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Trend and seasonal pattern estimation



Removing trend + seasonal pattern

In order to modelize the stochastic part of the times series, we have
to remove the deterministic part (trend + seasonal pattern)

We will see two methods:

I Estimation by moving average
I Removing by differencing



Time series components

We assume that the time series can be decomposed into:

xt = Tt + St + εt

where :

I Tt is the trend,
I St is the seasonal pattern (of period T )
I εt is the residual part

Rk: if xt admits a multiplicative decomposition, log xt admits an
additive decomposition.



Moving average

A moving average estimation of the trend Tt of order m (m-MA) is:

T̂t = 1
m

k∑
j=−k

xt+j

where m = 2k + 1.

T̂t is the average of the m values nearby time t.

I greater is m, greater is the smoothing
I for series with seasonnal pattern of period T , we generally

choose m ≥ T .



Moving average
autoplot(co2, series="Data") +
autolayer(ma(co2,6), series="6-MA") +
autolayer(ma(co2,12), series="12-MA") +
xlab("Year") + ylab("CO2 concentration") +
ggtitle("Atmospheric concentrations of CO2 ") +
scale_colour_manual(
values=c("Data"="grey50","6-MA"="red","12-MA"="blue"),
breaks=c("Data","6-MA","12-MA"))
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Moving average

Once the trend Tt has been estimated, we remove it from the series:

x̃t = xt − T̂t

Estimation of the seasonal pattern is obtained by simply
averaging the values of x̃t on each season.



Moving average
autoplot(decompose(co2,type="additive"))+

xlab('Year')
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Moving average

Advantage:

I quickly gives an overview of the components of the series

Disadvantage:

I no forecast is possible with such non parametric estimation



Differencing

Let ∆T be the operator of lag T which maps xt to xt − xt−T :

∆T xt = xt − xt−T .



Differencing
Let xt be a time series with a polynomial trend of order k :

xt =
k∑

j=0
ajt j + εt .

Then ∆T xt admits a polynomial trend of order k − 1.

Applying ∆T reduces by 1 the degree of the polynomial trend.
par(mfrow=c(2,1))
plot(co2)
plot(diff(co2,differences=1))
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Differencing
Applying ∆T k times reduces by k the degree of the polynomial trend.

∆k
T = ∆T ◦ . . . ◦∆T︸ ︷︷ ︸

k times

par(mfrow=c(2,1))
plot(co2)
plot(diff(co2,differences=2))
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Differencing

Let xt be a time series with a ternd Tt and a season pattern St of
period T :

xt = Tt + St + εt .

Then,
∆T xt = (Tt − Tt−T ) + (εt − εt−T )

does not admit any more seasonal pattern.

Applying ∆k
T remove a seasonal pattern of period T and a

polynomial trend of order k



Differencing
par(mfrow=c(2,1))
plot(co2)
plot(diff(co2,lag=12,differences=1))
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Differencing

Advantage:

I easy to understand
I allows forecast since we can forecast ∆T xt and then go back to

xt

In practice :

I we start by removing the season by applying ∆T
I then, if it visually does not seem stationary, we apply again ∆1
I eventually we apply again ∆1, but we will try to keep small

value for the number k of differencing.



Differencing
par(mfrow=c(3,1))
plot(co2)
plot(diff(co2,lag=12,differences=1))
plot(diff(diff(co2,lag=12)))
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Stationary series

xt is a stationary time series if, for all s, the distribution of
(xt , . . . , xt+s) does not depend on t.

Consequently, a stationary time serie is one whose properties do not
depend on the time at which the series is observed.

In particular, a stationary time serie has:

I no trend
I no season pattern

(A stationary time serie can have a cyclic pattern since its period is
not constant.)

ARMA models, one of the main objects of this course, are models
for stationary time serie.



White noise

A white noise is an independent and identically distributed series
with zero mean.

A Gaussian white noise εt are i.i.d. observations from N (0, σ2)

In such series, there is nothing to forecast. Or more precisely, the
best forecast for such series is its means: 0.



White noise

After having differecing our time series for removing trend +
seasonal pattern, we have to check that the residual series is
not a white noise.

In the countrary case, our work is finished: there is nothing else to
forecast than trend and seasonal pattern, thus let use exponential
smoothing.
Box.test(diff(co2,lag=12,differences=1),lag=10,type="Ljung-Box")

##
## Box-Ljung test
##
## data: diff(co2, lag = 12, differences = 1)
## X-squared = 1415.4, df = 10, p-value < 2.2e-16

Here the p-value is very low, we reject that
diff(co2,lag=12,differences=1) can be assimilted to a white noise



Exercice

We study the number of passengers per month (in thousands) in air
transport, from 1949 to 1960. This time series is available on R
(AirPassengers).

I Plot this time series graphically. Do you think this process is
stationary? Does it show trends and seasonality?

I Apply the differencing method to remove trend and seasonal
pattern. Specify the period of the seasonal pattern, the degree
of the polynomial trend.

I Does the differenciated series seems stationary?
I Is it a white noise?



Exercice

Same exercice with the Google stock price:
library(fpp2)
plot(goog200)
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ARMA models



Autoregressive models ARp

An autoregressive model (xt) of order p (ARp) can be written:

xt = c + εt +
p∑

j=1
ajxt−j , (1)

where εt is a white noise of variance σ2.

An ARp model is the sum of:

I a random chock εt , independent from previous observation
I a linear regression of the previous obseration

∑p
j=1 ajXt−j

Rk: we restrict ARp models to stationary models, which implies
some restrictions on the value of the coefficients aj .



ARp properties

I autocorrelation ρ(h) exponentialy decreases to 0 when h→∞

I partial autocorrelation r(h) is null for all h > p, and is equal to
ap at order p :

r(h) = 0 ∀h > p,
r(p) = ap.



Example of AR1

Figure 1: AR1 (xt = 0.8xt−1 + εt), autocorrelation et partial
autocorrelation



Example of AR1

Figure 2: AR1 (xt = −0.8xt−1 + εt), autocorrelation et partial
autocorrelation



Example of AR2

Figure 3: AR2 (xt = 0.9xt−2 + εt), autocorrelation et partial
autocorrelation



Example of AR2

Figure 4: AR2 (xt = −0.5xt−1 − 0.9xt−2 + εt), autocorrelation et partial
autocorrelation



It’s your turn!

Function arima.sim allows to simulate an ARp.

Do it several times and observe the auto-correlations (partial or not)
par(mfrow=c(3,1))
modele<-list(ar=c(0.8))
ar1<-arima.sim(modele,1000)
plot.ts(ar1)
acf(ar1)
pacf(ar1)



Moving average models MAq

A moving average model (xt) of order q (MAq) can be written:

Xt = c + εt + b1εt−1 + . . .+ bqεt−q,

where εj for t − q ≤ j ≤ t are white noises of variance σ2.

Warning: Moving average models should not be confused with
moving average smoothing. . .



MAq properties

I autocorrelation ρ(h) is null for all h > q:

σ(h) =

 σ2
q−h∑
k=0

bkbk+h ∀h ≤ q

0 ∀h > q
où b0 = 1

I partial autocorrelation exponentialy decreases to 0 when
h→∞

I any ARp can be seen as an MA∞
I under some conditions on the bj , an MAq can be seen as an

AR∞



Example of MA1

Figure 5: MA1 (xt = εt − 0.8εt−1), autocorrelation et partial
autocorrelation



Example of MA1

Figure 6: MA1 (xt = εt + 0.8εt−1), autocorrelation et partial
autocorrelation



Example of MA3

Figure 7: MA3, autocorrelation et partial autocorrelation



It’s your turn!

Function arima.sim allows to simulate an MAq.

Do it several times and observe the auto-correlations (partial or not)
modele<-list(ma=c(0.8))
ma1<-arima.sim(modele,1000)
plot.ts(ma1)
acf(ma1)
pacf(ma1)



Autoregressive moving average model ARMApq

An autoregressive moving average model ARMApq can be written:

xt = c +
p∑

k=1
akxt−k +

q∑
j=0

bjεt−j .

where εj for t − q ≤ j ≤ t are white noise of variance σ2.

Properties

I autocorrelation of an ARMAp,q exponentially descreases to 0
when h→∞, from order q + 1.



Example of ARMA2,2

Figure 8: ARMA2,2, autocorrelation et partial autocorrelation



Properties of MAq, ARp and ARMAp,q

MAq ARp ARMAp,q
ACF ρ(h) = 0 ∀h > q lim

h→∞
ρ(h) = 0 ∀h > q, lim

h→∞
ρ(h) = 0

PACF lim
h→∞

r(h) = 0 r(h) = 0 ∀h > p
et r(p) = ap

These properties may help to identify the order of a MAq or an
ARp. . .



Non-seasonal ARIMA models



Non-seasonal ARIMA models

xt is an ARIMAp,d ,q model if ∆dxt is an ARMAp,q model
(∆dxt is xt differenced d times)

ARIMA means Auto Regressive Integrated Moving Average

Selecting the orders p, d and q can be difficult.



Understanding ARIMA models

The intercept c of the model and the differencing order d have an
important effect on the long-term forecasts:

I c = 0 and d = 0 ⇒ long-term forcasts go to 0
I c = 0 and d = 1 ⇒ long-term forcasts go to constant 6= 0
I c = 0 and d = 2 ⇒ long-term forcasts will follow a straight line
I c 6= 0 and d = 0 ⇒ long-term forcasts go to the mean of the

data
I c 6= 0 and d = 1 ⇒ long-term forcasts will follow a straight line
I c 6= 0 and d = 2 ⇒ long-term forcasts will follow a quadratic

trend



Some particular ARIMA models

I ARIMA(0,1,0) = random walk
I ARIMA(0,1,1) without constant = simple exponential smoothing
I ARIMA(0,2,1) without constant = linear exponential smoothing
I ARIMA(1,1,2) with constant = damped-trend linear exponential

smoothing



Estimation

Once orders (p, d , q) are selected, maximum likelihood
estimation (MLE) through optimization algorithms is used to
estimate model parameters θ = (c, a1, . . . , ap, b1, . . . , bq)



Model selection

I MLE can not be used to choose orders (p, d , q):
higher are (p, d , q) ⇒ higher is the number of parameters ⇒
higher is the flexibility of the model ⇒ higher is the likelihood

I MLE should be penalized by the complexity of the model ('
number of parameters ν = p + q + 2):
I AIC = −2 log L(θ̂) + 2ν
I BIC = −2 log L(θ̂) + ln(n)ν
I or for small sample size AICc = AIC + 2ν(ν+1)

n−ν−1

I or directly compute RMSE on test data



Example: US consumption expenditure
The following data contains quarterly percentage changes in US
consumption expenditure
library(fpp2)
autoplot(uschange[,"Consumption"]) +

xlab("Year") + ylab("Quarterly percentage change")
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Example: US consumption expenditure

Arima(uschange[,"Consumption"],order=c(2,0,2))

## Series: uschange[, "Consumption"]
## ARIMA(2,0,2) with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 ma2 mean
## 1.3908 -0.5813 -1.1800 0.5584 0.7463
## s.e. 0.2553 0.2078 0.2381 0.1403 0.0845
##
## sigma^2 estimated as 0.3511: log likelihood=-165.14
## AIC=342.28 AICc=342.75 BIC=361.67

Warning: the ar1 parameter 1.3908 is the effect of (xt−1 − c) on xt ,
where c is the intercept of the model (mean).



How to choose order (p, d , q) in practice
In practice, you have two choices, depending on your goal:

I to obtain quickly a good forecast, convenient if you have a lot
of series to predict
I let’s use automatic function

auto.arima(uschange[,"Consumption"])

## Series: uschange[, "Consumption"]
## ARIMA(1,0,3)(1,0,1)[4] with non-zero mean
##
## Coefficients:
## ar1 ma1 ma2 ma3 sar1 sma1 mean
## -0.3548 0.5958 0.3437 0.4111 -0.1376 0.3834 0.7460
## s.e. 0.1592 0.1496 0.0960 0.0825 0.2117 0.1780 0.0886
##
## sigma^2 estimated as 0.3481: log likelihood=-163.34
## AIC=342.67 AICc=343.48 BIC=368.52



How to choose order (p, d , q) in practice

In practice, you have two choices, depending on your goal:

I to obtain a good forecast and an understanding of the model
I let’s start by differencing the series if needed, in order to obtain

something visually stationary
I look at the ACF and PACF plot ot identify possible models
I take eventually into account knowledge on the series (knwon

autocorrelation. . . )
I estimate models and select the best one by AICc / AIC / BIC



Example: US consumption expenditure

autoplot(uschange[,"Consumption"]) +
xlab("Year") + ylab("Quarterly percentage change")
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The series seems approximatively stationary. . .



Example: US consumption expenditure
ggAcf(uschange[,"Consumption"])
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ggPacf(uschange[,"Consumption"])
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Example: US consumption expenditure

Arima(uschange[,"Consumption"],order=c(3,0,0))

## Series: uschange[, "Consumption"]
## ARIMA(3,0,0) with non-zero mean
##
## Coefficients:
## ar1 ar2 ar3 mean
## 0.2274 0.1604 0.2027 0.7449
## s.e. 0.0713 0.0723 0.0712 0.1029
##
## sigma^2 estimated as 0.3494: log likelihood=-165.17
## AIC=340.34 AICc=340.67 BIC=356.5



Example: US consumption expenditure

Arima(uschange[,"Consumption"],order=c(0,0,3))

## Series: uschange[, "Consumption"]
## ARIMA(0,0,3) with non-zero mean
##
## Coefficients:
## ma1 ma2 ma3 mean
## 0.2403 0.2187 0.2665 0.7473
## s.e. 0.0717 0.0719 0.0635 0.0739
##
## sigma^2 estimated as 0.354: log likelihood=-166.38
## AIC=342.76 AICc=343.09 BIC=358.91



Example: US consumption expenditure

I AICc criterion slightly better for AR3 (340.34) than for MA3
(342.76)

I Note that AICc for AR3 is better than for the model chosen by
auto.arima! That is because all the possible models are not
tested, but a stepwise search is used (see Hyndman, p245)



Forecasting

Once the model is selected, it will be use to forecast the future of
the series.

For an ARp:

I forecasting at horizon h = 1:

x̂n+1 = ĉ + â1xn + . . .+ âpxn+1−p

95% prediction interval can be obtained by: ±1.96x̂n+1

I forceasting at horizon h = 2:

x̂n+2 = ĉ + â1x̂n+1 + â2xn + . . .+ âpxn+2−p

I and so on. . .



Forecasting

Once the model is selected, it will be use to forecast the future of
the series.

For an MAq:

x̂n+1 = ĉ + b̂1ε̂n + . . .+ b̂q ε̂n+1−q

where ε̂n = xn − x̂n and ε̂n+1−q = xn+1−q − x̂n+1−q



Example: US consumption expenditure

fit=Arima(uschange[,"Consumption"],order=c(3,0,0))
autoplot(forecast(fit,h=10))

−2

−1

0

1

2

1970 1980 1990 2000 2010 2020
Time

us
ch

an
ge

[, 
"C

on
su

m
pt

io
n"

]

Forecasts from ARIMA(3,0,0) with non−zero mean



Exercice: uschange
The following time series contain percentage changes in personal
disposable income and unemployment rate for the US, from 1960 to
2016.
autoplot(uschange[,c("Income","Unemployment")])
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Choose an ARIMA model and forecast the income and
unemployment rate for 2017 to 2020.



Seasonal ARIMA models



Backshift notation

A convenient notation for ARIMA models is backshift notation:

Bxt = xt−1

B(Bxt) = B2xt = xt−2

With this notation:

∆xt = (1− B)xt = xt − xt−1

∆T xt = (1− BT )xt = xt − xt−T

∆dxt = (1− B)dxt

∆d
T xt = (1− BT )dxt



Backshift notation

The backshift notation of an ARIMAp,d ,q model is:

(1− a1B − . . .− apBp)︸ ︷︷ ︸
ARp

(1− B)dxt︸ ︷︷ ︸
d differences

= c + (1 + b1B − . . .+ bqBq)︸ ︷︷ ︸
MAq

εt

For instance, an ARIMA1,1,1 without constant model is:

(1− a1B)(1− B)xt = (1 + b1B)εt

Rk: R uses a slightly different parametrization (see Hyndman p237)



Seasonal ARIMA models

A seasonnal ARIMA (SARIMA) model is formed by including
additional seasonal terms in an ARIMA:

ARIMA (p, d , q)︸ ︷︷ ︸
non-seasonnal part

(P,D,Q)T︸ ︷︷ ︸
seasonnal part

where T is the period of the seasonal part.

Corresponding backshift notations is, for an SARIMA(1,1,1)(1,1,1)12
without constant model is:

(1− a1B)(1− a2B12)(1−B)(1−B12)xt = (1 + b1B)(1 + b2B12)εt



SARIMA properties

The seasonal part of an AR or MA model can be seen in the
seasonal lags of the PACF and ACF.

For instance:

I an SARIMA(0,0,0)(0,0,1)12 will show:
I a spike at lag 12 in the ACF, and no other significant spikes
I exponential decay in the seasonal lags of the PACF (i.e. at lag

12, 24, 36. . . )
I an SARIMA(0,0,0)(1,0,0)12 will show:

I a spike at lag 12 in the PACF, and no other significant spikes
I expoenntial decay in the seasonal lags of the ACF



Example: European quaterly retail trade

autoplot(euretail) + ylab("Retail index") + xlab("Year")
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This time series is clearly non stationary: trend an probably seasonal
pattern of period 4 (quaterly retrail trade. . . )



Example: European quaterly retail trade
Let’s differenciate
ggtsdisplay(diff(euretail,lag=4))

or equivalently
euretail %>% diff(lag=4) %>% ggtsdisplay()
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The linear decay of the ACF suggests that there is still a trend



Example: European quaterly retail trade

Let’s differenciate again
euretail %>% diff(lag=4) %>% diff() %>% ggtsdisplay()
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Example: European quaterly retail trade
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I the slightly significant ACF at lag 1 suggests a non-seasonnal
MA1

I the significant ACF at lag 4 (the size of the period) suggests a
seasonnal MA1

Consequently we can try an SARIMA(0,1,1)(0,1,1)4 .

Rk: similar reasoning with PACF suggests SARIMA(1,1,0)(1,1,0)4



Example: European quaterly retail trade

Let’s estimate an SARIMA(0,1,1)(0,1,1)4

fit=Arima(euretail, order=c(0,1,1), seasonal=c(0,1,1))



Example: European quaterly retail trade
Let’s have a look to the residual
fit %>% residuals() %>% ggtsdisplay()
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There is still significant ACF and PACF at lag 2. We can add some
additional non-seasonal terms (for instance with
SARIMA(0,1,2)(0,1,1)4)



Example: European quaterly retail trade
Let’s estimate an SARIMA(0,1,2)(0,1,1)4

euretail %>%
Arima(order=c(0,1,2), seasonal=c(0,1,1)) %>%
residuals() %>% ggtsdisplay()
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There is still significant ACF and PACF at lag 3.



Example: European quaterly retail trade
Let’s estimate an SARIMA(0,1,3)(0,1,1)4

fit=Arima(euretail, order=c(0,1,3), seasonal=c(0,1,1))
fit %>% residuals() %>% ggtsdisplay()
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Now the model seems to have capture all auto-correlations.



Example: European quaterly retail trade
checkresiduals(fit)
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,3)(0,1,1)[4]
## Q* = 0.51128, df = 4, p-value = 0.9724
##
## Model df: 4. Total lags used: 8



Example: European quaterly retail trade

The model passes all checks: it is ready for forecasting
fit %>% forecast(h=12) %>% autoplot()
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Exercice: San Francisco precipitation

San Fransisco precipitation from 1932 to 1966 are available here:
http://eric.univ-lyon2.fr/~jjacques/Download/DataSet/sanfran.dat

I Try to improve your forecast obtained with exponential smoothing

http://eric.univ-lyon2.fr/~jjacques/Download/DataSet/sanfran.dat


Exercice: Varicella dataset

I Try to improve your forecast obtained with exponential smoothing



Heteroscedastic series



Stabilizing the variance
Previous models assume that the variance is stable in time.

For some series variance can decrease or increase.

Taking the log can help to stabilize it.
cbind(AirPassengers,log(AirPassengers)) %>%
autoplot(facets=TRUE)
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Stabilizing the variance

Rahther than log transformation we can also use power
transformation (square roots. . . ).

A more general method for stabilizing the variance is to use Box-Cox
transformation:

yt =
{

log(xt) if λ = 0
(xλt − 1)/λ if λ 6= 0



Box-Cox transformation
x=seq(0,10,0.01)
plot(x,log(x),type='l',ylim=c(-4,4))
lambda=-0.5;lines(x,(xˆlambda-1)/lambda,col=2)
lambda=-0.25;lines(x,(xˆlambda-1)/lambda,col=3)
lambda=0.25;lines(x,(xˆlambda-1)/lambda,col=4)
lambda=0.5;lines(x,(xˆlambda-1)/lambda,col=5)
legend('bottomright',col=1:5,lty=1,legend=c('log','lambda=-0.5','lambda=-0.25','lambda=0.25','lambda=0.5'))
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Stabilizing the variance
The BocCox.lambda() function will choose a value of λ for you
(lambda=BoxCox.lambda(AirPassengers))

## [1] -0.2947156
autoplot(BoxCox(AirPassengers,lambda))
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Stabilizing the variance

The BocCox transformation is available as an option in the hw or
auto.arima functions.

Automatic choice of λ is obtained by selecting: lambda="auto".



ARCH and GARCH models

Such techniques allows to stabilize a variance which monotically
increases or decreases.

For more complexe variations of the variance, as it can be in
financial series, specific models for non constant variance exist:

I ARCH: autoregressive conditional heteroscedasticity
I and their generalization GARCH

For more details refer to:

Brockwell P.J. et Davis R.A. Introduction to Time Series and
Forecasting, Springer, 2001.



AirPassengers
Try to obtain the best model (exponential smoothing, SARIMA) for
the AirPassengers data.
autoplot(AirPassengers)
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The models will be evaluated on a test set made up of the last two
years.
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