
fVSS: A New Secure and Cost-Efficient Scheme
for Cloud Data Warehouses

Varunya Attasena
Université de Lyon (ERIC)
Université Lumière Lyon 2

5 av. Pierre Mendès-France
69676 Bron Cedex – France
vattasena@eric.univ-

lyon2.fr

Nouria Harbi
Université de Lyon (ERIC)
Université Lumière Lyon 2

5 av. Pierre Mendès-France
69676 Bron Cedex – France

nouria.harbi@univ-
lyon2.fr

Jérôme Darmont
Université de Lyon (ERIC)
Université Lumière Lyon 2

5 av. Pierre Mendès-France
69676 Bron Cedex – France
jerome.darmont@univ-

lyon2.fr

ABSTRACT
Cloud business intelligence is an increasingly popular choice
to deliver decision support capabilities via elastic, pay-per-
use resources. However, data security issues are one of the
top concerns when dealing with sensitive data. In this pa-
per, we propose a novel approach for securing cloud data
warehouses by flexible verifiable secret sharing, fVSS. Secret
sharing encrypts and distributes data over several cloud ser-
vice providers, thus enforcing data privacy and availability.
fVSS addresses four shortcomings in existing secret sharing-
based approaches. First, it allows refreshing the data ware-
house when some service providers fail. Second, it allows
on-line analysis processing. Third, it enforces data integrity
with the help of both inner and outer signatures. Fourth, it
helps users control the cost of cloud warehousing by balanc-
ing the load among service providers with respect to their
pricing policies. To illustrate fVSS’ efficiency, we thoroughly
compare it with existing secret sharing-based approaches
with respect to security features, querying power and data
storage and computing costs.

Categories and Subject Descriptors
H. Information Systems [H.2. Data Management]: H.2.7.
Database administration—Data Warehouse and Repository;
Security, Integrity and Protection

Keywords
Data warehouses; OLAP; Cloud computing; Secret sharing;
Data privacy; Data availability; Data integrity

1. INTRODUCTION
Cloud business intelligence (BI) is becoming increasingly

popular, providing the benefits of both classical BI (effi-
cient decision-support) and cloud computing (elasticity of
resources and costs). However, one of the top concerns of

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
DOLAP’14, November 7, 2014, Shanghai, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-0999-8/14/11 ...$15.00.
http://dx.doi.org/10.1145/2666158.2666173.

cloud users and would-be users remains security. Some secu-
rity issues are inherited from classical distributed architec-
tures, e.g., authentication, network attacks and vulnerability
exploitation, but some directly relate to the new framework
of the cloud, e.g., cloud service provider (CSP) or subcon-
tractor espionage, cost-effective defense of availability and
uncontrolled mashups [5].In this paper, we focus on data se-
curity, which is of critical importance in a BI context where
sensitive data are processed. Data security is usually man-
aged by CSPs, but with the multiplication of CSPs and sub-
contractors in many different countries, intricate legal issues
arise and trust in CSPs may be jeopardized.

In contrast, end-to-end security gives the control of both
data security levels and costs back to users, through classical
techniques such as data encryption, anonymization, repli-
cation and verification. However, updating and querying
secured data in the cloud may turn inefficient and expen-
sive. Thus, specific end-to-end security approaches were de-
signed for distributed/cloud databases (DBs) and data ware-
houses (DWs) [15, 18]. The MONOMI system [20] notably
encrypts both SQL queries and data with multiple cryp-
tographic schemes. However, although MONOMI enforces
data privacy, it addresses neither data availability nor in-
tegrity issues. In contrast, secret sharing [16] simultaneously
enforces data privacy, availability and integrity. Secret shar-
ing transforms sensitive data into individually meaningless
data pieces (called shares) that are distributed to n CSPs.
Computations can then be performed onto shares, but yield
meaningless individual results. The global result can only
be reconstructed (decrypted) by the user.

All secret sharing-based approaches allow accessing shares
from t ≤ n CSPs, i.e., shares are still available when up
to n − t CSPs fail, e.g., go bankruptcy, due to a technical
problem or even by malice. However, no approach allows
updating shares when even one single CSP fails, thus hin-
dering cloud DWs’ refreshment capabilities. Moreover, al-
though these approaches feature all basic DB querying oper-
ators, only one handles on-line analysis processing (OLAP)
and it does not support lazy updates on cloud-stored cubes.
In addition, few approaches actually enforce data integrity
through verification of inner code (to verify whether CSPs
are malicious) or outer code (to detect incorrect data before
decryption), and only one features both inner and outer sig-
natures for this sake. Finally, although some approaches
bring in solutions to reduce overall storage volume so that
it falls well under n times that of original data, and thus de-

crease monetary cost in the pay-as-you-go paradigm, there
is still room for improvement.

To address all these issues, we propose a novel approach
that relies on a flexible verifiable secret sharing scheme (fVSS).
To the best of our knowledge, fVSS is the first approach
allowing DW refreshment when one or several CSPs fail.
Moreover, fVSS allows running OLAP operators on shared
DWs or cubes without reconstructing all data first. fVSS
also features both inner and outer signatures for data ver-
ification. Finally, fVSS allows users adjusting the volume
of shared data at each CSP, which helps optimize cost with
respect to various CFP pricing policies.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses previous research related to fVSS. Section 3
details our secret sharing and reconstruction mechanisms,
the new outer signature we propose and how our approach
applies to data warehouses and OLAP. Section 4 provides a
comparative study of fVSS with state-of-the-art existing ap-
proaches. Finally, Section 5 concludes this paper and hints
at future research perspectives.

2. RELATED WORKS
Among encryption techniques, only secret sharing [3] han-

dles both data privacy and availability, which is why we
focus on this family of approaches. The principle of secret
sharing [16] is based on the fact that t points define a polyno-
mial y = f(x) of degree t−1. The secret is the polynomial’s
constant term and the remaining terms are usually randomly
selected. Each data piece is transformed into n shares f(xi)
corresponding to points of the polynomial. Reconstruction
of the secret is achieved through Lagrange interpolation [6]:
there is only one polynomial p(x) such that degree(p(x)) < t
and p(xi) = f(xi). Then the secret is p(0). Moreover, mod-
ern secret sharing schemes, such as multi-secret sharing [2,
14, 22], verifiable secret sharing [17], and verifiable multi-
secret sharing [4, 10], also help reduce shared data volume,
verify the honesty of CSPs, and both, respectively. We clas-
sify secret sharing-based approaches for securing DBs and
DWs into two families.

In the first family of approaches [1, 2, 8, 9, 11], each table
is encrypted into n shared tables, each of which is stored at
one given CSP (Figure 1). Recall that only t of n shared
tables are sufficient to reconstruct the original table. Most
of these approaches assume that CSPs are not malicious
and that connections between CSPs and users are secure.
Only one [2] includes a data verification process that exploits
hash-generated signatures: an inner signature (incorporated
to the shares) to verify whether CSPs are malicious, and
an outer signature that helps detect incorrect or erroneous
(lost, damaged, alternative...) data before decryption and
prevents useless data transfers. Both signatures are stored
at CSPs.

In the second family of approaches [12, 13, 19, 21], one
or more additional index servers, located at {CSPi}i>n,
store B++ tree indices and signatures (Figure 2). The in-
dex servers require higher security and computing power
than that of other nodes, and a secure connection to the
user’s. The index servers support data verification by vari-
ous means, i.e., homomorphic encryption [13], a hash func-
tion [19] and checksums and a hash function [21]. However,
data verification cannot take place if the index server fails.

Regarding accessing shares, classical secret sharing [16]
and most of its above-cited extensions natively support some

Data owner

(t, n) SSSTj

Original
table

ETj1

ETjt

ETjn

.

.

.

.

.

.

Shared
table 1

Shared
table t

Shared
table n

ETj1

ETjt

ETjn

.

.

.

.

.

.

Shared table 1
at CSP1

Shared table t
at CSPt

Shared table n
at CSPnSharing process

Reconstruction process

Figure 1: First strategy for sharing a database

Data owner

(t, n) SSSTj

Original
table

ETj1

ETjt

ETjn

.

.

.

.

.

.

Shared
table 1

Shared
table t

Shared
table n

ETj1

ETjt

ETjn

.

.

.

.

.

.

Shared table 1
at CSP1

Shared table t
at CSPt

Shared table n
at CSPn

Server(s) Index attributes
or signatures

Sharing process
Reconstruction process

Figure 2: Second strategy for sharing a database

exact match and aggregation operators, i.e., equality and
inequality, sum, average and count. Each approach han-
dles operators needing sorted data, e.g., range operators,
maximum and minimum, with various techniques: preag-
gregation before sharing [8], a B++ tree index [12, 13] or
the rank coefficient used in classical secret sharing [1, 9, 11].
However, extra storage space is needed to store these data
structures. Finally, almost all approaches allow updates on
shares, since each piece of data is encrypted independently.

The features of all above-cited approaches are summarized
in Table 2. We compare them with fVSS’ in Section 4.

3. FLEXIBLE VERIFIABLE SECRET
SHARING

3.1 fVSS Principle
fVSS is a (t, n) flexible verifiable secret sharing scheme

belonging to the second family of approaches identified in
Section 2. As all similar approaches, fVSS shares data over n
CSPs, t of which are necessary to reconstruct original data.
Table 1 lists fVSS’ parameters, which will be introduced
throughout this section.

The main novelty in fVSS is that, to optimize shared data
volume and thus cost, we share a piece of data fewer than
n times. For example, in Figure 3 where n = 5, record
#124 of table PRODUCT is only shared at CSP1, CSP3 and
CSP5, which presumably feature the lowest storage costs.
To achieve this, we proceed as follows.

Suppose we want to share a piece of data djkl, e.g., the
category ID of product #124 in Figure 3(a). We also need
to share its inner signature s injkl to enforce data integrity.
To generate a polynomial of degree t, we need t − 2 more
values that we call pseudo shares. Usually, secret sharing

Table 1: fVSS parameters
Parameters Definitions

p A big prime number
n Number of CSPs
t Number of shares necessary for reconstructing original data

CSPi CSP number i
IDi Identifier number of CSPi such that p > IDi > 1
m Number of tables
Tj Table number j such that Tj = {Rj,k}k=1...rj

ETij Shared table of Tj stored at CSPi
qj Number of attributes of Tj and ETij

(not including primary key)
rj Number of records of Tj
erij Number of records of ETij such that rj ≥ erij

and
∑n
i=1 erij = (n− t+ 2) rj

Ajl Attribute number l of Tj and ETij
Rjk Record #k of Tj such that Rjk =

{
pkjk, djk1 . . . djkqj

}
ERijg Record #g of ETij such that ERijg =

{
pkijg, eijg1 . . . eijgqj

}
ERijg is shared record of Rjk if pkjk = pkijg

pkjk Primary key value of Rjk
pkijg Primary key value of ERijg. It is not encrypted.
djkl Value of Ajl of Rjk such that p > djkl ≥ 0
eijgl Share of djkl stored in Ajl of ERijg such that p > eijgl ≥ 0.
SGjk Group of CSPs that store shares of Rjk such that

SGjk ⊂ {CSPi}i=1..n and |SGjk| = n− t+ 2
UGjk Group of CSPs that do not store shares of Rjk such that

UGjk ⊂ {CSPi}i=1..n and UGjk = {CSPi}i=1..n − SGjk
RG Group of CSPs selected to reconstruct data such that

RG ⊂ {CSPi}i=1..n and |RG| = t
s injkl Inner signature of djkl such that p > s injkl ≥ 0

s routijuv Outer record signature number v, level u of ERijg in ETij
stored at CSPi

s toutiuv Outer table signature number v, level u of ETij stored
at CSPi

wi Maximum number of child nodes in CSPi’s outer
signature tree

ProNo ProName ProDescr CategoryID UnitPrice
124 Shirt Red 1 75
125 Shoe NULL 2 80
126 Ring NULL 1 80

(a) Original data

ProNo Share location
124 10101
125 01110
126 11010

(b) Indices on index server

ProNo ProName ProDescr CategoryID UnitPrice
124 {6,5,3,11,7} {10,5,8} 1 6
126 {10,3,6,12} NULL 2 45

(c) Shares at CSP1

ProNo ProName ProDescr CategoryID UnitPrice
125 {6,5,4,5} NULL 2 5
126 {2,6,11,10} NULL 6 8

(d) Shares at CSP2

ProNo ProName ProDescr CategoryID UnitPrice
124 {6,6,5,7,9} {12,8,1} 4 7
125 {6,5,8,3} NULL 9 11

(e) Shares at CSP3

ProNo ProName ProDescr CategoryID UnitPrice
125 {9,15,13,8} NULL 12 7
126 {2,7,6,9} NULL 12 1

(f) Shares at CSP4

ProNo ProName ProDescr CategoryID UnitPrice
124 {5,9,11,1,5} {10,6,7} 8 13

(g) Shares at CSP5

Figure 3: Sample original and shared data

schemes use random polynomials. In contrast, we construct
a polynomial by Lagrange interpolation using djkl, s injkl
and the t − 2 pseudo shares. Then, we can share djkl and
s injkl at n−t+2 CSPs. Figure 4 plots an example where t =
4. Shares e1jgl, e2jgl and e3jgl are created from polynomial
fjkl(x) of degree t− 1 = 3.

To reconstruct djkl, let us assume we select the following
set of t CSPs: RG = {CSP1, CSP2, CSP4, CSP5}. Then, if
eijgl is stored at CSPi, it is used for reconstruction. Oth-
erwise, the corresponding pseudo share is used instead. To
ease this operation, bitmaps representing where shares are
stored are maintained in the index server(s). For example,
the bitmap corresponding to product #124 in Figure 3 is
10101, with a 1 value at position #i representing share stor-
age at CSPi.

The remainder of this section details the sharing and re-
construction processes (Section 3.2), our novel outer signa-
tures (Section 3.3) and the way we share data warehouses

x

y = fjkl(x)

1 2 3 4 5 6 7 8

H
F1

(I
D2

)

.e2jgl
Share

H
F1

(Kd
)

.djkl
Data

H
F1

(I
D1

)

.e1jgl
Share

H
F1

(K
s
)

. s injkl = HE1(djkl)
Inner signature

H
F1

(I
D4

)

.HE2(pkjk, ID4))
Pseudo share

H
F1

(I
D5

)

.HE2(pkjk, ID5))
Pseudo share

H
F1

(I
D3

)

.e3jgl
Share

20

40

60

80

100

120

140

Figure 4: Sample sharing process

(Section 3.4), achieve loading, backup and recovery pro-
cesses (Section 3.5) and perform OLAP operations (Sec-
tion 3.6).

3.2 Data Sharing and Reconstruction
In fVSS, DB attribute values, except NULL values and

primary or foreign keys, are encrypted and shared in rela-
tional DBs at CSPs’. Keys help match records in the data
reconstruction process and perform join and grouping oper-
ations. Any sensitive primary key, such as a social security
number, is replaced by an unencrypted sequential integer
key.

Each value djkl of attribute Ajl in record Rjk from ta-
ble Tj is encrypted into n − t + 2 shares generated from a
polynomial fjkl(x) of degree t−1 created by Lagrange inter-
polation from djkl, its inner signature s injkl, the identifier
numbers IDi of the CSPs selected to store the shares (this
set of CSPs is denoted SGjk), and two generated keys Kd

and Ks for data and signatures, respectively. The inner sig-
nature we use is very similar to that of [2]. It is created from
djkl by homomorphic encryption [7]. s injkl matches with
djkl in the reconstruction process only if CSPs in RG return
correct shares.

3.2.1 Initialization Phase

1. Set values of p (a big prime number), n and t.

2. Define one-variable hash functionHF1(a) where a is an
integer and hash values HF1(a) must be small integers.

3. Define one-variable homomorphic functionHE1(h) such
thatHE1(h) and h are reals andHE1(h1)±HE1(h2) =
HE1(h1 ± h2).

4. Define two-variable homomorphic function HE2(a, b),
where HE2(a, b), a and b are reals and HE2(a1, b) +
HE2(a2, b) = HE2(a1 + a2, b).

5. Set values of CSP identifiers IDi=1..n, Kd and Ks such
that their values range in]0, p[. All HF1(IDi) must
be unique and different from HF1(Kd) and HF1(Ks).

3.2.2 Data Sharing Process
Any record Rjk is encrypted independently as follows.

1. Determine the group of CSPs SGjk that will store
Rjk’s n − t + 2 shares. Let UGjk be the group of
CSPs that do not store Rjk’s shares, i.e., UGjk =
{CSPi}i=1..n − SGjk.

2. For each attribute Ajl:

(a) Compute djkl’s inner signature:
s injkl = HE1(djkl).

(b) Create polynomial fjkl(x) of degree t − 1 by La-
grange interpolation (Equation 1):

fjkl(x) =

t∑
α=1

∏
1≤β≤t,α 6=β

x− xβ
xα − xβ

× yα (1)

where {(x1, y2), . . . , (xt, yt)} =
{(HF1(Kd), djkl), (HF1(Ks), s injkl)CSPi∈SGjk}
∪ {(HF1(IDi), HE2(pkjk, IDi))CSPi∈UGjk}.
(HF1(IDi), HE2(pkjk, IDi)) are pseudo shares.

(c) Compute the set of djkl’s n− t+ 2 shares {eijgl}.
∀CSPi ∈ SGjk: eijgl = fjkl (HF1(IDi)), with
pkjk = pkijg.

Following this routine, record Rjk is shared into n− t+ 2
records ERijg at CSPs in SGjk. The relationship between
Rjk and ERijg is maintained through primary keys pkjk =
pkijg. Finally, the bitmap corresponding to Rjk is stored in
the index server(s) at this time, knowing SGjk and UGjk.

Finally, since each data piece is shared independently, it
is easy to handle the usual data types featured in DBs. Inte-
gers, dates and timestamps can be directly shared by fVSS.
Data of other types (i.e., reals, characters, strings and bi-
nary strings) are first transformed into integers before being
shared [2].

3.2.3 Data Reconstruction Process
Any attribute value djkl is reconstructed as follows.

1. Select t CSPs to form reconstruction group RG.

2. For each CSPi ∈ RG, if outer data verification (Sec-
tion 3.3) outputs an error, replace CSPi by another
CSP selected from {CSPi}i=1..n −RG.

3. For each CSPi ∈ SGjk ∩ RG, load share eijgl into yi
where pkjk = pkijg.

4. For each CSPi ∈ UGjk ∩ RG, compute pseudo share
yi = HE2(pkjk, IDi).

5. Create polynomial fjkl(x) of degree t−1 (Equation 1)
with xi = HF1(IDi).

6. Compute value djkl = fjkl(HF1(Kd)).

7. Compute inner signature s injkl = fjkl(HF1(Ks)).

8. Verify djkl’s correctness: if s injkl 6= HE1(djkl), then
restart reconstruction process at step #1 with a new
RG.

3.2.4 Recapitulative Example
Let us refer back to Figure 4, where n = 5 and t = 4. The

set of CSPs selected for sharing an attribute value djkl is
SGjk = {CSP1, CSP2, CSP3}. Thus, UGjk = {CSP4, CSP5},
from which pseudo sharesHE2(pkjk, IDi)i∈{4,5}, where pkjk
is the primary key value of record Rjk, are computed. Poly-
nomial fjkl(x) is created by Lagrange interpolation from
djkl, its inner signature s injkl, pseudo shares and keys Kd

andKs. Then shares of djkl are: eijgl = fjkl(H1(IDi))i∈{1,2,3}.

Assuming the set of t CSPs selected for reconstruction
is RG = {CSP1, CSP2, CSP4, CSP5}, djkl is reconstructed
from shares eijgl i∈{1,2} (since CSP1, CSP2 ∈ SGjk) and
pseudo shares HE2(pkjk, IDi)i∈{4,5} (since CSP4, CSP5 ∈
UGjk).

3.3 Outer Signatures
Outer data verification helps determine whether data in-

tegrity is compromised by CSPs (willingly or not). For this
sake, we propose two new types of outer signatures: record
and table signatures (whereas [2] uses an attribute value-
level signature).

Moreover, we also propose a tree data structure to effi-
ciently exploit outer signatures (Figure 5). Signature trees
are stored at CSPs’. The maximum number of child nodes
in the signature tree at CSPi is denoted wi. Each signature
tree is constituted of two subtrees: a table signature tree and
record signature subtree. Leaf nodes of the record signature
tree are record signatures. Higher-level nodes represent the
signatures of record clusters, until the root, which is a table
signature and thus a leaf of the table signature tree. Sim-
ilarly, higher level nodes represent the signatures of table
groups, until the root, which stores the whole DB’s signa-
ture.

Table ETi,1

Table ETi,2

...
Table ETi,m−1

Table ETi,m

P.Keys Am1 · · · Amqm

pkim1 eim11 · · · eim1qm

.

.

.
.
.
.

. . .
.
.
.

pkimerim
eimerim1 · · · eimerimqm

s touti01

s routim01

s routim11

s routim0rm

s touti0m or
s routimurm where

u = dlogw rme

s touti11
s touti21

s toutiv1
where

v = dlogwme

︸ ︷︷ ︸
Record signature

trees

︸ ︷︷ ︸
Table signature

tree︸ ︷︷ ︸
Outer signature tree

Record signature

Table Signature

Figure 5: Outer signature tree at CSPi

Signatures are checked before reconstructing data (Section
3.2.3). Data integrity can also be verified on-demand. Outer
record signatures are created with the help of user-defined
one-way functions HF∗i(h). Shared record ERijg passes
integrity check if s routij0g = HF∗i(ERijg).

Similarly, shared table ETij passes integrity check if s touti0j
= HE∗i(

∑erij
g=1 HF∗i(ERijg)), whereHE∗i(h) are homomor-

phic functions and erij is the number of records in ETij .
Thanks to the homomorphism property [7], all tables are
correct if a signature stored in a root node equals the sum
of the signatures stored in all its child nodes. This al-
lows directly checking a set of records or tables through
one node only, and thus speeds up data integrity verifica-
tion. Moreover, in case of error, we can also discover where
the integrity breach is by testing whether each node re-
spects s outiuv = HE∗i(

∑v×wi
a=(v−1)×wi

s outi(u−1)a), where

s outiuv may either be a record or a table outer signature,
u > 0 is a level number and v a node number in level u.

Finally, note that the signature tree’s root level is ur =
dlogwi

me+dlogwi
max(erij)j=1···me−1, the table signature

tree’s leaf level is ut = ur − dlogwi
me and the record signa-

ture tree’s leaf level is ut − dlogwi
erije+ 1.

3.3.1 Setup
For each CSPi, the following parameters must be user-

defined.

1. Determine wi.

2. Define one-way function HF∗i(ERijg).

3. Define homomorphic function HE∗i(h), where
HE∗i(h1)±HE∗i(h2) = HE∗i(h1 ± h2).

3.3.2 Shared Table Creation
Whenever a new table ETij is created at CSPi, the table

signature tree is updated from leaf to root as follows.

1. Compute ETij ’s table signature s touti0j = HF∗i(0)
and store it in a new right-most leaf node of the table
signature tree.

2. Recursively create new parent nodes (u, v) up to the
root of the table signature tree such that
u = 1 . . . dlogwi

je and v = dj/(wi)ue.

(a) If the right-most node at level u bears the maxi-
mum number of children, i.e., v = (j−1) mod (wi)

u,
insert a new right-most parent node (u, v) with
value s touti0j .

(b) If there is no node at level u such that j = (wi)
u−1

+1, insert a new root node (u, 1) with value
s toutiu1 = s touti(u−1)1.

(c) Otherwise, stop recursion.

3.3.3 Shared Record Insertion
Whenever a new record ERijg is inserted into shared table

ETij , the outer signature tree is updated from leaf to root
as follows.

1. Compute record signature s routij0g = HF∗i(ERijg)
and store it in a new right-most leaf node of ETij ’s
record signature tree.

2. Recursively insert or update parent nodes (u, v) up
to the root of ETij ’s record signature tree such that
u = 1 . . . dlogwi

ge and v = dg/(wi)ue.

(a) If the right-most node at level u bears the maxi-
mum number of children, i.e., v = (g−1) mod (wi)

u,
insert a new right-most parent node (u, v) with
value s routij0g.

(b) If there is no node in level u such that g = (wi)
u−1

+1, insert a new root node (u, 1) with value
s routiu1 = HE∗i(s routij(u−1)1 + s routij0g).
Compute signature change before and after inser-
tion: ∆ = HE∗i(s routij(u−1)1 − s routij0g).

(c) If root node has been reached, compute signature
change before and after insertion:
∆ = HE∗i(s routijuv − s routij0g). Then, up-
date the root node’s value to HE∗i(s routijuv +
s routij0g).

(d) Otherwise, update the parent node’s signature
s routiuv with HE∗i(s routijuv + s routij0g).

3. Starting from the root of ETij ’s record signature tree,
which is also leaf s touti(0)j of the corresponding ta-
ble signature tree, recursively update parent nodes up
to the root of the table signature tree such that u =
1 . . . dlogwi

me and v = dj/(wi)ue. Then, update table
signature s toutiuv to HE∗i(s toutiuv + ∆).

An example of outer signature tree update is provided in
Figure 6. Record ERi(3)(10) is a new record; all white nodes
are updated or inserted.

1 2 3 4 5 6 7 8 9

1 2 3 4 ⇒

1 2 3 4 5 6 7 8 9 10

s douti(0)(10)

s douti(1)(4)

s douti(2)(2)

s douti(3)(1)

s touti(0)(3)
1 2 4

s touti(2)(1)

s touti(3)(1)

Figure 6: Sample outer signature tree update

3.3.4 Shared Record Update
Whenever a record ERijg is updated in shared table ETij ,

the outer signature tree is updated from leaf to root as fol-
lows.

1. Compute signature change before and after insertion:
∆ = HE∗i(s routij0g −HF∗i(ERijg).

2. Recursively update nodes (u, v) up to the root of ETij ’s
record signature tree such that u = 0 . . . dlogwi

erije
and v = dg/(wi)ue. Update s routijuv to
HE∗i(s routijuv + ∆).

3. Starting from the root of ETij ’s record signature tree,
recursively update parent nodes up to the root of the
table signature tree such that u = 1 . . . dlogwi

me and
v = dj/(wi)ue. Update table signature s toutiuv to
HE∗i(s toutiuv + ∆).

3.4 Sharing Data Warehouses
Since each table of a shared DW is stored in a relational

database at a given CSP’s and each attribute value in each
record is encrypted independently, our approach straight-
forwardly helps implement any DW logical model, i.e., star,
snowflake and constellation schemas. A shared DW bears
the same schema as the original DW’s. However, all en-
crypted attributes are transformed into reals by the sharing
process (Section 3.2).

Finally, to improve query performance, computation and
data transfer costs when performing Relational OLAP (RO-
LAP) operations, we use indices and cloud cubes, which are
described below.

3.4.1 Indices
We exploit three types of indices, which are all created at

data-sharing time. In addition to so-called Type I indices
used in the reconstruction process (Section 3.2), Type II
and III indices are specifically aimed at enhancing query
performance and thus computation cost.

Type II indices are customarily used by the second family
of secret sharing approaches (Section 2 [11, 13, 21]). They
allow computing exact match, range and aggregation (e.g.,

MAX, MIN, MEDIAN and COUNT) queries, without recon-
structing data, with the help of B++ trees. Type II indices
are independently stored in the index server(s).

Type III indices help compute aggregate functions such as
variance and standard deviation, as well as multiplications
and divisions between two attributes, without reconstruct-
ing data. Type III indices are stored as extra attributes in
shared tables. Let us illustrate why they are needed through
examples. To compute the variance and standard deviation
over an attribute X, X2 values are needed. Then, either we
reconstruct (i.e., decrypt) all values of X, or we share X2

values in a new attribute, i.e., a Type III index, and compu-
tation can operate directly on shares. Similarly, computing
SUM(X × Y) or SUM(X ÷ Y) requires sharing X × Y and
X ÷ Y as Type III indices, respectively, because homomor-
phism properties only work for summation and subtraction.

3.4.2 Cloud Cubes
As in [2], our approach supports the storage of data cubes

that optimize response time and bandwidth when perform-
ing ROLAP operations. In addition, in this work, cubes are
directly created in the cloud and refreshed through shares
and indices only.

Since cloud cubes are built from shares, they are physi-
cally stored into tables that must be shared at all n CSPs,
because pseudo shares are not available. In addition to cus-
tomary dimension references and aggregate measures, they
can include additional attributes that actually are embedded
Type III indices. For example, suppose we need to compute
the average of measure M from a cube. Then SUM(M)
and COUNT(M) must be stored in the cube too, to allow
computations on shares without reconstruction.

Figure 7 features a cloud cube named Cube-I that sums
total prices and numbers of sales by time period and by
product. As is customary, NULL values are used to encode
superaggregates. All aggregate measures can be queried di-
rectly from Cube-I without reconstruction.

3.5 Backup, Recovery and Load processes
In our approach, as in all secret sharing approaches, back-

ups are unnecessary because each shared table ETij is ac-
tually a backup share of all other shared table ETia, where
a ∈ 1, . . . , j − 1, j + 1, . . . , n. In case shared tables or shared
records are detected as erroneous by outer signature verifica-
tion (Section 3.3), their can be recovered from t other shared
tables.

Loading new data into an existing shared DW does not re-
quire decrypting previous data first, because each attribute
value in each record is encrypted independently. For in-
stance, in Figure 8, data from Figure 3 are already shared
and the last record (#127) is new. After each new shared
record is loaded, the outer signature tree must be updated
(Section 3.3), and indices and possible cloud cubes refreshed.

Cloud cube refreshment requires further attention. When
updating cubes, aggregates can be updated from shares and
indices. There are three cases.

For aggregations by, e.g., MAX and MIN operators, the
primary key of aggregates is discovered from a Type II index.
Then, at each CSP’s, the share corresponding to the primary
key is updated in the cloud cube. In case no corresponding
share is found at that CSP’s, the shared cube is updated
from a pseudo share with the help of a Type I index.

For COUNTs, aggregates can be easily found from a Type II

Foreign Keys︷ ︸︸ ︷ (Shares)
Time Attributes Product Attributes Aggregation Attributes︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

YearID MonthID DateID CategoryID ProdNo TotalPrice Number
NULL NULL NULL NULL NULL 83231 58244
NULL NULL NULL 1 NULL 26701 18254
NULL NULL NULL 1 1 8958 7113

NULL NULL NULL 1
...

...
...

NULL NULL NULL 1 2 4348 1844

NULL NULL NULL
...

...
...

...
1 NULL NULL NULL NULL 44574 54542
1 NULL NULL 1 NULL 21158 8954
1 NULL NULL 1 1 9754 4544

1 NULL NULL 1
...

...
...

1 NULL NULL 2 1 18444 5747

1 NULL NULL
...

...
...

...
1 1 NULL NULL NULL 8312 5812
1 1 NULL 1 NULL 2312 1822
1 1 NULL 1 1 988 586

1 1 NULL 1
...

...
...

1 1 NULL 2 1 756 458

1 1 NULL
...

...
...

...
1 2 NULL NULL NULL 9758 6254

1
... NULL

...
...

...
...

1 1 1 NULL NULL 2578 1587
1 1 1 1 NULL 548 425
1 1 1 1 1 56 24

1 1 1 1
...

...
...

1 1 1 1 2 95 67

1 1 1 1
...

...
...

1 1 1 2 NULL 689 357

1 1
...

...
...

...
...

...
...

...
...

...
...

...

Figure 7: Sample cloud cube Cube-I

ProNo ProName ProDescr CategoryID UnitPrice
124 Shirt Red 1 75
125 Shoe NULL 2 80
126 Ring NULL 1 80
127 Hat NULL 3 5

(a) Original data

ProNo Share location
124 10101
125 01110
126 11010
127 00111

(b) Type I indices

ProNo ProName ProDescr CategoryID UnitPrice
124 {6,5,3,11,7} {10,5,8} 1 6
126 {10,3,6,12} NULL 2 45

(c) Shares at CSP1

ProNo ProName ProDescr CategoryID UnitPrice
125 {6,5,4,5} NULL 2 5
126 {2,6,11,10} NULL 6 8

(d) Shares at CSP2

ProNo ProName ProDescr CategoryID UnitPrice
124 {6,6,5,7,9} {12,8,1} 4 7
125 {6,5,8,3} NULL 9 11
127 {7,2,9} NULL 5 2

(e) Shares at CSP3

ProNo ProName ProDescr CategoryID UnitPrice
125 {9,15,13,8} NULL 12 7
126 {2,7,6,9} NULL 12 1
127 {13,8,3} NULL 4 9

(f) Shares at CSP4

ProNo ProName ProDescr CategoryID UnitPrice
124 {5,9,11,1,5} {10,6,7} 8 13
127 {7,17,4} NULL 2 9

(g) Shares at CSP5

Figure 8: Example of sharing new data

index and reconstructed. Then, the aggregates can be up-
dated and shared back into the cloud cube [16].

For SUMs, thanks to the homomorphism property, aggre-
gates can be updated from cloud cubes by summing shares
and pseudo shares. For example, to update SUM(X) at
CSPi, the new aggregate is the sum of shares and pseudo
shares (Equation 2, where SUMCSPi(X) is trivially com-
puted at CSPi and SUMindex(PKi) is computed with the
help of a Type I index).

SUM(X) = SUMCSPi(X) +HE2(SUMindex(PKi), IDi)
(2)

Finally, more complex aggregations require combining the
above cases. For example, SUM(X ± Y) is updated from
shares and pseudo shares by Equation 3.

SUM(X ± Y) = SUMCSPi(X + Y)
+2×HE2(SUMindex(PKi), IDi)

(3)

3.6 Querying a Shared Data Warehouse
Simple SELECT/FROM queries directly apply onto shares,

as well as summing positive integer attributes. All join op-
erators, when operating on unencrypted keys, also apply
directly. When expressing conditions in a WHERE or HAV-
ING clause, Type II indices must be used [11, 13, 21]. Al-
most all comparison operators (=, 6=, EXISTS, IN, >, ≥,
<, ≤, BETWEEN...) can be evaluated against such B++
index trees.

Similarly, aggregation functions such as MAX, MIN and
COUNT can directly apply on shares with the help of Type II
indices [11, 13, 21]. In contrast, a SUM must combine rel-
evant aggregates of shares and pseudo shares (as in Equa-
tion 2) with an external program before reconstruction.

Other aggregation functions must be computed by an ex-
ternal program after reconstructing relevant aggregates from
shares and pseudo shares. Average, variance and standard
deviation are computed as in Equations 4, 5 and 6, respec-
tively, where X2 is a Type III index.

AV G(X) = DC(SUM(X))/DC(COUNT (X)) (4)

V AR(X) = DC(SUM(X2))
DC(COUNT (X))

+ DC(SUM(X))2

DC(COUNT (X))2
(5)

STDDEV (X) =
√

DC(SUM(X2))
DC(COUNT (X))

+ DC(SUM(X))2

DC(COUNT (X))2

(6)
When aggregating calculated fields, multiplication and di-

vision can be performed directly from Type III indices. How-
ever, summation and subtraction between two attributes
must combine relevant aggregates of shares and pseudo shares
with an external program before reconstruction. Aggregates
at CSPi compute as in Equation 3.

Finally, grouping queries using the GROUP BY or GROUP
BY CUBE clauses can directly apply on shares if they tar-
get unencrypted key attributes. Again, grouping by other
attribute(s) requires the use of a Type II index.

Consequently, executing some queries may require either
transforming or splitting the query, depending on its clauses
and operators, following the above guidelines. Figure 9
shows a sample query and the way it runs at the user’s,
at one index server and at CSP1 (query processing at other
index servers and CSPs is similar). For clarity, the user, in-
dex server and CSP are denoted U, IS and CSP, respectively
in Figure 9.

Finally, our approach directly supports all basic OLAP
operations by directly querying cloud cubes and reconstruct-
ing the global result. For example, the total price and the
number of products per year can be queried from Cube-I by
query:
”SELECT YearID, YearName, TotalPrice, Number

FROM Cube-I, year

WHERE Cube-I.YearID = year.YearID AND MonthID IS NULL

AND DateID IS NULL AND CategoryID IS NULL AND Prod-

No IS NULL”.
To drill down to total price and number of products per
month in 2014, the previous query becomes:
”SELECT YearID, YearName, Month, TotalPrice, Number

FROM Cube-I, year, month

WHERE Cube-I.YearID = year.YearID AND Cube-I.MonthID =

Month.MonthID AND Cube-I.YearID = 2014 AND DateID IS

NULL AND CategoryID IS NULL AND Prod-No IS NULL”.

SELECT SUM(S.price+S.tax) AS sumprice, P.prodName
FROM Sale AS S JOIN Product AS P ON S.ProdNo=P.ProdNo
JOIN Date AS D ON S.DateKey=D.DateKey
WHERE D.Date BETWEEN ’2014-01-01’ AND ’2014-01-15’
GROUP BY P.prodName

(a) Original query

1. (IS) Match DateKey in Type II index with condition
D.Date BETWEEN ’2014-01-01’ AND ’2014-01-15’.
Let DK be the resulting set.

2. (U) Query-I is created to run at each CSP’s:
SELECT P.prodNo, P.prodName,
SUM(S.price+S.tax) AS sumprice
FROM Sale AS S JOIN Product AS P
ON S.ProdNo=P.ProdNo
WHERE S.Datekey IN (DK)
GROUP BY P.ProdNo

3. (CSP) Execute Query-I. W.r.t. Figure 8, result is:
{ {124, {6, 5, 3, 11, 7}, 789},
{126, {10, 3, 6, 12}, 945} }.

4. (U) Query-II is created to run on Type I index:
SELECT prodNo, SUM(OrderNo) AS sumPK,
FROM Sale
WHERE Datekey IN (DK)
GROUP BY ProdNo

5. (IS) Execute Query-II. Let us denote the results
sumPKpi, where sumPKpi is sumPK’s value for
product p and its CSPi pseudo share.

6. (U) Reconstruct each record (prodName, sumprice)
in the query result. For example, to reconstruct
record prodNo=124:
CSP1 share of prodName is {6, 5, 3, 11, 7} and
CSP1 aggregate of sumprice is
789 + 2×HE2(sumPK(124)(1), ID1) (Equation 3).

(b) Execution steps

Figure 9: Sample query rewriting

4. COMPARATIVE STUDY
In this section, we compare fVSS to the related approaches

presented in Section 2, with respect to security and cost
in the pay-as-you-go paradigm, global cost being customar-
ily divided into storage, computing and data transfer costs.
Table 2 synthesizes the features and complexities of all ap-
proaches, which we discuss below.

4.1 Data Security Features
By data security, we mean data privacy, availability and

integrity. By design, all secret sharing-based approaches en-
force privacy by guaranteeing shares cannot be decrypted
by a single CSP or an intruder who would hack a CSP. Ac-
tually, a coalition or the compromise of at least t CSPs is
necessary to break the secret. Privacy is further improved
in fVSS, because data is not shared at all CSPs’, but only
n− t+ 2. Thence, fVSS imposes a new constraint: no CSP
group can hold enough shares to reconstruct the original
data if n < 2× t− 2. Indeed, n < 2× t− 2⇔ n− t+ 2 < t,
i.e., the number of shares is lower than the number of shares
necessary for reconstruction.

With respect to availability, all secret sharing-based approa-
ches, still by design, allow reconstructing the secret, i.e.,
query shares, when n − t CSPs fail. However, to the best
of our knowledge, only fVSS allows updating shares in case

Table 2: Comparison of database sharing approaches
Features and costs [1] [2] [8] [9] [11] [12, 13] [19] [21] fVSS
Data privacy Yes Yes Yes Yes Yes Yes Yes Yes Yes
Data availability Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ability in case CSPs
fail, to
- Query shares Yes Yes Yes Yes Yes Yes Yes Yes Yes
- Update shares No No No No No No No No Yes
Data integrity
- Inner code verifying No Yes No No No No Yes Yes Yes
- Outer code verifying No Yes No No No No No No Yes
Target DBs DWs DWs DBs DBs DBs DBs DBs DWs
Data sources Single Single Multi Multi Single Single Single Single Single
Data types Positive Integers, Positive Integers Integers Positive Positive Positive Integers,

integers Reals, integers integers integers integers Reals,
Characters, Characters,
Strings, Strings,
Dates, Dates,

Booleans Booleans
Shared data access
- Updates No Yes No Yes Yes Yes Yes Yes Yes
- Exact match queries No Yes Yes Yes Yes Yes No Yes Yes
- Range queries No No Yes Yes Yes Yes No Yes Yes
- Aggregation queries Yes Yes Yes Yes Yes Yes Yes No Yes

on one attribute
- Aggregation queries No No No No No No No No Yes

on two attributes
- Grouping queries No Yes No No No No No No Yes
Complexity
- Data storage w.r.t. ≥ n ≥ n/ (t− 1) ≥ 2n ≥ 2n ≥ n ≥ n ≥ 2n ≥ n/t ≥ n− t+ 2

original data volume + signatures +1 (B++ tree) +1 (hash tree) +n/t (B++ tree) +1 (B++ tree)
+ signatures + signatures

- Sharing time O (σnt) O (σnt) O (σnt) O (σnt) O (σnt) O (σnt) O (σnt) O (max (σ log σ, σn)) O (σt (n− t))
- Reconstruction time O

(
γt2

)
O

(
γt2

)
O

(
γt2

)
O

(
γt2

)
O

(
γt2

)
O

(
γt2

)
O

(
γt2

)
O (γt) O

(
γt2

)

of CSP failure(s), simply by not selecting the failing CSP(s)
for sharing new data. This is again possible because data is
shared at n− t+ 2 CSPs instead of n.

Finally, to enforce integrity, only [2] and fVSS verify both
the correctness of shares and the honesty of CSPs by outer
and inner code verification, respectively. Only two other ap-
proaches use inner code verification alone. The novelty of
fVSS is that outer signatures are computed at the record
and table granularity, instead of the attribute value’s, which
allows faster verification, e.g., when checking one table sig-
nature instead all signatures of one or several attributes in
said table.

4.2 Storage Cost
Storage cost directly depends on shared data volume, which

in turn depends on parameters n and t. Figure 10 plots the
volume of shared data for all studied approaches, expressed
as a multiple of original data volume V , with respect to n,
with t = n in the upper graph and t = 3 in the lower graph.
Figure 10 shows that fVSS help control shared data volume
better than most existing approach, and is close to the best
approaches [2, 21] in this respect.

However, storage cost does not only depend on the global
volume of shares. Since fVSS allows selecting the data vol-
ume shared at each CSP, it can be differentiated to benefit
from different pricing policies. Let us illustrate this through
an example. Let n = 5, t = 4 and V = 100 GB. CSP pricing
policies for this range of data volume are depicted in Table 3.
Prices are real prices from CSPs such as Amazon web ser-
vices, Windows azure and Google compute engine. Finally,
let us assume that each individual share is not bigger than
the original data it encrypts, e.g., a shared integer is not big-
ger than the original unencrypted integer. We also disregard
index and signature volume, which depends on user-defined
parameters in all approaches, for the sake of simplicity.

Table 3: CSP pricing policies
CSP1 CSP2 CSP3 CSP4 CSP5

Storage ($/GB/month) 0.030 0.040 0.053 0.120 0.325

sVM CPU time ($/h) 0.013 0.059 0.058 0.060 0.070
mVM CPU time ($/h) 0.026 0.079 0.115 0.120 0.140
lVM CPU time ($/h) 0.053 0.120 0.230 0.240 0.280

Table 4 features a storage cost comparison of all studied
approaches. The first line relates to unencrypted data stored
at one CSP, for reference. Global share volume is computed
with respect to data storage complexities (Table 2). Stor-
age cost is the sum of data volumes stored at each CSPi
times CSPi’s storage price. We included two strategies for
fVSS. In fVSS-I, data are equitably shared among CSPs. In
fVSS-II, data are preferentially shared at CSP1, CSP2 and
CSP3, which are the cheapest. Results clearly show that
fVSS-II achieves a much lower cost than fVSS-I. Moreover,
even though global share volume with fVSS-II is significantly
larger that with the most efficient previous approaches [2,
21], final cost is comparable, and even a little lower. How-
ever, [21] is not applicable in our context since it does not
allow aggregation queries. It is thus discarded in the follow-
ing.

Table 4: Storage cost comparison

Approach
Share volume (GB)

Storage cost ($)
Global per CSP

Unencrypted data 100 100 3 to 32.5
[8, 9, 19] 1,000 200 113.60

[1, 11, 12, 13] 500 100 56.80
[2] 167 34 19.31
[21] 125 25 14.77

fVSS-I 300 60 34.08

fVSS-II 300
99.8 + 99.8 + 99.8

12.39
+ 0.4 + 0.2

n

Share volume

.
.

.
.

.

*
*

*
*

*

x x x x xo o o o o
� � � � �

3 4 5 6 7
0V

2V

4V

6V

8V

10V

12V

14V

16V

n

Share volume

.
.

.
.

.

*
*

*
*

*

x x x x x
o o o o o
�

�
�

�
�

3 4 5 6 7
0V

2V

4V

6V

8V

10V

12V

14V

16V

• [8, 9, 19] ∗ [1, 11, 12, 13] o [2] x [21] � fVSS

Figure 10: Storage complexity comparison

4.3 Computing Cost

4.3.1 Sharing Cost
The sharing process time complexity (Table 2) depends on

n, t and σ, which is the number of shared data pieces, i.e.,
individual attribute values. Since σ is normally much bigger
than n and t, σ log σ > σnt > σt(n − t) > σn. Moreover,
the number of CSPs where records are shared is n− t+ 2 in
fVSS and n in all other approaches. If t ≥ 2, which is quite
probable, n− t+ 2 ≤ n. Thus, we expect fVSS to be faster
than previous approaches when sharing data.

Let us illustrate this through an example. Let n = 5, t = 4
and σ = 1015. CSP pricing policies are depicted in Table 3,
where sVM, mVM and lVM stand for small, medium and
large virtual machine, respectively. Let us assume that the
computing powers of sVMs, mVMs and lVMs are 1× 1010,
2×1010 and 4×1010 records per second, respectively. Virtual
machine size is assigned to each CSP with respect to the
number of records to share at that CSP.

Table 5 features a sharing cost comparison of all stud-
ied approaches but [21]. Sharing time is the number of
processed records divided by the virtual machine’s power.
CPU cost is the sum of sharing times at each CSPi times
CSPi’s computing price. Results show that both fVSS-I and
fVSS-II have a cheapest sharing process than all existing ap-
proaches, even though fVSS-I bears the longer sharing time.
They also outline again the advantage of unbalancing the
volume of shares at CSPs, which helps decrease cost by a
factor 2.3 with respect to state-of-the-art approaches in this
example.

4.3.2 Data Access Cost
Query response time, which is critical in an OLAP con-

text, directly depends on the reconstruction process time
complexity, which in turn depends on t and the number

Table 5: Sharing cost comparison
Approach

#records at
VM type

Sharing time CPU cost
each CSP (h:mm) ($)

Unencrypted data at 1 CSP 1015 lVM 6:57 0.36 to 1.94

[1, 2, 8, 9, 11, 12, 13, 19] 1015 lVM 6:57 6.40

fVSS-I 6× 1014 mVM 8:20 4.40

fVSS-II

9.98× 1014 lVM 6:56

2.80
9.98× 1014 lVM 6:56
9.98× 1014 lVM 6:56 ⇐= 6:56

4× 1012 sVM 0:07
2× 1012 sVM 0:04

of records in the query response, γ (Table 2). All secret
sharing approaches bear the same reconstruction complex-
ity but [21]. However, this approach cannot compute ag-
gregations on shares, implying all records involved in aggre-
gations must be reconstructed at the user’s, which is more
costly than computing the aggregation on shares and only
reconstruct the result. Moreover, we expect fVSS to be more
efficient than previous approaches because we can directly
perform all query types on shared DWs and cubes, in paral-
lel, whereas other approaches cannot and must reconstruct
bigger datasets before processing them at the user’s.

Let us illustrate this through an example. Let n = 5, t =
4. Let us assume we run a query matched by 10% of records,
i.e., γ = 1014, and RG = {CSP1, CSP2, CSP4, CSP5}. CSP
pricing policies and virtual machine power are the same as
in Section 4.3.1.

Table 6 features a data access cost comparison of all stud-
ied approaches but [21]. Response time is the number of pro-
cessed records divided by the virtual machine’s computing
power. CPU cost is the sum of response times at each CSPi
times CSPi’s computing price. Results show again that,
even though response time is comparable for all approaches,
fVSS allows much lower costs, especially when unbalanc-
ing the volume of shares at CSPs in fVSS-II, which helps
decrease cost by a factor 4 with respect to state-of-the-art
approaches in this example.

Table 6: Data access cost comparison
Approach

#records at
VM type

Response time CPU cost
each CSP (h:mm) ($)

Unencrypted data at 1 CSP 1014 lVM 0:42 0.04 to 0.20

[1, 2, 8, 9, 11, 12, 13, 19] 1014 lVM 0:42 0.48

fVSS-I 6× 1013 mVM 0:50 0.30

fVSS-II

9.98× 1013 lVM 0:42

0.12
9.98× 1013 lVM 0:42

0 — 0:42 ⇐= 0:00
4× 1011 sVM 0:01
2× 1011 sVM 0:01

4.4 Data Transfer Cost
Data transfer cost directly relates to the size of query re-

sults when accessing the shared DW. Since all approaches
allow different operations and vary in share volume, it is dif-
ficult to compare data transfer cost by proof. However, to
reduce data transfer cost, fVSS allows several aggregation
operators running on shares. Moreover, by creating shared
data cubes, we allow straight computations on shares, and
thus only target results are transferred to the user, i.e., with
no additional data reconstruction, and thus no stored data
transfer.

5. CONCLUSION AND PERSPECTIVES
In this paper, we propose a new approach for securing

cloud DWs, which simultaneously supports data privacy,

availability, integrity and OLAP. Our approach builds upon
fVSS, which is to the best of our knowledge the first flexible
secret sharing that allows users adjusting share volume with
respect to CSP pricing polices. Our experiments show that
unbalancing share volume at CSPs allows significantly min-
imizing storage and computing costs in the pay-as-you-go
paradigm. Privacy and availability are achieved by design
with secret sharing, but fVSS achieves a higher security level
and allows DW refreshing even when some CSPs fail. Fi-
nally, data integrity is reinforced with both inner and outer
signature that help detect errors in query results and shares,
respectively.

Future research shall run along three lines. First, we plan
to further assess the cost of our solution in the cloud pay-
as-you-go paradigm. We especially plan to balance the cost
of our solution against the cost of risking data loss or theft.
Moreover, since CSP pricing and servicing policies are likely
to evolve quickly, we aim at designing a method for adding
and removing CSPs to/from the CSP pool, with the lowest
possible update costs and while preserving data integrity.
Second, we aim at designing a tool that semi-automatically
helps users adjust the volume of shares at each CSP’s, with
respect to cost, but also quality of service. Finally, we also
work on share storage management, to optimize query per-
formance and reduce both response time and computing
cost.

6. REFERENCES
[1] D. Agrawal, A. E. Abbadi, F. Emekci, and

A. Metwally. Database management as a service:
challenges and opportunities. In 25th IEEE
International Conference on Data Engineering (ICDE
2009), Shanghai, China, pages 1709–1716, 2009.

[2] V. Attasena, N. Harbi, and J. Darmont. A novel
multi-secret sharing approach for secure data
warehousing and on-line analysis processing in the
cloud. International Journal of Data Warehousing and
Mining, 2014. (To appear).

[3] A. Beimel. Secret-Sharing Schemes: A Survey. In 3rd
International Conference on Coding and Cryptology
(IWCC 2011), Qingdao, China, pages 11–46, 2011.

[4] S. Bu and R. Yang. Novel and Effective Multi-Secret
Sharing Scheme. In 2nd International Conference on
Information Engineering and Applications (IEA
2012), Dalian, China, pages 461–467, 2012.

[5] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon,
R. Masuoka, and J. Molina. Controlling Data in the
Cloud: Outsourcing Computation without
Outsourcing Control. In 1st ACM Cloud Computing
Security Workshop (CCSW 2009), Chicago, USA,
pages 85–90, 2009.

[6] P. J. Davis. Interpolation and Approximation. Dover,
1975.

[7] D. E. R. Denning. Cryptography and data security.
Addison-Wesley, 1982.

[8] F. Emekci, D. Agrawal, and A. E. Abbadi. ABACUS:
A Distributed Middleware for Privacy Preserving
Data Sharing Across Private Data Warehouses. In 6th
International Conference on Middleware (USENIX
2005), Grenoble, France, pages 21–41, 2005.

[9] F. Emekci, D. Agrawal, A. E. Abbadi, and
A. Gulbeden. Privacy preserving query processing

using third parties. In 22nd IEEE International
Conference on Data Engineering (ICDE 2006),
Atlanta, USA, pages 27–37, 2006.

[10] Z. Eslami and J. Z. Ahmadabadi. A Verifiable
Multi-secret Sharing Scheme based on Cellular
Automata. Information Sciences, 180(15):2889–2894,
August 2010.

[11] M. A. Hadavi, E. Damiani, R. Jalili, S. Cimato, and
Z. Ganjei. AS5: A secure searchable secret sharing
scheme for privacy preserving database outsourcing. In
ESORICS DPM/SETOP 2012 International
Workshops, Pisa, Italy, pages 201–216, 2012.

[12] M. A. Hadavi and R. Jalili. Secure data outsourcing
based on threshold secret sharing: towards a more
practical solution. In VLDB 2010 PhD Workshop,
Singapore, pages 54–59, 2010.

[13] M. A. Hadavi, M. Noferesti, R. Jalili, and E. Damiani.
Database as a service: towards a unified solution for
security requirements. In 36th IEEE Annual
Conference on Computer Software and Applications
Conference Workshops (COMPSACW 2012), Izmir,
Turkey, pages 415–420, 2012.

[14] Y.-X. Liu, L. Harn, C.-N. Yang, and Y.-Q. Zhang.
Efficient (n, t, n) secret sharing schemes. Journal of
Systems and Software, 85(6):1325–1332, January 2012.

[15] R. R. Ravan, N. B. Idris, and Z. Mehrabani. A Survey
on Querying Encrypted Data for Database as a
Service. In 5th International Conference on
Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC 2013), Beijing, China, pages
14–18, 2013.

[16] A. Shamir. How to Share a Secret. Communications of
the ACM, 22(11):612–613, November 1979.

[17] B. ShanYue and Z. Hong. A Secret Sharing Scheme
Based on NTRU Algorithm. In 5th International
Conference on Wireless Communications, Networking
and Mobile Computing (WiCom 2009), Beijing,
China, pages 1–4, 2009.

[18] R. Sion. Towards Secure Data Outsourcing, pages
137–161. Handbook of Database Security. Springer,
2008.

[19] B. Thompson, S. Haber, W. G. Horne, T. Sander, and
D. Yao. Privacy-Preserving Computation and
Verification of Aggregate Queries on Outsourced
Databases. In 9th International Symposium on
Privacy Enhancing Technologies (PETS 2009),
Seattle, USA, pages 185–201, 2009.

[20] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data.
PVLDB, 6(5):289–300, March 2013.

[21] S. Wang, D. Agrawal, and A. E. Abbadi. A
comprehensive framework for secure query processing
on relational data in the cloud. In 8th VLDB
International Conference on Secure Data Management
(SDM 2011), Berlin, Germany, pages 52–69, 2011.

[22] A. Waseda and M. Soshi. Consideration for
Multi-threshold Multi-secret Sharing Schemes. In 2012
International Symposium on Information Theory and
its Applications (ISITA 2012), Honolulu, USA, pages
265–269, 2012.

