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Introduction



Clustering

The goal of clustering is to create homogeneous group of
obsevations, s.t.:

I observations within a group are as similar as possible
I groups are as different as possible from each other

The groups are called clusters.



Use of clustering

I Clustering is an unsupervised technique.
I It aims to explore the data and to discover some typical

pattern.
I It is often used as a preliminary step between supervised

approach.



Notations

I individuals (observations) are described by a set of p features
I Xi = (Xi1, . . . ,Xip) is the set of features for individual i

(1 ≤ i ≤ n)
I we have to assign each individual to on of the K clusters :

Zi ∈ {1, . . . ,K} is the cluster number of individual i
I the set (Z1, . . . ,Zn) is a partition of the n individuals into K

groups.



Distance
Historical methods are based on the notion of distance dij between
two observations Xi and Xj .

D = (dij)1≤i≤n,1≤j≤n is a matrix of distance if:

I dii = 0
I dij = dji ≥ 0 for all i 6= j
I dij ≤ dik + dkj

Examples:

I Euclidean distance:

dij = (
p∑

`=1
(xi` − xj`)2)1/2

I Manhattan distance :

dij =
p∑

`=1
|xi` − xj`|

I Mahalanobis distance (when variables are of different scales):

dij = (
p∑

`=1

1
σ2

`

(xi` − xj`)2)1/2

where σ2
` is the variance of variable `



Clustering interpretation

One the clustering is performed, results are analyzed by:

I extracting one representative per cluster (typically the cluster’s
means)

I comparing the features values among clusters

Plotting the data (thanks to PCA, MDS, t-SNE) in different colour
according to their cluser membership is often helpful



Clustering validation

I Clustering is a unsupervised technique
I No validation data set exists
I If the interpretation of clustering results improve the knowledge

about the data, clustering is successful



Comparing clustering results
For comparing two partitions Z1 = (Z11, . . . ,Z1n) and
Z2 = (Z21, . . . ,Z2n) (resulting for instance from two clustering
algo.), we use the Rand index:

R = a + d
a + b + c + d = a + d(2

n
) ∈ [0, 1]

where, among the
(2

n
)
pairs of individuals:

I a: number of pairs of individuals which are in the same cluster
in both Z1 and Z2

I b: number of pairs of individuals which are in the same cluster
in Z1 and in different clusters in Z2

I c : number of pairs of individuals which are in different clusters
in Z1 but in the same cluster in Z2

I d : number of pairs of individuals which are in different clusters
in both Z1 and Z2

\end{frame}



Exercice

Let’s compute the Rand index for (Z1,Z2) and (Z1,Z3):

I Z1 = {1, 1, 2, 2, 2}
I Z2 = {1, 2, 2, 1, 2}
I Z3 = {2, 2, 1, 1, 1}



Comparing clustering results

The adjusted Rand index (ARI), which is the corrected-for-chance
version of the Rand index, is often prefered.
library(mclust)
?adjustedRandIndex



k-means



k-means algorithm

We assume X ∈ Rp, d is the Euclidean distance, K is known.

Lloyd k-means algorithm

I init.: randomly choose K centres µk among the n observations
I while parition not stable:

I assign each observation to the cluster whose center is closest
I update the cluster means µk
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Sum-of-squares decomposition

The total sum-of-squares (T ) can be decompose as follow:

n∑
i=1

d2(Xi , µ)︸ ︷︷ ︸
T

=
K∑

k=1

∑
i=1,n:Zi =k

d2(Xi , µk)

︸ ︷︷ ︸
W (Z)

+
K∑

k=1
nkd2(µk , µ)︸ ︷︷ ︸

B(Z)

where:

I W (Z): within sum-of-squares
I B(Z) : between sum-of-squares



k-means properties

I The k-means algorithm converges

I The k-means algorithm minimizes W (Z) (and consequently
maximize B(Z))

I But it can leads to a local minimum: indeed, k-means is a
stochastic algorithm and its solution can depend on the
initialization: ⇒ multiple initialization has to be used



Choosing K

I within-sum-of-square decrease with K
I we seek for an elbow in the wihtinss plots:
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k-means in R

clus=kmeans(iris[,1:4],centers=3,nstart=5)
library("FactoMineR")
res.pca <- PCA(iris[,-5],graph = F)
plot(res.pca,choix="ind",col.ind=clus$cluster,

graph.type = "classic",label='none')
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Categorical features
I k-means is based on the Euclidean distance, and then is

devoted to (normalized) quantitative features
I for categorical features, the simplest way to work with is to

transform them into one-hot encoding

I another alternative is to use Multiple Correspondence Analysis
to embbed the categorical features into a quantitative space

I their exists also in the literature some extensions of k-means for
categorical data



k-means++ initialization

Idea: enforce distant cluster centers from the start.

It often lead to a dramatic improvement in practice.

k-means++

I choose first center µ1 at random among the data points
I for j = 2 to K ,repeat:

I compute (for each points not already chosen):
Dj

i = min`<j ||Xi − µ`||
I choose µj = Xi with probability proportional to Dj

i
I once the K centers have been chosen, perfom usual k-means



k-medoids

I the k-means centers being the cluster’s mean, they can be
sensible to outliers

I the k-medoids version assign as cluster center the cluster
medoids: the points which is the closest to all the cluster
points of the cluster

µk = argminXi

∑
Xj∈Ck

||Xi − Xj ||

where Ck is the cluster k.



Exercice

I Implement you own k-means algorithm:
I with random or k-means++ initialization
I with k-medoids variant as an option

I Compare the complexity (in computation time) of the
algorithms



Hierarchical clustering



Hierarchical Cluster Analysis

Require to choose:

I distance (or dissimilarity) between observations
I distance between clusters



Dissimilarity

D = (dij)1≤i≤n,1≤j≤n is a matrix of dissimilarity if:

I dij = dji ≥ dii

Dissimilarity are especially useful for binary variables:

I Jaccard dissimilarity:
1− aij

p − dij

where:
I 0 ≤ aij ≤ p is the number variables equal to 1 for individuals i

and j
I 0 ≤ dij ≤ p is the number variables equal to 0 for individuals i

and j
I Concordance dissimilarity: 1− aij +dij

p
I Dice dissimilatiry: 1− 2aij

aij +p−dij



Distance between clusters
Distance between clusters (A,B):

I single linkage

D(A,B) = min{d(X,Y),X ∈ A,Y ∈ B}

I complete linkage

D(A,B) = max{d(X,Y),X ∈ A,Y ∈ B}

I mean distance

D(A,B) =
∑
X∈A

∑
Y∈B

d(X,Y)
#A#B

I Ward
D(A,B) = #A#B

#A + #Bd2(µA, µB)

where µA and µB are centers of clusters A and B}



Hierarchical Cluster Analysis

Aglomerative Hierarchical Cluster Analysis algorithm

I init.: each observation is its own cluster
I while more than one cluster:

I compute the distances between any pair of clusters
I merge the 2 closest ones

Thus, a set hierarchical partitions is build, from n clusters to 1
cluster



Hierarchical Cluster Analysis

clus=hclust(dist(iris[,1:4]),method ="ward.D2")
plot(clus, hang = -1,cex=.6)
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Hierarchical Cluster Analysis properties

I no need to specify the number of clusters
I it can be selected by looking for the highest gap in the

dendogram
I Ward distance merges the two clusters by minimizing within

sum-of-squares ; but it is sub-optimal in comparison with
k-means since we can only merge to clusters at each step



Mixture model



Mixture model
I Modern appraoches for clustering consider probabilistic

framework rather than working with distances
I A cluster is define as a set of data generated by a same

(univariate) probability distribution
I The goal of clustering is then to estimate a mixture of

distribution

Src: https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95

R packages:
library(mclust)
library(Rmixmod)

https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95


DBscan



DBscan

I DBscan = density-based spatial clustering of applications with
noise

I parameters: radius ε and minimal cluster size minPts

DBscan Repeat as long as at least one point has not been visited:

I pick an unvisited point Xi at random
I if it has less than minPts at a distance less than ε, mark it as

outlier
I other, form the cluster of all points that can be reached by

jumps of at most ε starting from Xi



DBscan properties

I no need to specify number of clusters
I sensitive to the choice of parameters (ε,minPts)
I choosing ε,minPts is hard. In practice:

I choice of ε: such that the proportion of outliers is at most 10%
I choice of minPts: such that at least 90% have at least minPts

neighbors



DBscan in R

library(dbscan)
clus=dbscan(iris[,1:4], eps = .7, minPts = 5)
res.pca <- PCA(iris[,-5],graph = F)
plot(res.pca,choix="ind",col.ind=clus$cluster+1,

graph.type = "classic",label='none')
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Spectral clustering



Spectral clustering

I Clustering is performed by embedding the data into the
subspace of the eigenvectors of an similarity matrix

I The goal is to reduce the dimension of the space in which to
perform clustering

I Clustering is then perform with a standard clustering method
I If S is a similarity matrix, for instance Sij = −||Xi − Xj ||2, the

Laplacian matrix is defined by:

L = D − S

where D is a diagonal matrix with Dii =
∑

j Sij .
I L is normalized such that the diagonal elements be all unit.

Different normalization exists, among which the Shi–Malik
ones:

L = Id − D−1/2SD−1/2



Spectral clustering

Basic spectral clustering algorithm

I Calculate the (normalized) Laplacian matrix L
I Compute the k eigenvectors corresponding to the k smallest

eigenvalues
I Consider the matrix of these k eigenvectors as features for the

n points
I Perform standard clustering algorithm on these matrix



Spectral clustering in R

library(kernlab)
clus=specc(as.matrix(iris[,1:4]), centers=3)
res.pca <- PCA(iris[,-5],graph = F)
plot(res.pca,choix="ind",col.ind=clus,

graph.type = "classic",label='none')
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Functional clustering



Functional clustering
Clustering when data are functions (time series. . . )

R packages:
library(funHDDC)



Functional clustering

To go further:
A. Schmutz, J. Jacques, C. Bouveyron, L. Chèze and P. Martin (2020).
Clustering multivariate functional data in group-specific functional
subspaces, Computational Statistics, 35, 1101-1131.

J.Jacques and C.Preda (2014), Functional data clustering: a survey,
Advances in Data Analysis and Classification, 8[3], 231-255.

C. Bouveyron, E. Côme and J. Jacques (2015), The discriminative
functional mixture model for the analysis of bike sharing systems, Annals
of Applied Statistics, 9[4], 1726-1760.

J.Jacques and C.Preda (2014), Model-based clustering of multivariate
functional data, Computational Statistics and Data Analysis, 71, 92-106.



Conclusion



Which method to choose

Src: http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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