Times series forecasting

ARIMA models

Julien JACQUES

Université Lumière Lyon 2

Trend and seasonal pattern estimation

ARMA models

Non-seasonal ARIMA models

Seasonal ARIMA models

Heteroscedastic series

Trend and seasonal pattern estimation

Removing trend + seasonal pattern

In order to modelize the stochastic part of the times series, we have to remove the deterministic part (trend + seasonal pattern)

We will see two methods:

- Estimation by moving average
- Removing by differencing

Time series components

We assume that the time series can be decomposed into:

$$
x_{t}=T_{t}+S_{t}+\epsilon_{t}
$$

where :

- T_{t} is the trend,
- S_{t} is the seasonal pattern (of period T)
- ϵ_{t} is the residual part

Rk: if x_{t} admits a multiplicative decomposition, $\log x_{t}$ admits an additive decomposition.

Moving average

A moving average estimation of the trend T_{t} of order $m(m-\mathrm{MA})$ is:

$$
\hat{T}_{t}=\frac{1}{m} \sum_{j=-k}^{k} x_{t+j}
$$

where $m=2 k+1$.
\hat{T}_{t} is the average of the m values nearby time t.

- greater is m, greater is the smoothing
- for series with seasonnal pattern of period T, we generally choose $m \geq T$.

Moving average

autoplot(co2, series="Data") +
autolayer (ma(co2,6), series="6-MA") +
autolayer (ma(co2,12), series="12-MA") +
xlab("Year") + ylab("CO2 concentration") +
ggtitle("Atmospheric concentrations of CO2 ") + scale_colour_manual(

$$
\begin{aligned}
& \text { values=c("Data"="grey50", "6-MA"="red", "12-MA"="blue"), } \\
& \text { breaks=c("Data", "6-MA", "12-MA")) }
\end{aligned}
$$

Atmospheric concentrations of CO 2

Moving average

Once the trend T_{t} has been estimated, we remove it from the series:

$$
\tilde{x}_{t}=x_{t}-\hat{T}_{t}
$$

Estimation of the seasonal pattern is obtained by simply averaging the values of \tilde{x}_{t} on each season.

Moving average

```
autoplot(decompose(co2,type="additive"))+
    xlab('Year')
```

Decomposition of additive time series

Moving average

Advantage:

- quickly gives an overview of the components of the series

Disadvantage:

- no forecast is possible with such non parametric estimation

Differencing

Let Δ_{T} be the operator of lag T which maps x_{t} to $x_{t}-x_{t-T}$:

$$
\Delta_{T} x_{t}=x_{t}-x_{t-T} .
$$

Differencing

Let x_{t} be a time series with a polynomial trend of order k :

$$
x_{t}=\sum_{j=0}^{k} a_{j} t^{j}+\epsilon_{t} .
$$

Then $\Delta_{T} X_{t}$ admits a polynomial trend of order $k-1$.
Applying Δ_{T} reduces by 1 the degree of the polynomial trend.

```
par(mfrow=c (2,1))
plot(co2)
plot(diff(co2,differences=1))
```


Differencing

Applying $\Delta_{T} k$ times reduces by k the degree of the polynomial trend.

$$
\Delta_{T}^{k}=\underbrace{\Delta_{T} \circ \ldots \circ \Delta_{T}}_{k \text { times }}
$$

```
par(mfrow=c(2,1))
plot(co2)
plot(diff(co2,differences=2))
```


Differencing

Let x_{t} be a time series with a ternd T_{t} and a season pattern S_{t} of period T :

$$
x_{t}=T_{t}+S_{t}+\epsilon_{t}
$$

Then,

$$
\Delta_{T} x_{t}=\left(T_{t}-T_{t-T}\right)+\left(\epsilon_{t}-\epsilon_{t-T}\right)
$$

does not admit any more seasonal pattern.
Applying Δ_{T}^{k} remove a seasonal pattern of period T and a polynomial trend of order k

Differencing

```
par(mfrow=c(2,1))
plot(co2)
plot(diff(co2,lag=12,differences=1))
```


Differencing

Advantage:

- easy to understand
- allows forecast since we can forecast $\Delta_{T} X_{t}$ and then go back to x_{t}

In practice :

- we start by removing the season by applying Δ_{T}
- then, if it visually does not seem stationary, we apply again Δ_{1}
- eventually we apply again Δ_{1}, but we will try to keep small value for the number k of differencing.

Differencing

```
par(mfrow=c(3,1))
plot(co2)
plot(diff(co2,lag=12,differences=1))
plot(diff(diff(co2,lag=12)))
```


Stationary series

x_{t} is a stationary time series if, for all s, the distribution of $\left(x_{t}, \ldots, x_{t+s}\right)$ does not depend on t.

Consequently, a stationary time serie is one whose properties do not depend on the time at which the series is observed.

In particular, a stationary time serie has:
\rightarrow no trend

- no season pattern
(A stationary time serie can have a cyclic pattern since its period is not constant.)

ARMA models, one of the main objects of this course, are models for stationary time serie.

White noise

A white noise is an independent and identically distributed series with zero mean.

A Gaussian white noise ϵ_{t} are i.i.d. observations from $\mathcal{N}\left(0, \sigma^{2}\right)$
In such series, there is nothing to forecast. Or more precisely, the best forecast for such series is its means: 0 .

White noise

After having differecing our time series for removing trend + seasonal pattern, we have to check that the residual series is not a white noise.

In the countrary case, our work is finished: there is nothing else to forecast than trend and seasonal pattern, thus let use exponential smoothing.
Box.test(diff(co2,lag=12, differences=1), lag=10, type="Ljung-Box")
\#\#
\#\# Box-Ljung test
\#\#
\#\# data: diff(co2, lag = 12, differences = 1)
\#\# X-squared $=1415.4$, $\mathrm{df}=10$, p -value $<2.2 \mathrm{e}-16$
Here the p-value is very low, we reject that
diff(co2,lag=12, differences=1) can be assimilted to a white noise

Exercice

We study the number of passengers per month (in thousands) in air transport, from 1949 to 1960. This time series is available on R (AirPassengers).

- Plot this time series graphically. Do you think this process is stationary? Does it show trends and seasonality?
- Apply the differencing method to remove trend and seasonal pattern. Specify the period of the seasonal pattern, the degree of the polynomial trend.
- Does the differenciated series seems stationary?
- Is it a white noise?

Exercice

Same exercice with the Google stock price:
library (fpp2)
plot(goog200)

ARMA models

Autoregressive models $A R_{p}$

An autoregressive model $\left(x_{t}\right)$ of order $p\left(A R_{p}\right)$ can be written:

$$
\begin{equation*}
x_{t}=c+\epsilon_{t}+\sum_{j=1}^{p} a_{j} x_{t-j} \tag{1}
\end{equation*}
$$

where ϵ_{t} is a white noise of variance σ^{2}.
An $A R_{p}$ model is the sum of:

- a random chock ϵ_{t}, independent from previous observation
- a linear regression of the previous obseration $\sum_{j=1}^{p} a_{j} X_{t-j}$

Rk: we restrict $A R_{p}$ models to stationary models, which implies some restrictions on the value of the coefficients a_{j}.

$A R_{p}$ properties

- autocorrelation $\rho(h)$ exponentialy decreases to 0 when $h \rightarrow \infty$
- partial autocorrelation $r(h)$ is null for all $h>p$, and is equal to a_{p} at order p :

$$
\begin{aligned}
& r(h)=0 \quad \forall h>p \\
& r(p)=a_{p}
\end{aligned}
$$

Example of $A R_{1}$

Series ar1

Series ar1

Figure 1: $\operatorname{AR1}\left(x_{t}=0.8 x_{t-1}+\epsilon_{t}\right)$, autocorrelation et partial autocorrelation

Example of $A R_{1}$

Figure 2: $\operatorname{AR1}\left(x_{t}=-0.8 x_{t-1}+\epsilon_{t}\right)$, autocorrelation et partial autocorrelation

Example of $A R_{2}$

Series ar2

Series ar2

Figure 3: $A R_{2}\left(x_{t}=0.9 x_{t-2}+\epsilon_{t}\right)$, autocorrelation et partial autocorrelation

Example of $A R_{2}$

Series ar2

Series ar2

Figure 4: $A R_{2}\left(x_{t}=-0.5 x_{t-1}-0.9 x_{t-2}+\epsilon_{t}\right)$, autocorrelation et partial autocorrelation

It's your turn!

Function arima.sim allows to simulate an $A R_{p}$.
Do it several times and observe the auto-correlations (partial or not)

```
par(mfrow=c(3,1))
modele<-list(ar=c(0.8))
ar1<-arima.sim(modele,1000)
plot.ts(ar1)
acf(ar1)
pacf(ar1)
```


Moving average models $M A_{q}$

A moving average model $\left(x_{t}\right)$ of order $q\left(M A_{q}\right)$ can be written:

$$
X_{t}=c+\epsilon_{t}+b_{1} \epsilon_{t-1}+\ldots+b_{q} \epsilon_{t-q}
$$

where ϵ_{j} for $t-q \leq j \leq t$ are white noises of variance σ^{2}.
Warning: Moving average models should not be confused with moving average smoothing. . .

$M A_{q}$ properties

- autocorrelation $\rho(h)$ is null for all $h>q$:

$$
\sigma(h)=\left\{\begin{array}{lll}
\sigma^{2} \sum_{k=0}^{q-h} b_{k} b_{k+h} & \forall h \leq q \\
0 & \forall h>q & \text { où } b_{0}=1
\end{array}\right.
$$

- partial autocorrelation exponentialy decreases to 0 when $h \rightarrow \infty$
- any $A R_{p}$ can be seen as an $M A_{\infty}$
- under some conditions on the b_{j}, an $M A_{q}$ can be seen as an $A R_{\infty}$

Example of $M A_{1}$

Series ma1

Series ma1

Figure 5: $M A_{1}\left(x_{t}=\epsilon_{t}-0.8 \epsilon_{t-1}\right)$, autocorrelation et partial autocorrelation

Example of $M A_{1}$

Figure 6: $M A_{1}\left(x_{t}=\epsilon_{t}+0.8 \epsilon_{t-1}\right)$, autocorrelation et partial autocorrelation

Example of $M A_{3}$

Series ma3

Figure 7: $M A_{3}$, autocorrelation et partial autocorrelation

It's your turn!

Function arima.sim allows to simulate an $M A_{q}$.
Do it several times and observe the auto-correlations (partial or not)

```
modele<-list(ma=c(0.8))
ma1<-arima.sim(modele,1000)
plot.ts(ma1)
acf(ma1)
pacf(ma1)
```


Autoregressive moving average model $A R M A_{p q}$

An autoregressive moving average model $A R M A_{p q}$ can be written:

$$
x_{t}=c+\sum_{k=1}^{p} a_{k} x_{t-k}+\sum_{j=0}^{q} b_{j} \epsilon_{t-j}
$$

where ϵ_{j} for $t-q \leq j \leq t$ are white noise of variance σ^{2}.

Properties

- autocorrelation of an $A R M A_{p, q}$ exponentially descreases to 0 when $h \rightarrow \infty$, from order $q+1$.

Example of $A R M A_{2,2}$

Series arma22

Series arma22

Figure 8: $A R M A_{2,2}$, autocorrelation et partial autocorrelation

Properties of $M A_{q}, A R_{p}$ and $A R M A_{p, q}$

	$M A_{q}$	$A R_{p}$	$A R M A_{p, q}$
ACF	$\rho(h)=0 \forall h>q$	$\lim _{h \rightarrow \infty} \rho(h)=0$	$\forall h>q, \lim _{h \rightarrow \infty} \rho(h)=0$
PACF	$\lim _{h \rightarrow \infty} r(h)=0$	$r(h)=0 \forall h>p$	
		et $r(p)=a_{p}$	

These properties may help to identify the order of a $M A_{q}$ or an $A R_{p} \ldots$

Non-seasonal ARIMA models

Non-seasonal ARIMA models

x_{t} is an $A R I M A_{p, d, q}$ model if $\Delta^{d} x_{t}$ is an $A R M A_{p, q}$ model ($\Delta^{d} x_{t}$ is x_{t} differenced d times)

ARIMA means Auto Regressive Integrated Moving Average
Selecting the orders p, d and q can be difficult.

Understanding ARIMA models

The intercept c of the model and the differencing order d have an important effect on the long-term forecasts:

- $c=0$ and $d=0 \Rightarrow$ long-term forcasts go to 0
- $c=0$ and $d=1 \Rightarrow$ long-term forcasts go to constant $\neq 0$
- $c=0$ and $d=2 \Rightarrow$ long-term forcasts will follow a straight line
- $c \neq 0$ and $d=0 \Rightarrow$ long-term forcasts go to the mean of the data
- $c \neq 0$ and $d=1 \Rightarrow$ long-term forcasts will follow a straight line
- $c \neq 0$ and $d=2 \Rightarrow$ long-term forcasts will follow a quadratic trend

Some particular ARIMA models

- $\operatorname{ARIMA}_{(0,1,0)}=$ random walk
- $\operatorname{ARIMA}_{(0,1,1)}$ without constant $=$ simple exponential smoothing
- ARIMA $_{(0,2,1)}$ without constant $=$ linear exponential smoothing
- $\operatorname{ARIMA}_{(1,1,2)}$ with constant $=$ damped-trend linear exponential smoothing

Estimation

Once orders (p, d, q) are selected, maximum likelihood estimation (MLE) through optimization algorithms is used to estimate model parameters $\theta=\left(c, a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q}\right)$

Model selection

- MLE can not be used to choose orders (p, d, q) : higher are $(p, d, q) \Rightarrow$ higher is the number of parameters \Rightarrow higher is the flexibility of the model \Rightarrow higher is the likelihood
- MLE should be penalized by the complexity of the model $(\simeq$ number of parameters $\nu=p+q+2$):
- AIC $=-2 \log L(\hat{\theta})+2 \nu$
- $B I C=-2 \log L(\hat{\theta})+\ln (n) \nu$
- or for small sample size $A I C c=A I C+\frac{2 \nu(\nu+1)}{n-\nu-1}$
- or directly compute RMSE on test data

Example: US consumption expenditure

The following data contains quarterly percentage changes in US consumption expenditure

```
library(fpp2)
autoplot(uschange[,"Consumption"]) +
    xlab("Year") + ylab("Quarterly percentage change")
```


Example: US consumption expenditure

Arima(uschange[,"Consumption"], order=c (2, 0, 2))
\#\# Series: uschange[, "Consumption"]
\#\# ARIMA $(2,0,2)$ with non-zero mean
\#\#
\#\# Coefficients:

\#\#	ar1	ar2	ma1	ma2	mean
\#\#	1.3908	-0.5813	-1.1800	0.5584	0.7463
\#\# s.e.	0.2553	0.2078	0.2381	0.1403	0.0845

\#\#
\#\# sigma~2 estimated as 0.3511: log likelihood=-165.14 \#\# AIC=342.28 \quad AIC $=342.75 \quad$ BIC=361.67

Warning: the ar1 parameter 1.3908 is the effect of $\left(x_{t-1}-c\right)$ on x_{t}, where c is the intercept of the model (mean).

How to choose order (p, d, q) in practice

In practice, you have two choices, depending on your goal:

- to obtain quickly a good forecast, convenient if you have a lot of series to predict
- let's use automatic function
auto.arima(uschange[,"Consumption"])
\#\# Series: uschange[, "Consumption"]
\#\# ARIMA $(1,0,3)(1,0,1)$ [4] with non-zero mean
\#\#
\#\# Coefficients:

\#\#	ar1	ma1	ma 2	$\mathrm{ma3}$	sar1	sma1
\#\#	-0.3548	0.5958	0.3437	0.4111	-0.1376	0.3834
\#\# s.e.	0.1592	0.1496	0.0960	0.0825	0.2117	0.1780

\#\#
\#\# sigma^2 estimated as 0.3481: log likelihood=-163.34
\#\# AIC=342.67 AICc=343.48 BIC=368.52

How to choose order (p, d, q) in practice

In practice, you have two choices, depending on your goal:

- to obtain a good forecast and an understanding of the model
- let's start by differencing the series if needed, in order to obtain something visually stationary
- look at the ACF and PACF plot ot identify possible models
- take eventually into account knowledge on the series (knwon autocorrelation...)
- estimate models and select the best one by AICc / AIC / BIC

Example: US consumption expenditure

```
autoplot(uschange[,"Consumption"]) +
    xlab("Year") + ylab("Quarterly percentage change")
```


The series seems approximatively stationary...

Example: US consumption expenditure

 ggAcf(uschange[,"Consumption"])
ggPacf(uschange[,"Consumption"])

May be an $A R_{3}$ or an $M A_{3}$

Example: US consumption expenditure

```
Arima(uschange[,"Consumption"],order=c(3,0,0))
## Series: uschange[, "Consumption"]
## ARIMA(3,0,0) with non-zero mean
##
## Coefficients:
\begin{tabular}{lrrrr} 
\#\# & ar1 & ar2 & ar3 & mean \\
\#\# & 0.2274 & 0.1604 & 0.2027 & 0.7449 \\
\#\# s.e. & 0.0713 & 0.0723 & 0.0712 & 0.1029
\end{tabular}
##
## sigma^2 estimated as 0.3494: log likelihood=-165.17
## AIC=340.34 AICc=340.67 BIC=356.5
```


Example: US consumption expenditure

```
Arima(uschange[,"Consumption"],order=c(0,0,3))
## Series: uschange[, "Consumption"]
## ARIMA(0,0,3) with non-zero mean
##
## Coefficients:
\begin{tabular}{lrrrr} 
\#\# & ma1 & ma2 & ma3 & mean \\
\#\# & 0.2403 & 0.2187 & 0.2665 & 0.7473 \\
\#\# s.e. & 0.0717 & 0.0719 & 0.0635 & 0.0739
\end{tabular}
##
## sigma^2 estimated as 0.354: log likelihood=-166.38
## AIC=342.76 AICc=343.09 BIC=358.91
```


Example: US consumption expenditure

- AICc criterion slightly better for $A R_{3}(340.34)$ than for $M A_{3}$ (342.76)
- Note that AICc for $A R_{3}$ is better than for the model chosen by auto.arima! That is because all the possible models are not tested, but a stepwise search is used (see Hyndman, p245)

Forecasting

Once the model is selected, it will be use to forecast the future of the series.

For an $A R_{p}$:

- forecasting at horizon $h=1$:

$$
\hat{x}_{n+1}=\hat{c}+\hat{a}_{1} x_{n}+\ldots+\hat{a}_{p} x_{n+1-p}
$$

95% prediction interval can be obtained by: $\pm 1.96 \hat{x}_{n+1}$

- forceasting at horizon $h=2$:

$$
\hat{x}_{n+2}=\hat{c}+\hat{a}_{1} \hat{x}_{n+1}+\hat{a}_{2} x_{n}+\ldots+\hat{a}_{p} x_{n+2-p}
$$

- and so on...

Forecasting

Once the model is selected, it will be use to forecast the future of the series.

For an $M A_{q}$:

$$
\hat{x}_{n+1}=\hat{c}+\hat{b}_{1} \hat{\epsilon}_{n}+\ldots+\hat{b}_{q} \hat{\epsilon}_{n+1-q}
$$

where $\hat{\epsilon}_{n}=x_{n}-\hat{x}_{n}$ and $\hat{\epsilon}_{n+1-q}=x_{n+1-q}-\hat{x}_{n+1-q}$

Example: US consumption expenditure

fit=Arima(uschange[,"Consumption"], order=c (3,0,0)) autoplot(forecast(fit,h=10))

Forecasts from $\operatorname{ARIMA}(3,0,0)$ with non-zero mean

Exercice: uschange

The following time series contain percentage changes in personal disposable income and unemployment rate for the US, from 1960 to 2016.
autoplot(uschange[,c("Income", "Unemployment")])

Choose an ARIMA model and forecast the income and unemployment rate for 2017 to 2020.

Seasonal ARIMA models

Backshift notation

A convenient notation for ARIMA models is backshift notation:

$$
\begin{aligned}
B x_{t} & =x_{t-1} \\
B\left(B x_{t}\right) & =B^{2} x_{t}=x_{t-2}
\end{aligned}
$$

With this notation:

$$
\begin{aligned}
\Delta x_{t} & =(1-B) x_{t}=x_{t}-x_{t-1} \\
\Delta_{T} x_{t} & =\left(1-B^{T}\right) x_{t}=x_{t}-x_{t-T} \\
\Delta^{d} x_{t} & =(1-B)^{d} x_{t} \\
\Delta_{T}^{d} x_{t} & =\left(1-B^{T}\right)^{d} x_{t}
\end{aligned}
$$

Backshift notation

The backshift notation of an $A R I M A_{p, d, q}$ model is:

$$
\underbrace{\left(1-a_{1} B-\ldots-a_{p} B^{p}\right)}_{A R_{p}} \underbrace{(1-B)^{d} x_{t}}_{d \text { differences }}=c+\underbrace{\left(1+b_{1} B-\ldots+b_{q} B^{q}\right)}_{M A_{q}} \epsilon_{t}
$$

For instance, an $A R I M A_{1,1,1}$ without constant model is:

$$
\left(1-a_{1} B\right)(1-B) x_{t}=\left(1+b_{1} B\right) \epsilon_{t}
$$

Rk: R uses a slightly different parametrization (see Hyndman p237)

Seasonal ARIMA models

A seasonnal ARIMA (SARIMA) model is formed by including additional seasonal terms in an ARIMA:

where T is the period of the seasonal part.
Corresponding backshift notations is, for an $\operatorname{SARIMA}_{(1,1,1)(1,1,1)_{12}}$ without constant model is:
$\left(1-a_{1} B\right)\left(1-a_{2} B^{12}\right)(1-B)\left(1-B^{12}\right) x_{t}=\left(1+b_{1} B\right)\left(1+b_{2} B^{12}\right) \epsilon_{t}$

SARIMA properties

The seasonal part of an AR or MA model can be seen in the seasonal lags of the PACF and ACF.

For instance:

- an $\operatorname{SARIMA}_{(0,0,0)(0,0,1)_{12}}$ will show:
- a spike at lag 12 in the ACF, and no other significant spikes
- exponential decay in the seasonal lags of the PACF (i.e. at lag 12, 24, 36...)
- an $\operatorname{SARIMA}_{(0,0,0)(1,0,0)_{12}}$ will show:
- a spike at lag 12 in the PACF, and no other significant spikes
- expoenntial decay in the seasonal lags of the ACF

Example: European quaterly retail trade

```
autoplot(euretail) + ylab("Retail index") + xlab("Year")
```


This time series is clearly non stationary: trend an probably seasonal pattern of period 4 (quaterly retrail trade...)

Example: European quaterly retail trade

Let's differenciate
ggtsdisplay(diff(euretail,lag=4))
or equivalently
euretail \%>\% diff(lag=4) \% \% \% ggtsdisplay()

The linear decay of the ACF suggests that there is still a trend

Example: European quaterly retail trade

Let's differenciate again euretail \% \% \% diff(lag=4) \%>\% diff() \% $>\%$ ggtsdisplay()

Example: European quaterly retail trade

- the slightly significant ACF at lag 1 suggests a non-seasonnal $M A_{1}$
- the significant ACF at lag 4 (the size of the period) suggests a seasonnal $M A_{1}$

Consequently we can try an $\operatorname{SARIMA}_{(0,1,1)(0,1,1)_{4}}$.
Rk: similar reasoning with PACF suggests $\operatorname{SARIMA}_{(1,1,0)(1,1,0)_{4}}$

Example: European quaterly retail trade

Let's estimate an $\operatorname{SARIMA}_{(0,1,1)(0,1,1)_{4}}$
fit=Arima(euretail, order=c $(0,1,1)$, seasonal=c $(0,1,1))$

Example: European quaterly retail trade

Let's have a look to the residual
fit \%>\% residuals() \% \% \% ggtsdisplay()

There is still significant ACF and PACF at lag 2. We can add some additional non-seasonal terms (for instance with $\left.\operatorname{SARIMA}_{\left.(0,1,2)(0,1,1)_{4}\right)}\right)$

Example: European quaterly retail trade

Let's estimate an $\operatorname{SARIMA}_{(0,1,2)(0,1,1)_{4}}$
euretail \%>\%
Arima(order=c $(0,1,2)$, seasonal=c $(0,1,1)) \%>\%$ residuals() \% \% \% ggtsdisplay()

There is still significant ACF and PACF at lag 3.

Example: European quaterly retail trade

Let's estimate an $\operatorname{SARIMA}_{(0,1,3)(0,1,1)_{4}}$
fit=Arima(euretail, order=c $(0,1,3)$, seasonal=c $(0,1,1))$ fit \% \% \% residuals() \% \% \% ggtsdisplay()

Now the model seems to have capture all auto-correlations.

Example: European quaterly retail trade

 checkresiduals(fit)Residuals from $\operatorname{ARIMA}(0,1,3)(0,1,1)[4]$

\#\#
\#\# Ljung-Box test
\#\#
\#\# data: Residuals from $\operatorname{ARIMA}(0,1,3)(0,1,1)[4]$
\#\# Q* $=0.51128, \mathrm{df}=4, \mathrm{p}$-value $=0.9724$
\#\#
\#\# Model df: 4. Total lags used: 8

Example: European quaterly retail trade

The model passes all checks: it is ready for forecasting fit \%>\% forecast(h=12) \% \% \% autoplot()

Forecasts from $\operatorname{ARIMA}(0,1,3)(0,1,1)[4]$

Exercice: San Francisco precipitation

San Fransisco precipitation from 1932 to 1966 are available here: http://eric.univ-lyon2.fr/~jjacques/Download/DataSet/sanfran.dat

- Try to improve your forecast obtained with exponential smoothing

Exercice: Varicella dataset

- Try to improve your forecast obtained with exponential smoothing

Heteroscedastic series

Stabilizing the variance

Previous models assume that the variance is stable in time.
For some series variance can decrease or increase.
Taking the log can help to stabilize it.

$$
\begin{aligned}
& \text { cbind(AirPassengers,log(AirPassengers)) \%>\% } \\
& \text { autoplot(facets=TRUE) }
\end{aligned}
$$

Stabilizing the variance

Rahther than log transformation we can also use power transformation (square roots...).

A more general method for stabilizing the variance is to use Box-Cox transformation:

$$
y_{t}= \begin{cases}\log \left(x_{t}\right) & \text { if } \lambda=0 \\ \left(x_{t}^{\lambda}-1\right) / \lambda & \text { if } \lambda \neq 0\end{cases}
$$

Box-Cox transformation

```
x=seq(0,10,0.01)
plot(x,log(x),type='l',ylim=c(-4,4))
lambda=-0.5;lines(x, (x^lambda-1)/lambda,col=2)
lambda=-0.25;lines(x, (x^lambda-1)/lambda, col=3)
lambda=0.25;lines(x, (x^lambda-1)/lambda, col=4)
lambda=0.5;lines(x, (x^lambda-1)/lambda, col=5)
legend('bottomright', col=1:5,lty=1,legend=c('log','lambda=-0.5',
```


Stabilizing the variance

The BocCox. lambda() function will choose a value of λ for you (lambda=BoxCox.lambda(AirPassengers))
\#\# [1] -0. 2947156 autoplot(BoxCox(AirPassengers, lambda))

Stabilizing the variance

The BocCox transformation is available as an option in the hw or auto.arima functions.

Automatic choice of λ is obtained by selecting: lambda="auto".

ARCH and GARCH models

Such techniques allows to stabilize a variance which monotically increases or decreases.

For more complexe variations of the variance, as it can be in financial series, specific models for non constant variance exist:

- ARCH: autoregressive conditional heteroscedasticity
- and their generalization GARCH

For more details refer to:
Brockwell P.J. et Davis R.A. Introduction to Time Series and Forecasting, Springer, 2001.

AirPassengers

Try to obtain the best model (exponential smoothing, SARIMA) for the AirPassengers data.
autoplot(AirPassengers)

The models will be evaluated on a test set made up of the last two years.

