in columns are ignored and not counted.

4.2 Baseline Methods

Numerical Typology-Based Method (TP) In a previous work, we pro-
posed to select measures with respect to the type of numerical attributes [32].
Numerical data may be classified into nominal data, ordinal data, intervals and
ratios [3]. Algorithms can detect the different numerical types [3]. We identified
the columns of interval and ratio types as DW measures.
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Functional Dependency-Based Method (FDB) As we already mentioned,
in existing methods aimed at data with schemas, measures are selected in ta-
bles exhibiting many-to-many relationships; in other words, columns that are
functionally dependent on dimension primary keys. With this idea in mind, we
detect functional dependencies (FDs) in tabular data and select as measures the
numerical columns that are functionally determined by several, other attributes.
The FD detection algorithm that we use is HyFD [21]. HyFD indeed achieves
the best performance against the seven most cited and important algorithms
that are tested in [19].

We employ the Metanome Web-based toolbox [20], which is developed by
the HyFD designers, to implement HyFD. Moreover, we use the Python library
selenium4 to feed input files in Metanom and get the FDs automatically. The
extracted FDs are also used for generating the values of feature severalfds.

4.3 Experimental Results

Algorithm Effectiveness We run the two baseline methods from Section 4.2
and train models with our proposed features by four ML algorithms (Section 4.1)
on all datasets (Section 4.1). The ML algorithms are run by pycaret 5 AutoML
Python library where the hyperparameters are tuned automatically. For the
model generality and feauture importance experiments, we run ML algorithms
from the sklearn6 Python library.

We use three performance metrics: Recall (R), Precision (P) and F-Measure
(F), as follows. Let Nmm and Nmn be the number of measures predicted as
measures and non-measures, respectively; and Nnm and Nnn the number of
non-measure predicted as non-measures and measures, respectively.

Then,R=
Nmm

Nmm +Nmn
,P=

Nmm

Nmm +Nnm
and F=

2× Precision×Recall

Precision+Recall
.

Table 1 shows the resulting values of R, P and F where the results of ML
algorithms are obtained through a 10-fold cross validation by merging all datasets
and randomly split them into 10 folds. The distribution of the cross validation
results is depicted in Figure 2.

We observe that RF exhibits the best F-measure (94.82%) and the result
is not more dispersed than that of the other algorithms. Thus, RF shows the
best performance on the measure detection problem. We also observe that TP
and FDB do not have a good effectiveness when predicting measures, but FDB
performs better than TP. TP’s bad performance is due to: 1) interval and ratio
numerical columns are not all measures, e.g., longitude and latitude; 2) numerical
typology detection algorithm are not flexible enough to cope with real-world
data, because they are based on fixed rules. Regarding FDB, a numerical column
that is functionally determined by several other columns may not always be a
measure, either. For example, let us consider a table describing sale facts with

4 https://selenium-python.readthedocs.io
5 https://pycaret.org/
6 https://scikit-learn.org

https://selenium-python.readthedocs.io
https://pycaret.org/
https://scikit-learn.org
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Table 1: Global results
TP FDB RF SVM DT KNN

R(%) 80.05 75.43 96.64 94.77 94.08 90.16
P(%) 73.57 77.50 90.89 78.44 88.44 87.61
F(%) 76.67 76.45 93.65 85.76 91.12 88.78

Recall Precision F-measure
0.7

0.8

0.9

1

RF SVM DT KNN

Fig. 2: Cross validation distribution

respect to customers and products, where sales’ amount is indeed a measure.
The customer ID is the customer dimension’s primary key, but the customer’s
name and email may uniquely identify a customer, and thus may functionally
determine the age of the customer, a numerical column that is not a measure.

Our ML-based measure detection method takes different types of features
(Section 3.3) into account and can thus better handle the above exceptions and
get better results.

Feature Category Effectiveness To verify the effectiveness of each feature
category we propose, we test different combinations of feature categories with
our RF-based method. We first test single feature categories, combinations of
two categories and then we compare the effectiveness of all categories. The re-
sult is shown in Table 2, where GE represents GEneral features, ST represents
STatistical features and IC represents Inter-Column features. ST exhibits the
best individual contribution. Yet, we can clearly see that combining feature cat-
egories achieves better performance in terms of recall, precision and F-measure,
than using single feature categories. Ultimately, combining all feature categories
yields the best performance. The results of applying other ML algorithms can
be found in our github.

Table 2: Performance of feature categories and combinations with RF
GE ST IC GE+ST GE+IC ST+IC ALL

R(%) 88.10 94.27 92.68 95.30 93.67 91.93 96.64
P(%) 83.59 86.28 80.91 88.21 86.13 91.14 90.89
F(%) 85.69 90.01 86.37 91.57 89.67 91.50 93.65
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Fig. 3: Performance with respect to source and domain

Model Generality To verify that the trained model achieved with our RF-
based method is generic, we train data by excluding the datasets of one sources
and test on them. We also carry out the same test by domain, i.e., economy
(ECO), health (HLT), government (GOV), environment (ENV) and society
(SOC). The results are shown in Figure 3, where the charts above and below
depict the results by source and domain, respectively. By comparing with former
results, the difference of F-measure ranges from -5.02% to 4.23% for the test with
respect to the source and from -3.17% to 3.36% for the test with respect to the
domain. The trained model with the defined features is thus generic regardless of
the source and the domain of data. The results of applying other ML algorithms
can be found in our github7.

Feature Importance To analyze our different features, we compute the permu-
tation importance (decrease in prediction accuracy when a feature is permuted
[7]) of each feature for all ML algorithms. Figure 4 shows that the importance
of a feature varies with respect to the algorithm. For example, with SVM and
KNN, some statistical features are more important than others, while with RF
and DT, the features bearing the highest importance values are more equally
distributed in each feature category. There are also features that bears negative
importance values with algorithms, but not every time, while they always have
positive importance values with other algorithms. There is no feature that always
bears zero or negative importance values with one given algorithm, which means
that all our features have a contribution to the ML classifiers. With RF, which
bears the best performance, the most important feature is the location ratio. By
checking the CSV files, we observe that most of the measures are situated at the
last part of the file, while most of the columns in the front part are descriptive,
which probably explains the importance of the location ratio.

7 https://github.com/Implementation111/measure-detection

https://github.com/Implementation111/measure-detection
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Fig. 4: Feature importance

5 Conclusion and Future Work

In this paper, we propose a machine learning-based method for detecting OLAP
measures from tabular data. Our method is mainly dedicated to tabular data of
simple structure, since the case of complex structures has been addressed in the
literature. Some complex structures can also be converted to simple structures.
To fuel machine learning algorithms, we define three categories of features for
numerical columns in tabular data. We experiment with several real-world CSV
datasets and test four machine learning algorithms, among which Random Forest
performs the best. We also analyze how the features we build contribute to the
results.

In the future, we aim at considering not only numerical measures, but also
textual measures [23]. Moreover, we only use CSV data in our experiments. Com-
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plementing them with other types of tabular data, including complex-structured
data that are found in data lakes [24], could be relevant.
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1. Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.N., Naumann, F.,
Pedersen, T., Rizzi, S.B., Trujillo, J., Vassiliadis, P., Vossen., G.: Fusion cubes: To-
wards self-service business intelligence. International Journal of Data Warehousing
and Mining 9(12), 66–88 (2013)

2. Adelfio, M.D., Samet, H.: Schema extraction for tabular data on the web. VLDB
Endowment 6(6), 421–432 (2013)

3. Alobaid, A., Kacprzak, E., Corcho, O.: Typology-based semantic labeling of nu-
meric tabular data. Semantic Web 1, 1–5 (2019)

4. Ballard, C., Herreman, D., Schau, D., Bell, R., Kim, E., Valencic, A.: Data mod-
eling techniques for data warehousing

5. Chen, Z., Cafarella, M.: Automatic web spreadsheet data extraction. In: 3rd Inter-
national Workshop on Semantic Search Over the Web. pp. 1–8 (2013)

6. Du, L., Gao, F., Chen, X., Jia, R., Wang, J., Zhang, J., Han, S., Zhang, D.:
Tabularnet: A neural network architecture for understanding semantic structures
of tabular data. In: 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. p. 322–331 (2021)

7. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models
simultaneously. Journal of Machine Learning Research 20(177), 1–81 (2019)

8. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data
warehouse design. In: 8th ACM International Workshop on Data Warehousing and
OLAP. p. 47–56 (2005)

9. Golfarelli, M., Rizzi, S., , Vrdoljak, B.: Data warehouse design from xml sources.
In: 4th ACM international workshop on Data warehousing and OLAP. p. 40–47
(2001)

10. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual design of data warehouses from
e/r schemes. In: Proceedings of the thirty-first Hawaii international conference on
system sciences. vol. 7, pp. 334–343 (1998)

11. Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Method-
ologies. McGraw-Hill, Inc., 1 edn. (2009)

12. Horner, J., Song, I.Y., Chen, P.P.: An analysis of additivity in olap systems. In: 7th
ACM International Workshop on Data Warehousing and OLAP. p. 83–91 (2004)

13. I.-Y.Song, Khare, R., Dai, B.: Samstar: A semi-automated lexical method for gen-
erating star schemas from an entity-relationship diagram. In: ACM 10th Interna-
tional Workshop on Data Warehousing and OLAP. pp. 9–16 (2007)

14. Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering multidimensional struc-
ture in relational data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) Data
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Appendix: Dataset Information

In this appendix, we detail the information about the datasets we use in our
experiments. As mentioned in Section 4.1, these datasets come from different
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sources: AFD 8, CDC9, CA10, FR11, KG12, NZ13, UK14, US15, WB16. files
from AFD and FR are in French while the others are in English.

Table 3: Number of files by domains
Economy Health Government Environment Society

143 57 80 28 38

Table 4 shows information about each data source and all data sources
(Total), including the number of files (Nf ), the number of numerical columns
(Nc), the number of measures (Nm) and the ratio of number of measures by the
number of numerical columns (Rm). Figures in brackets are the minimums and
maximums. The original datasets and even more information about them can
be found in our github.

Table 4: Data source characteristics
AFD CDC CA FR KG

Nf 7 28 23 30 106
Nc (min-max) 15 (1-4) 100 (1-4) 156 (2-28) 123 (1-38) 394 (1-17)
Nm (min-max) 8 (0-3) 70 (1-6) 113 (0-28) 39 (0-7) 271 (0-10)

Rm(%) 53.33 70.00 72.44 31.71 68.78

NZ UK US WB Total

Nf 22 42 71 17 346
Nc (min-max) 62 (1-13) 137 (1-9) 311 (1-20) 84 (1-18) 1382 (1-38)
Nm (min-max) 8 (0-3) 99 (0-8) 194 (0-18) 63 (0-13) 900 (0-28)

Rm(%) 69.35 72.26 62.38 75.00 65.12

Finally, the datasets that we choose contain at least one numerical column
and can be used for DW creation. There were files that are used for other specific
purpose, e.g., machine learning, which are not suitable to DW creation. They
were thus discarded. There were also files with very poor data quality or com-
pletely lacking the information to understand the semantic meaning of columns,
which made difficult to tell whether a column could be a measure. Such files
were also discarded.
8 https://opendata.afd.fr
9 https://data.cdc.gov

10 https://open.canada.ca
11 https://www.data.gouv.fr
12 https://www.kaggle.com
13 https://www.stats.govt.nz
14 https://data.gov.uk
15 https://www.data.gov
16 https://data.worldbank.org
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