
t-SNE and MDS

Julien JACQUES

Université Lyon 2

Introduction

Multi-Dimensional Scaling (MDS)

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Uniform Manifold Approximation and Projection (UMAP)

Introduction

Low dimensional data representation

I Visualizing data is crucial for many machine learning
application.

I Representing a data set X ∈ Rn×p is difficult since p ≥ 3.

I Several projection methods have been introduced to project the
data points from Rp in a space a smaller dimension (typically
R2):
I Principal Component Analysis (PCA)
I Multi Dimensional Scaling (MDS)
I t-Distributed Stochastic Neighbor Embedding (t-SNE)
I Uniform Manifold Approximation and Projection (UMAP)

Iris data set

plot(iris[,-5],col=iris$Species)

Sepal.Length

2.
0

2.
5

3.
0

3.
5

4.
0

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
5

1.
0

1.
5

2.
0

2.
5

2.0 2.5 3.0 3.5 4.0

Sepal.Width

Petal.Length

1 2 3 4 5 6 7

0.5 1.0 1.5 2.0 2.5

4.
5

5.
5

6.
5

7.
5

1
2

3
4

5
6

7

Petal.Width

PCA
PCA projects the data points s.t. the variance after projection be
maximum ⇔ the Euclidean distance between points are maximally
preserved
library("FactoMineR")
res.pca <- PCA(iris[,-5],graph = F)
plot(res.pca,choix="ind",col.ind=iris$Species,

graph.type = "classic",label='none')

−4 −2 0 2 4 6

−
3

−
2

−
1

0
1

2
3

PCA graph of individuals

Dim 1 (72.96%)

D
im

 2
 (

22
.8

5%
)

MDS

loc <- cmdscale(dist(iris[,-5]))
plot(loc,xlab="",ylab="",col=iris$Species,

ylim=c(-2,2),xlim=c(-4,4),pch=16)
abline(v=0,lty=2);abline(h=0,lty=2)

−4 −2 0 2 4

−
2

−
1

0
1

2

t-SNE

library("Rtsne")
iris_unique <- unique(iris) # Remove duplicates
iris_matrix <- as.matrix(iris_unique[,1:4])
tsne_out <- Rtsne(iris_matrix,pca=FALSE,perplexity=30,theta=0.0) # Run TSNE
plot(tsne_out$Y,col=iris_unique$Species, asp=1)

−20 −10 0 10 20 30

−
20

−
15

−
10

−
5

0
5

10
15

tsne_out$Y[,1]

ts
ne

_o
ut

$Y
[,2

]

Multi-Dimensional Scaling (MDS)

MDS

We do not use (know ?) the data matrix

X = (xij)1≤i≤n,1≤j≤p

but only the matrix of distances (or dissimilarities) between
individuals

D = (dij)1≤i≤n,1≤j≤n

Interest:

I to be able to graphically observe the same data set through
different “optics” and even to compare the representations.
Each optic is defined by the way we measure distances or
dissimilarities between objects

I to visualize link between variables (from matrix of correlations)

Distance
D = (dij)1≤i≤n,1≤j≤n is a matrix of distance if:

I dii = 0
I dij = dji ≥ 0 for all i 6= j
I dij ≤ dik + dkj

Examples:

I Euclidean distance:

dij = (
p∑

`=1
(xi` − xj`)2)1/2

I Manhattan distance :

dij =
p∑

`=1
|xi` − xj`|

I Mahalanobis distance (when variables are of different scales):

dij = (
p∑

`=1

1
σ2

`

(xi` − xj`)2)1/2

where σ2
` is the variance of variable `

About the choice among distances

To go further, have a look to the following paper which explain,
before introducing new distances, that the Manhattan distance is
preferable to the Euclidean distance in some high dimension
machine learning task (as clustering):

Aggarwal, C.C., Hinneburg, A., Keim, D.A. (2001). On the
Surprising Behavior of Distance Metrics in High Dimensional Space.
In: Van den Bussche, J., Vianu, V. (eds) Database Theory — ICDT
2001. ICDT 2001.

Dissimilarity

D = (dij)1≤i≤n,1≤j≤n is a matrix of dissimilarity if:

I dij = dji ≥ dii

Dissimilarity are especially useful for binary variables:

I Jaccard dissimilarity:
1− aij

p − dij

where:
I 0 ≤ aij ≤ p is the number variables equal to 1 for individuals i

and j
I 0 ≤ dij ≤ p is the number variables equal to 0 for individuals i

and j
I Concordance dissimilarity: 1− aij +dij

p
I Dice dissimilatiry: 1− 2aij

aij +p−dij

Exercice 1

Compute the different dissimilarity indices for individuals
(1, 1, 0, 0, 0) and (1, 0, 1, 0, 0).

Goal of Classical MDS

Given a dissimilarity (distance) matrix D, Classical MDS seeks to
find x̂1, . . . , x̂n ∈ Rm (principal coordonates) such that

dij ' ||x̂i − x̂j ||2

in the sense that we try to minimize∑
i ,j

(dij − ||x̂i − x̂j ||2)2

Rk: the representation x̂1, . . . , x̂n is not unique, since adding any
constant c does not change the distances.

Classical MDS algorithm

Let assume the we have a matrix D of Euclidean distances. The
principal coordinates of MDS can be obtained by:

1. Set up the squared proximity matrix: D(2) = (−1
2d

2
ij)i ,j

2. Apply double centering: B = CD(2)C with C = In − 1
n1n (In is

the n × n identity matrix and 1n is the n × n matrix of 1.)
3. Determine the m largest eigenvalues λ1, . . . , λm and

eigenvectors e1, . . . , em of B
4. Compute the projection (principal coordinates) X̂ = EmΛ1/2

m
where Em is the matrix of eigenvectors and Λm the diagonal
matrix of eignevalues

Classical MDS and PCA

When D is the Euclidean distance, PCA (not normalized) and
Classical MDS are equivalent. The principal coordinates X̂ (m) are
equal to

√
n times the principal components of the PCA.

The interest of MDS is to use other distance or dissimilarities.

Classical MDS and PCA
par(mfrow=c(1,2))
res.pca <- PCA(iris[,-5],graph = F,scale.unit =F)
plot(res.pcaindcoord[,1:2],col=iris$Species,

ylim=c(-2,2),xlim=c(-4,4),pch=16)
loc <- cmdscale(dist(iris[,-5]))
abline(v=0,lty=2);abline(h=0,lty=2)
plot(loc,xlab="",ylab="",col=iris$Species,

ylim=c(-2,2),xlim=c(-4,4),pch=16)
abline(v=0,lty=2);abline(h=0,lty=2)

−4 −2 0 2 4

−
2

−
1

0
1

2

Dim.1

D
im

.2

−4 −2 0 2 4

−
2

−
1

0
1

2

Classical MDS in R

swiss.x <- as.matrix(swiss[, -1])
loc <- cmdscale(dist(swiss.x))
plot(loc,type="n")
text(loc,labels=as.character(1:nrow(swiss.x)))

−60 −40 −20 0 20 40

−
60

−
40

−
20

0
20

loc[,1]

lo
c[

,2
]

1
2

3

4

5

6

7
8

9

10

11

12

13

14

15
16

17

18 19

20

2122

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

Metric MDS

Metric MDS seeks to find x̂1, . . . , x̂n ∈ Rm such that

dij ' d̂ij = d(x̂i , x̂j)

where d is any distance in the projected space.

The proximity between dij and d̂ij is measured by a stresse function,
which usually can be the squared loss stress function:

L(d̂ij) =
(∑

i<j(dij − d̂ij)2∑
d2

ij

)1/2

Metric MDS: Sammon mapping

Other stress function can be considered.

Sammon mapping consider an alternative stress:

LS(d̂ij) = 1∑
i<j dij

∑
i<j

(dij − d̂ij)2

dij

By dividing each (dij − d̂ij)2 by dij , Sammon mapping preserves the
small dij , giving them a greater degree of importance in the fitting
procedure than for larger values of dij

Sammon mapping in R

library(MASS)
swiss.x=as.matrix(swiss[, -1])
swiss.sam=sammon(dist(swiss.x),trace=F)
plot(swiss.sam$points,type="n")
text(swiss.sam$points,labels=as.character(1:nrow(swiss.x)))

−60 −40 −20 0 20 40

−
60

−
40

−
20

0
20

swiss.sam$points[,1]

sw
is

s.
sa

m
$p

oi
nt

s[
,2

]

12

3

4

5

6

7
8

9

10

11

12

13

14

15
16

17

18
19

20

21 22

23

24

25

26

27

28

29

30

31 32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

Non-Metric MDS

Non-Metric MDS seeks to find x̂1, . . . , x̂n ∈ Rm such that, for
some monotonic function f , f (d̂ij) be as close as possible from dij :

dij ' f (d̂ij)

Consequently, only the order of dissimilarities is important rather
than the amount of dissimilarities. Indeed:

dij < di` ⇔ f (dij) < f (di`)

The f (dij) are called disparities.

Non-metric MDS should then be used when the distance or
dissimilarities are only known from an ordinal point of view: the
values dij is arbitrary, just the fact that dij is lower or greater than
dik is important.

Kruskal’s Non-metric MDS

Using the usual squared loss stress, Kruskal’s Non-metric MDS seek
to minimize:

L(d̂ij) =
(∑

i<j(dij − f (d̂ij))2∑
d2

ij

)1/2

according to both d̂ij (i.e. x̂i ’s) and f .

Kruskal’s Non-metric MDS in R

library(MASS)
swiss.x=as.matrix(swiss[, -1])
swiss.sam=isoMDS(dist(swiss.x),trace=F)
plot(swiss.sam$points,type="n")
text(swiss.sam$points,labels=as.character(1:nrow(swiss.x)))

−60 −40 −20 0 20 40

−
60

−
40

−
20

0
20

swiss.sam$points[,1]

sw
is

s.
sa

m
$p

oi
nt

s[
,2

]

1
2

3

4

5

6

7
8

9

10

11

12

13

14

15
16

17

18 19

20

21
22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

MDS

Conclusion:

I when working with Euclidean distance and when only D is
available (and not X), classical MDS can be used in place of
PCA

I when working with another dissimilarity (or non Euclidean
distance), Metric MDS should be used.

I when in D only the order is significant and not the value of the
distances, Non-metric MDS should be used.

To go further:

B. Ghojogh et al, Multidimensional Scaling, Sammon Mapping, and
Isomap: Tutorial and Survey, arXiv, 2020.

Application 1: Airlines distances

library(cluster.datasets)
data(airline.distances.1966)
print(airline.distances.1966[1:6,1:6])

code AZ BD BN BY BS
1 AZ 0 39 22 59 54
2 BD 39 0 20 20 81
3 BN 22 20 0 39 74
4 BY 59 20 39 0 93
5 BS 54 81 74 93 0
6 CO 33 8 18 27 73

Represent into a 2-dimensional space the principal cities of the
world from their airline distances.

Application 2: Letter recognition

Wolford and Hollingsworth (1974) were interested in the confusions
made when a person attempts to identify letters of the alphabet
viewed for some milliseconds only. A confusion matrix was
constructed that shows the frequency with which each stimulus
letter was mistakenly called something else. A section of this matrix
is shown in the table below.

Example: Letter recognition

Wolford and Hollingsworth (1974) were interested in the
confusions made when a person attempts to identify letters of the
alphabet viewed for some milliseconds only. A confusion matrix
was constructed that shows the frequency with which each
stimulus letter was mistakenly called something else. A section of
this matrix is shown in the table below.

Is this a dissimilarity matrix?

30 / 41

I is-it a dissimilarity matrix?
I which MDS method is appropriated for representing these data?

t-Distributed Stochastic Neighbor Embedding
(t-SNE)

t-SNE

I We seek for a matrix X̂ ∈ Rq which correctly represent X ∈ Rp

(q < p).

I Neighbors x̂j of x̂i in the reduced (projection) space should be
the same than neighbors xj of xi in the initial space.

I Neighborhood of xi is represented by the conditional probability
pij = p(xj |xi) than xj be a neighbor of xi

I So we look for projection x̂i s.t. p̂ij ' pij

L.v.d. Maaten and G. Hinton. Visualizing Data using t-SNE.
Journal of Machine Learning Research, 9(86) :2579–2605, 2008.

t-SNE
I The conditional probability than xj is a neighbor of xi is

evaluated thanks to the value of the Gaussian density, centered
in xi , evaluated in xj :

pij = exp(−||xi − xj ||2/2σ2)∑
k 6=i exp(−||xi − xk ||2/2σ2)

with the convention pii = 0 s.t.
∑

j pij = 1. The variance σ2 is
an hyper-parameter of the method, called perplexity

I In the reduced space, the p̂ij are computed using a Student
distribution with 1 degree of freedom:

p̂ij = (1 + ||x̂i − x̂j ||2)−1∑
k 6=i (1 + ||x̂i − x̂k ||2)−1

Using this heavy-tailed distribution allows a better distingstion
of farest neighbors

t-SNE optimization

The proximity between distribution p̂ij and pij is measured with the
Kullback-Leibler divergence:

KL(p|p̂) =
∑

ij
pij log pij

p̂ij

Gradient descent optimization is considered for minimizing KL(p|p̂)
in function of p̂ (i.e. x̂i ’s)

Some limits of t-SNE

I Optimization is stochastic (depend on the initialization)
I Representation depends on some optimization hyper-parameter

and on the perplexity
I It is not possible to project a new points: the otpimization

should be reload
I It is not possible to come back to the initial point from the

reduced space.

t-SNE in R
library("Rtsne")
swiss.x=as.matrix(swiss[, -1])
par(mfrow=c(1,2))
tsne_out <- Rtsne(swiss.x,pca=FALSE,perplexity=10,theta=0.0)
plot(tsne_out$Y,,type="n")
text(tsne_out$Y,labels=as.character(1:nrow(swiss.x)))
tsne_out <- Rtsne(swiss.x,pca=FALSE,perplexity=5,theta=0.0)
plot(tsne_out$Y,,type="n")
text(tsne_out$Y,labels=as.character(1:nrow(swiss.x)))

−20 −15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

20

tsne_out$Y[,1]

ts
ne

_o
ut

$Y
[,2

]

1

23

4

5

6

78
910

11

12
13

14
15

16

17

1819

20

21
22

23
24

25

26

27
28

29

30

3132
33

34
35

36
37

38

39

4041
42

43

44
45

4647

−150 −100 −50 0 50 100

−
50

0
50

10
0

tsne_out$Y[,1]

ts
ne

_o
ut

$Y
[,2

]

1

234

5

6

78

9
10

11

12

13

14

15

16

17

1819

20

21

22

23 24

25

26

27

28

29

30

31
32

33

34

35

36

37

38

39

40
41

42

43

44

45

46
47

Application 3: MNIST

Use different representation method (PCA, MDS, t-SNE) for
representing (a subset of) the MNIST data set:
http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

Uniform Manifold Approximation and Projection
(UMAP)

UMAP

UMAP is a recent competitors of t-SNE which should:

I be faster
I best preserve the global structure of data

McInnes et al., (2020). UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction, arXiv 1802.03426.

What does UMAP

Similarly to t-SNE, UMAP:

I build a high-dimensional neighborhood graph (fuzzy simplicial
complex), which is a weighted graph with weight depending of
the probability that 2 points are connected
I 2 points are connected if the balls of radius r centred in these

points overlaps
I the choice of r is locally adapted depending of the distance to

the k nearest neighboors
I optimize a low-dimensional graph as closest as possible to the

high-dimensional one (similar to t-SNE but with some tricks to
speed up the optimisation)

UMAP hyper-parameters

I nearest neighboors:
I low values lead to focus on local structure
I high values lead to focus on global structure

I min-dist: the minimum distance between points in
low-dimensional space

Let’s have a look to the following animations for an idea of these
hyper-parameter :
https://pair-code.github.io/understanding-umap/

https://pair-code.github.io/understanding-umap/

UMAP in R
Example of use with the iris data set
library("umap")
custom.config <- umap.defaults
custom.config$n_neighbors=10
custom.config$min_dist=.5

iris.umap = umap(iris[,1:4], config=custom.config)
plot(iris.umap$layout,col=iris$Species)

−10 −5 0 5 10 15

−
4

−
2

0
2

4
6

iris.umap$layout[,1]

iri
s.

um
ap

$l
ay

ou
t[,

2]

UMAP in R

But be careful with such representations, which can sometimes
exhibit some structures where none exists . . .
data=matrix(runif(3000),1000,3)
x = umap(data)
plot(x$layout)

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

x$layout[,1]

x$
la

yo
ut

[,2
]

Application 4: MNIST

Compare UMAP to the other representation method for a MNIST
sample.

Play with hyper-parameters.

	Introduction
	Multi-Dimensional Scaling (MDS)
	t-Distributed Stochastic Neighbor Embedding (t-SNE)
	Uniform Manifold Approximation and Projection (UMAP)

