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Introduction



Clustering

The goal of clustering is to create homogeneous group of
obsevations, s.t.:

P observations within a group are as similar as possible
» groups are as different as possible from each other

The groups are called clusters.



Use of clustering

» Clustering is an unsupervised technique.
P It aims to explore the data and to discover some typical
pattern.

» It is often used as a preliminary step between supervised
approach.



Notations

» individuals (observations) are described by a set of p features
» X; = (Xi1,...,Xjp) is the set of features for individual i

(1<i<n)
> we have to assign each individual to on of the K clusters :
Zi € {1,...,K} is the cluster number of individual i

» the set (Z1,...,2Z,) is a partition of the n individuals into K
groups.



Distance

Historical methods are based on the notion of distance dj; between
two observations X; and X;.

= (djj)1<i<n1<j<n is @ matrix of distance if:

> di=0
» dj=d;>0forall i #j
> dj < dix + dy;

Examples:

» Euclidean distance:
2 2
Z Xig — XJE /
=1
» Manhattan distance :
P
= Ixie — xjel
=1

» Mahalanobis distance (when variables are of different scales):

-



Clustering interpretation

One the clustering is performed, results are analyzed by:

> extracting one representative per cluster (typically the cluster’s
means)
» comparing the features values among clusters

Plotting the data (thanks to PCA, MDS, t-SNE) in different colour
according to their cluser membership is often helpful



Clustering validation

» Clustering is a unsupervised technique

» No validation data set exists

» If the interpretation of clustering results improve the knowledge
about the data, clustering is successful



Comparing clustering results
For comparing two partitions Z; = (Z11,. .., Z1n) and
Z, = (Zo1,...,2Z2n) (resulting for instance from two clustering
algo.), we use the Rand index:

a+d _a+d
a+b+c+d (2)

n

€[0,1]

where, among the (,27) pairs of individuals:

» a: number of pairs of individuals which are in the same cluster
in both Z; and Z»

» b: number of pairs of individuals which are in the same cluster
in Z1 and in different clusters in Z»

» c: number of pairs of individuals which are in different clusters
in Z1 but in the same cluster in Z»

» d: number of pairs of individuals which are in different clusters
in both Z; and Z»



Exercice

Let's compute the Rand index for (Z1,Z3) and (Z1,Z3):
> 7, ={1,1,2,2,2}
> Z,={1,2,2,1,2}
> Z;=1{2,2,1,1,1}



Comparing clustering results

The adjusted Rand index (ARI), which is the corrected-for-chance
version of the Rand index, is often prefered.

library(mclust)
7adjustedRandIndex



k-means



k-means algorithm

We assume X € RP, d is the Euclidean distance, K is known.
Lloyd k-means algorithm

» init.: randomly choose K centres (i, among the n observations
» while parition not stable:
P assign each observation to the cluster whose center is closest
» update the cluster means px
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Sum-of-squares decomposition

The total sum-of-squares (T) can be decompose as follow:

K

n K
Zdz(xivu) = Z Z d2(XiaUk)+and2(luk”u)

k=1i=1,n:Zi=k k=1

T w(z) B(2)
where:

» W/(Z): within sum-of-squares
» B(Z) : between sum-of-squares



k-means properties

» The k-means algorithm converges

» The k-means algorithm minimizes W/(Z) (and consequently
maximize B(Z))

» But it can leads to a local minimum: indeed, k-means is a
stochastic algorithm and its solution can depend on the
initialization: = multiple initialization has to be used



Choosing K

P within-sum-of-square decrease with K
» we seek for an elbow in the wihtinss plots:
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k-means in R

clus=kmeans (iris[,1:4],centers=3,nstart=5)

library("FactoMineR")

res.pca <- PCA(iris[,-5],graph = F)

plot(res.pca,choix="ind",col.ind=clus$cluster,
graph.type = "classic",label='none')

PCA graph of individuals

Dim 2 (22.85%)

Dim 1 (72.96%)



Categorical features

» k-means is based on the Euclidean distance, and then is
devoted to (normalized) quantitative features

> for categorical features, the simplest way to work with is to
transform them into one-hot encoding
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» another alternative is to use Multiple Correspondence Analysis
to embbed the categorical features into a quantitative space
> their exists also in the literature some extensions of k-means for

categorical data



k-means-+- initialization

Idea: enforce distant cluster centers from the start.
It often lead to a dramatic improvement in practice.
k-means++

» choose first center u; at random among the data points
> for j =2 to K,repeat:
» compute (for each points not already chosen):
Di = ming; [|X; — puel| _
» choose p; = X; with probability proportional to D/
» once the K centers have been chosen, perfom usual k-means



k-medoids

» the k-means centers being the cluster’'s mean, they can be
sensible to outliers

P the k-medoids version assign as cluster center the cluster
medoids: the points which is the closest to all the cluster
points of the cluster

e = argminy, > [|X; — X]|
XjECk

where Ci is the cluster k.



Exercice

» Implement you own k-means algorithm:

» with random or k-means++ initialization
» with k-medoids variant as an option

» Compare the complexity (in computation time) of the
algorithms



Hierarchical clustering



Hierarchical Cluster Analysis

Require to choose:

» distance (or dissimilarity) between observations
» distance between clusters



Dissimilarity

D = (djj)1<i<n1<j<n is @ matrix of dissimilarity if:
> dij = djj > dj
Dissimilarity are especially useful for binary variables:

» Jaccard dissimilarity:

where:
» 0 < a; < pis the number variables equal to 1 for individuals i
and j
» 0 < dj < pis the number variables equal to 0 for individuals i
and j
e . o a,-j+d,-j
» Concordance dissimilarity: 1 — <4
23,’]

> Di . 2ay
Dice dissimilatiry: 1 2 +p—d;



Distance between clusters

Distance between clusters (A, B):

» single linkage

D(A, B) = min{d(X,Y),X € A)Y € B}
> complete linkage

D(A, B) = max{d(X,Y),X € A)Y € B}

» mean distance

Xze:AYEG% #A#B
» Ward
#A#B
H#A+ #B

where pa and ppg are centers of clusters A and B}

D(A,B) = ———"—d*(uua, 1i5)



Hierarchical Cluster Analysis

Aglomerative Hierarchical Cluster Analysis algorithm

P init.: each observation is its own cluster

» while more than one cluster:
» compute the distances between any pair of clusters
» merge the 2 closest ones

Thus, a set hierarchical partitions is build, from n clusters to 1
cluster



Hierarchical Cluster Analysis

clus=hclust(dist(iris[,1:4]), "ward.D2")
plot(clus, -1, .6)

Cluster Dendrogram

Height
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dist(iris[, 1:4])
helust (*, "ward.D2")

cluster=cutree(clus, k=3)



Hierarchical Cluster Analysis properties

» no need to specify the number of clusters

P it can be selected by looking for the highest gap in the
dendogram

> Ward distance merges the two clusters by minimizing within
sum-of-squares ; but it is sub-optimal in comparison with
k-means since we can only merge to clusters at each step



Mixture model



Mixture model

» Modern appraoches for clustering consider probabilistic
framework rather than working with distances

» A cluster is define as a set of data generated by a same
(univariate) probability distribution

» The goal of clustering is then to estimate a mixture of
distribution

Cluster 2

Cluster 1 [ i)
; Cluster 3

Src: https://towardsdatascience.com/gaussian- mixture- models-explained-6986aaf5a95

R packages:

library(mclust)
library (Rmixmod)


https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95
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DBscan

» DBscan = density-based spatial clustering of applications with
noise
P> parameters: radius € and minimal cluster size minPts

DBscan Repeat as long as at least one point has not been visited:

» pick an unvisited point X; at random
» if it has less than minPts at a distance less than €, mark it as

outlier
» other, form the cluster of all points that can be reached by

jumps of at most € starting from X;



DBscan properties

» no need to specify number of clusters
> sensitive to the choice of parameters (e, minPts)
» choosing €, minPts is hard. In practice:
» choice of €: such that the proportion of outliers is at most 10%
» choice of minPts: such that at least 90% have at least minPts
neighbors



DBscan in R

library(dbscan)

clus=dbscan(iris[,1:4], eps = .7, minPts = 5)

res.pca <- PCA(iris[,-5],graph = F)

plot(res.pca,choix="ind",col.ind=clus$cluster+1,
graph.type = "classic",label='none')

PCA graph of individuals

Dim 2 (22.85%)

Dim 1 (72.96%)



Spectral clustering



Spectral clustering

>

| 4

| 2

Clustering is performed by embedding the data into the
subspace of the eigenvectors of an similarity matrix

The goal is to reduce the dimension of the space in which to
perform clustering

Clustering is then perform with a standard clustering method
If S is a similarity matrix, for instance S; = —||X; — X;||?, the
Laplacian matrix is defined by:

L=D-S

where D is a diagonal matrix with D;; = Zj Sj;.

L is normalized such that the diagonal elements be all unit.
Different normalization exists, among which the Shi-Malik
ones:

L=1Iy;— D Y25p~1/2



Spectral clustering

Basic spectral clustering algorithm

» Calculate the (normalized) Laplacian matrix L

» Compute the k eigenvectors corresponding to the k smallest
eigenvalues

» Consider the matrix of these k eigenvectors as features for the
n points

» Perform standard clustering algorithm on these matrix



Spectral clustering in R

library(kernlab)
clus=specc(as.matrix(iris[,1:4]), centers=3)
res.pca <- PCA(iris[,-5],graph = F)
plot(res.pca,choix="ind",col.ind=clus,
graph.type = "classic",label='none')

PCA graph of individuals

Dim 2 (22.85%)

Dim 1 (72.96%)



Functional clustering



Functional clustering

Clustering when data are functions (time series. . .)

150 200 250
1 | 1

Fertility rate

100
L

R packages:
library (funHDDC)



Functional clustering

To go further:

A. Schmutz, J. Jacques, C. Bouveyron, L. Cheze and P. Martin (2020).
Clustering multivariate functional data in group-specific functional
subspaces, Computational Statistics, 35, 1101-1131.

J.Jacques and C.Preda (2014), Functional data clustering: a survey,
Advances in Data Analysis and Classification, 8[3], 231-255.

C. Bouveyron, E. Céme and J. Jacques (2015), The discriminative
functional mixture model for the analysis of bike sharing systems, Annals
of Applied Statistics, 9[4], 1726-1760.

J.Jacques and C.Preda (2014), Model-based clustering of multivariate
functional data, Computational Statistics and Data Analysis, 71, 92-106.



Conclusion



Which method to choose

MiniBatch Affinity Spectral Agglomerative Gaussian
KMeans Propagation __Meanshift Clustering Clustering DBSCAN OPTICS BIRCH Mixture

Q) ) Q)
Y

005 K
Src: http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html



http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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