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Introduction



Clustering and classification

I clustering (unsupervised):

to group a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense or another)
to each other than to those in other groups (clusters)

I classification (discrimination, scoring / supervised):

to predict the group of a new observation from a labeled sample



Clustering and classification

Notations

I observations are described by p features X = (X1, . . . ,Xp) ∈ E
(E = Rp, ...)

I Xi = (Xi1, . . . ,Xip) is the features for observation i (1 ≤ i ≤ n)
I Zi ∈ {1, . . . ,K} is the group of observation i



Clustering versus classification

Clustering

I Zi unknown
I goal: to predict Z1, . . . ,Zn from X1, . . . ,Xn
I Z1, . . . ,Zn are a posteriori interpreted in order to give

significance to the clusters

Classification

I Zi observed
I goal: to build a classification rule r from

(X1,Z1), . . . , (Xn,Zn):

r : X −→ r(X ) = Z

I to use this rule in order to classify new observation for which
the group is unknown



Applications

Clustering

I exploratory analysis: to give a simplified representation of data
in order to understand them

I example:
I to recognize communities in social networks
I to extract topics from corpus of documents
I typology of customers in CRM (Customer Relationship

Management)

Classification

I predictive analysis: to predict Z (categorical) from covariates
X (categorical, continuous. . . )

I example: to predict the probability (score) . . .
I marketing: . . . for a new customer to buy a product
I medicine: . . . for a patient to be suffering from a disease
I finance: . . . for a firm to enter bankruptcy



Different methods

Clustering

I geometric methods
I kmeans, hierarchical clustering

I probabilistic methods
I mixture models

Classification

I generative methods: estimation of p(X ,Z )
I mixture models (linear/quadratic discriminant analysis ,. . . )

I predictive methods: estimation of p(Z |X)
I logistic regression, K- nearest neighbors, classification tree,

SVM, neural networks. . .
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The mixture model



Definition and notation

Idea: each group is described by its own probability distribution

X |Z = k ∼ f (x, θk) = fk(x)

for instance, f (·, θk) can be

I Continuous features: the Gaussian distrib. (θk = (µk ,Σk)), the
Student distribution for more heavy tails. . .

I Binary features: multivariate Bernoulli distrib., θk = (αkj)1≤j≤p
I Categorical features: multinomial distribution. . .



Definition and notation

mixing proportion

Z = k ⇔ Z̃ = (0, . . . , 0, 1︸︷︷︸
k−th position

, 0, . . . , 0)

Z̃ ∼M(1, p1, . . . , pK )

where pk = P(Z = k) = P(Z̃k = 1) is the mixing proportion of
group k



The mixture model

I marginal distribution of X (mixture density)

X ∼
K∑

k=1
pk fk(x) = fX(x).

proof:

P(X ∈ I) = P(X ∈ I ∩ Z ∈ {1, . . . ,K})

=
K∑

k=1
P(X ∈ I ∩ Z = k)

=
K∑

k=1
P(X ∈ I|Z = k)P(Z = k)
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The mixture model

I conditional probability that x belongs to group k (via Bayes
theorem):

P(Z = k|X = x) = pk fk(x)
fX(x) = tk(x).

proof:

P(Z = k|X = x) = f (x|Z = k)P(Z = k)
f (x)

= f (x|Z = k)P(Z = k)∑K
`=1 f (x|Z = `)P(Z = `)



The mixture model

I conditional probability that x belongs to group k (via Bayes
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fX(x) = tk(x).

proof:

P(Z = k|X = x) = f (x|Z = k)P(Z = k)
f (x)

= f (x|Z = k)P(Z = k)∑K
`=1 f (x|Z = `)P(Z = `)



Example - Faithful

Waiting time between eruptions and the duration of the eruption for
the Old Faithful geyser in Yellowstone National Park, Wyoming,
USA.
attach(faithful)
hist(waiting,prob=T)

Histogram of waiting
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Example - Faithful
Waiting time between eruptions and the duration of the eruption for
the Old Faithful geyser in Yellowstone National Park, Wyoming,
USA.
library(mclust)
res=Mclust(waiting)
hist(waiting,prob=T);par(new=TRUE)
plot(res,'density')

Histogram of waiting

waiting

D
en

si
ty

40 50 60 70 80 90 100

0.
00

0.
01

0.
02

0.
03

0.
04

50 60 70 80 90

0.
00

0.
01

0.
02

0.
03

0.
04

waiting

D
en

si
ty



Clustering and classification rule



Clustering and classification rule

Let assume that all the mixture model parameters (pk and the
parameters of fk) are known (they will be estimated in practice from
data)

Clustering: each observation xi is classified into the group k
maximizing the conditional probability tk(xi ) = P(Z = k|X = xi ):

Z = argmaxktk(xi )

Classification: it will depend of the cost of misclassification (not
necessary symetric)



Classification rule

To define a classification rule

r : x ∈ E→ r(x) ∈ {1, . . . ,K}.

is equivalent to divide E into K subsets Ωk s.t.

Ω1 ∪ . . . ∪ ΩK = E,
Ωk ∩ Ω` = ∅

and x ∈ Ωk ⇔ r(x) = k.



Probability of misclassification

Probability of classifying an observation of group Gk into G`
(` 6= k) with r :

ek`(r) = P(r(X) = `|Z = k) =
∫

Ω`

fk(x)dx.

Probability of misclassification of an observation of Gk with r :

ek(r) = P(r(X) 6= k|Z = k) =
∑
6̀=k

ek`(r) =
∫
E\Ωk

fk(x)dx.

Global probability of misclassification (global misclassification
error):

e(r) =
K∑

k=1
pkek(r).



Misclassification cost

Cost of misclassifying an observation of G` in Gk :

C : (k, `) ∈ {1, . . . ,K} × {1, . . . ,K} → C(k, `) ∈ R+,

with C(k, k) = 0.

Remarks:

I C(k, `) generally not symmetric
I to be defined with practician (or fixed to 1 if you have no

information)



Examples of misclassification cost

Medecine:

I a test allows to detect if a patient is ill (G1) or not (G2)
I C(1, 2): cost of classifying a healthy patient (G2) as ill (G1) ⇒

cost of carrying out more exam on a healthy patient
I C(2, 1): cost of classifying a ill patient as a healthy one ⇒

cost that an ill patient go back home without treatment

Finance:

I a consumer finance company predicts if the customer will have
(G1) problem in repaying loan or not (G2)

I C(1, 2): cost of classifying a good customer (G2) as a bad one
(G1)

I C(2, 1): cost of classifying a bad customer as a good one
I the company probably has to choose C(2, 1) >> C(1, 2)



Bayes optimal classification rule

Conditional risk associated to x: average cost of misclassification
of x

R(r(X)|X = x) = E [C(r(X),Z )|X = x] =
K∑

k=1
C(r(x), k)tk(x),

Average risk

R(r) = EX [R(r(X)|X = x)] =
K∑

k=1
pk

K∑
`=1

C(`, k)
∫

Ω`

fk(x)dx.

Proofs: exercice.



Bayes optimal classification rule
We look for the optimal rule r∗ which minimize the average risk,
which is equivalent to minimize the conditional risk since:

R(r∗) = min
r

EX [R(r(X)|X = x)] ≥ EX [min
r

R(r(X)|X = x)].

The optimal rule classifies x into Gk if

R(r(X) = k|X = x) < R(r(X) = `|X = x) ∀` 6= k.

Since

R(r(X) = k|X = x) = E [C(k,Z )|X = x]

=
K∑
`=1

C(k, `)t`(x) =
K∑
` 6=k

C(k, `)t`(x),

the optimal Bayes classification rule is:

r∗(x) = k if
K∑
` 6=k

C(k, `)t`(x) <
K∑
6̀=k′

C(k ′, `)t`(x) ∀k ′ 6= k.



Bayes optimal rule for equal costs

If C(k, `) = c ∀k 6= `, the conditional risk is

R(r(X) = k|X = x) = c
K∑
` 6=k

t`(x) = c(1− tk(x)),

and thus r∗(x) = k if c(1− tk(x)) < c(1− tk′(x)) ∀k ′ 6= k or
equivalently

r∗(x) = k if tk(x) > tk′(x) ∀k ′ 6= k.

⇒ x is classified into the group which has the greater posterior
probability maximum a posteriori.



Bayes optimal rule for equal costs

If moreover c = 1, the average risk is

R(r) =
K∑

k=1
pk
∑
6̀=k

∫
Ω`

fk(x)dx

=
K∑

k=1
pk

∫
Ω̄`

fk(x)dx

=
K∑

k=1
pkek(r)

= e(r)



Bayes optimal rule for 2 groups

For 2 groups, we have

r∗(x) = 1 if C(1, 2)t2(x) < C(2, 1)t1(x),
and r∗(x) = 2 if C(2, 1)t1(x) < C(1, 2)t2(x),

and by noting g(x) = C(2,1)t1(x)
C(1,2)t2(x) , the Bayes optimal rule is:

r∗(x) = 1 if g(x) > 1,
and r∗(x) = 2 if g(x) < 1.

g(x) = 1 is the equation of the separating surface.



Continuous features: the Gaussian mixture



The Gaussian Mixture Model

The density of group k is

fk(x) = 1
(2π)p/2|Σk |1/2 exp{−1

2(x − µk)tΣ−1
k (x − µk)}

where

I µk is the mean vector
I Σk the covariance matrix of group k
I |Σk | denotes the determinant of Σk



The Gaussian Mixture Model
An example of Gaussian mixture
x=seq(-10,10,.1)
plot(x,dnorm(x,-2,1),type='l',col=1,ylab='',ylim=c(0,0.4))
lines(x,dnorm(x,2,2),col=2)
lines(x,.5*dnorm(x,-2,1)+.5*dnorm(x,2,2),col=3)
legend('topright',legend=c('comp. 1','comp. 2','mixture'),

col=1:3,lty=1)
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Mixture model estimation in classification



Maximum likelihood estimation
I Estimation of the classification rule r∗ is obtained by

estimating θ by maximum likelihood
I likelihood in the classification context (x, z available):

p(x, z) =
∏

i
p(xi , zi )

=
∏

i
p(Z = zi )f (xi |Z = zi )

=
∏

i

∏
k

(p(Z = k)f (xi |Z = k))z̃ik

=
∏

i

∏
k
pz̃ik

k fk(xi )z̃ik

I Log-likelihood

`(x, z; θ) =
n∑

i=1

K∑
k=1

z̃ik

(
ln pk −

p
2

ln 2π −
1
2

ln |Σk | −
1
2

(xi − µk )t Σ−1
k (xi − µk )

)



Parameter estimation

Maximization leads to the usual empirical estimates:

I p̂k = nk
n with nk =

∑n
i=1 z̃ik the number of observations of

group k
I µ̂k = 1

nk

∑n
i=1 z̃ikxi

I Σ̂k = 1
nk

∑n
i=1 z̃ik(xi − µ̂k)t(xi − µ̂k)



Exercice 1

Prove the expression of the previous estimators in the case of p = 1.
Use Lagrange multipliers for the constraint

∑K
k=1 pk = 1.



Application on iris dataset

plot(iris[,1:4],col=iris$Species)
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Application on iris dataset

Split into train and test data sets
set.seed(2)
tmp=sample(1:150,50)
X.train <- iris[-tmp,-5]
Class.train <- iris[-tmp,5]
X.test <- iris[tmp,-5]
Class.test <- iris[tmp,5]



Application on iris dataset
Estimation of a mixture of Gaussians (model ‘XXX’ is the usual Gaussian
model in MclustDA)
irisMclustDA <- MclustDA(X.train, Class.train,

modelNames = "XXX")
summary(irisMclustDA)

## ------------------------------------------------
## Gaussian finite mixture model for classification
## ------------------------------------------------
##
## MclustDA model summary:
##
## log-likelihood n df BIC
## -113.9301 100 42 -421.2774
##
## Classes n % Model G
## setosa 35 35 XXX 1
## versicolor 35 35 XXX 1
## virginica 30 30 XXX 1
##
## Training confusion matrix:
## Predicted
## Class setosa versicolor virginica
## setosa 35 0 0
## versicolor 0 34 1
## virginica 0 0 30
## Classification error = 0.01
## Brier score = 0.0103



Application on iris dataset

Evaluation of the prediction
tmp=summary(irisMclustDA, newdata = X.test,

newclass = Class.test)
print(tmp$tab.newdata)

## Predicted
## Class setosa versicolor virginica
## setosa 15 0 0
## versicolor 0 14 1
## virginica 0 0 20



Mixture model in classification

In comparison with other classification methods:

I MM has the advantage of interpretability
I but the classification power suffer from its assumption (each

class should be Gaussian)

More flexilibility can be introduce by considering mixture of
mixture:

I each class can be itself a mixture



Mixture of mixture on iris dataset
Estimation of a mixture of Gaussians with selection by BIC of the number
of mixture components per class (option modelType = “MclustDA”)
irisMclustDA <- MclustDA(X.train, Class.train,

modelType = "MclustDA")
summary(irisMclustDA)

## ------------------------------------------------
## Gaussian finite mixture model for classification
## ------------------------------------------------
##
## MclustDA model summary:
##
## log-likelihood n df BIC
## -70.80528 100 63 -431.7363
##
## Classes n % Model G
## setosa 35 35 VEV 2
## versicolor 35 35 XXX 1
## virginica 30 30 VVE 2
##
## Training confusion matrix:
## Predicted
## Class setosa versicolor virginica
## setosa 35 0 0
## versicolor 0 34 1
## virginica 0 0 30
## Classification error = 0.01
## Brier score = 0.0072



Application on iris dataset

Evaluation of the prediction (not necessary better for the simple iris
data set)
tmp=summary(irisMclustDA, newdata = X.test,

newclass = Class.test)
print(tmp$tab.newdata)

## Predicted
## Class setosa versicolor virginica
## setosa 15 0 0
## versicolor 0 14 1
## virginica 0 0 20



Exercice 2

Implement your own maximum likelihood estimation for a Gaussian
Mixture Model. Your function should be able to predict the class of
a new observation.

Test it on simulated data.



Mixture model estimation in clustering



Maximum likelihood estimation

I Mixture model estimation for clustering is done by maximum
likelihood

I likelihood in the clustering context (only x available):

p(x) =
∏

i
p(xi )

=
∏

i

∑
k

pk fk(xi )

I Log-likelihood

`(x; θ) =
n∑

i=1
ln
( K∑

k=1
pk

1
(2π)p/2|Σk |1/2 exp{−1

2(xi − µk)tΣ−1
k (xi − µk)}

)

Not as easy to maximise as in the classification context !



The EM algorithm
The idea of Expectation-Maximization algorithm:

I to maximize the completed-likelihood (by the unobserved data z)
is easier than the observed-data likelihood:

`c (x, z, θ) =
K∑

k=1

n∑
i=1

z̃ik

(
ln pk −

p
2

ln 2π −
1
2

ln |Σk | −
1
2

(xi − µk )t Σ−1
k (xi − µk )

)
I since z is unobserved, the q-th iteration of the EM algorithm consists

in alternating:
I initialization: randomly choose θ(0)

I at iteration (q):
I E step: computation of

Q(θ, θ(q)) = E [`c(x, z, θ)|x, θ(q)]

I M step: maximisation of Q(θ, θ(q)) according to θ:

θ(q+1) = argmaxθQ(θ, θ(q))

until convergence of the log-likelihood: |`(x,θ(q+1))− `(x,θ(q))| < ε



EM algorithm - E step

Computation of Q(θ,θ(q)) = E [`c(x, z,θ)|x,θ(q)]:

Q(θ, θ(q)) =
K∑

k=1

n∑
i=1

E [z̃ik |x, θ(q)]
(

ln pk −
p
2

ln 2π −
1
2

ln |Σk | −
1
2

(xi − µk )t Σ−1
k (xi − µk )

)
with

E [z̃ik |x,θ(q)] = 1× P(z̃ik = 1|xi ,θ
(q)) + 0× P(z̃ik = 0|xi ,θ

(q))

=
f|z̃ik =1(xi ,θ

(q))P(z̃ik = 1|θ(q))
f (xi ,θ(q))

= fk(xi ,θ
(q))p(q)

k
fX (xi ,θ(q))

= t(q)
k (xi )



EM algorithm - M step

Maximisation of Q(θ,θ(q)) according to θ:

Q(θ, θ(q)) =
K∑

k=1

n∑
i=1

t(q)
k (xi )

(
ln pk −

p
2

ln 2π −
1
2

ln |Σk | −
1
2

(xi − µk )t Σ−1
k (xi − µk )

)
is equivalent to the log-likelihood maximization in the classification
context, but by ponderating each observation by t(q)

k (xi )

I p̂k = n(q)
k
n with nk =

∑n
i=1 t

(q)
k (xi )

I µ̂k = 1
n(q)

k

∑n
i=1 t

(q)
k (xi )xi

I Σ̂k = 1
n(q)

k

∑n
i=1 t

(q)
k (xi )(xi − µk)t(xi − µk)



EM algorithm - properties

I the EM increases the likelihood at each step: ⇒ it converges
to a local maximum of the likelihood

I convergence to the global maximum is expected to be achieved
with multiple initializations of the algorithm

I in practice, the most efficient initialization strategy is:
I run several small EM (with 10 iterations)
I run a long EM starting from the small EM solution with highest

log-likelihood



EM algorithm - proof of convergence

Since
p(x, z; θ) = p(z|x; θ)p(x; θ)

taking the logarithm we have:

`c(x, z; θ) = ln p(z|x; θ) + `(x; θ)

and then
`(x; θ) = `c(x, z; θ)− ln p(z|x; θ)

Let’s compute Eθ(q) [·|x] of these terms:

`(x; θ) = Eθ(q) [`c(x, z; θ)|x]︸ ︷︷ ︸
Q(θ,θ(q))

−Eθ(q) [ln p(z|x; θ)]︸ ︷︷ ︸
H(θ,θ(q))

(1)



EM algorithm - proof of convergence

Let’s look at H(θ,θ(q)):

H(θ(q),θ(q))− H(θ,θ(q)) = Eθ(q) [ln p(z|x; θ(q))− ln p(z|x; θ)]

= Eθ(q) [ln
p(z|x; θ(q))
p(z|x; θ) ]

=
∫

ln p(z|x; θ(q))
p(z|x; θ) p(z|x; θ(q))dz

= KL(p(z|x; θ(q)), p(z|x; θ))
≥ 0

Consequently, for all θ

H(θ,θ(q)) ≤ H(θ(q),θ(q))



EM algorithm - proof of convergence

Since at each M step, we look for

θ(q+1) = argmaxθQ(θ,θ(q))

we have:
Q(θ(q+1),θ(q)) ≥ Q(θ,θ(q))

for all θ and in particular for θ = θ(q).

Consequently:

Q(θ(q+1),θ(q)) ≥ Q(θ(q),θ(q))



EM algorithm - proof of convergence

Using (1) with θ = θ(q+1) we have

`(x; θ(q+1)) = Q(θ(q+1),θ(q))︸ ︷︷ ︸
≥Q(θ(q),θ(q))

−H(θ(q+1),θ(q))︸ ︷︷ ︸
≤H(θ(q),θ(q))

and thus

`(x; θ(q+1)) ≥ Q(θ(q),θ(q))− H(θ(q),θ(q))
≥ `(x; θ(q))

⇒ After each Mstep of the EM algorithm, the likelihood
increases



Exercice 3

Implement your own EM algorithm for Gaussian mixture model
estimation.

Test it on simulated data.

Compare multiple random initialization with kmeans initialization.



Some variants of the EM algorithm

The Classification EM algorithm is a variant of the EM algorithm,
obtained by rounding the t(q)

k (xi ):

I t(q)
k (xi ) = 1 for the group k s.t. t(q)

k (xi ) is maximum
I t(q)

k (xi ) = 0 for the other groups

CEM properties:

I CEM performs hard classification whereas EM performs soft
classification

I the convergence of CEM is faster than EM, but leads to a
biased estimator

I nevertheless, for large samples and well separated groups, the
CEM is very efficient

I CEM can be a good way to initialize an EM



Some variants of the EM algorithm

The Stochastic EM algorithm is a variant of the EM algorithm,
obtained by generating the zi according to the probabilities t(q)

k (xi ).

I after a burn-in period, SEM generate a sample of θ(q) whose
distribution is around the maximum likelihood

I final estimation can be obtained by the mean/median of this
generated distribution

I SEM could be an alternative to EM for more complex model in
which the t(q)

k (xi ) are intractable



A particular Gaussian mixture model

Mixture models sometimes generalized well known clustering
algorithm

I assume (for parcimony) that Σk = αIp for every clusters
I assume equal proportions: π1 = . . . = πK
I estimate the model with the CEM algorithm

⇒ your are running the k-means algorithm



A particular Gaussian mixture model

Mixture models sometimes generalized well known clustering
algorithm

I assume (for parcimony) that Σk = αIp for every clusters
I assume equal proportions: π1 = . . . = πK
I estimate the model with the CEM algorithm

⇒ your are running the k-means algorithm



Exercice 4

Implement your own kmeans algorithm.

Test it on simulated data.
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