## **1** Introduction

# Applying a predictive model on new unlabeled sample. Estimation of the generalization error rate by resampling approach.

**Model deployment.** Model deployment is the last step of the Data Mining process. In its simplest form in a supervised learning task, it consists in to apply a predictive model on unlabeled cases. Most of the tools have this kind of capability. The other alternatives are programming a specific tool (in Java for instance, but it can be very costly if we must repeatedly implement models in various contexts), using SQL queries (especially useful when the model can be expressed in a set of rules), or using the PMML framework<sup>1</sup>.

Sipina can apply a learned classifier on a data file with unlabeled cases. There are some constraints however: the data file must be in the Sipina binary format (FDM<sup>2</sup>), we must then convert the data file before; we must apply the model (the most often a decision tree but it can be any classifier available into Sipina) into the Sipina environment, we cannot export the model.

**Generalization error rate estimation**. Applying the model on unseen cases is a very useful functionality. But it would be even more interesting if we could announce its accuracy. Indeed, a misclassification can have dramatic consequences. We must measure the risk we take when we make decisions from a predictive model. An indication about the performance of a classifier is important when we decide or not to deploy it.

The usual approach to assess the accuracy of a classifier is to subdivide the dataset into train and test samples. The first is used for the learning phase; the second is used for the construction of the confusion matrix comparing the observed values of the class attribute and the predicted values of the model. We then obtain an unbiased estimation of the indicators (error rate, recall, precision, etc.). But this approach is not judicious if we have a moderate size dataset. Indeed, on the one hand, we penalize the construction of the classifier by using a reduced size sample during the learning phase. On the other hand, we have often not enough instances into the test sample in order to obtain an accurate estimation of the error rate.

Thus, in the moderate size dataset context, it is more suited to use a resampling approach such as bootstrap to evaluate the generalization error rate. The aim is to obtain an estimation of the error rate of the classifier learned on the whole dataset. During the resampling process, we can learn many models. Studying these individual models has not an intrinsic interest. They contribute only for the error rate evaluation. This is the reason for which they are not displayed in the majority of the Data Mining tools.

<sup>&</sup>lt;sup>1</sup><u>http://www.dmg.org/</u>

<sup>&</sup>lt;sup>2</sup> See <u>http://data-mining-tutorials.blogspot.com/2009/11/sipina-supported-file-format.html</u> about the supported file formats in Sipina.

#### SIPINA

**Organization of this tutorial.** In this tutorial, we show how to learn a decision tree from a dataset, how to apply the classifier on unlabeled cases, and how to evaluate the generalization error rate using the bootstrap approach. The samples are gathered into Excel workbook. There are several sheets: (1) the dataset used for the learning process and the bootstrap error rate evaluation; (2) the unlabeled instances, only the descriptors are available; (3) the labels of the instances from the second sheet, we can evaluate the true classifier accuracy, we will compare this last one with the value estimated by the bootstrap approach.

## 2 Dataset

We use the WINE<sup>3</sup> (<u>wine\_deployment.xls</u><sup>4</sup>) dataset. We want to classify alcohols from their chemical properties. The class attribute has 3 values. There are 12 predictive continuous descriptors.

We have the labeled dataset into the first sheet (Data.Learning). We use this sample (100 instances) for the training task and the bootstrap error evaluation. The unlabeled cases (78 instances) are into the second sheet (Data.Deployment). This is the generalization sample. Only the predictive descriptors are available. An identification column ID is added. It allows to control the consistency of this sample with the values into the third sheet. Last, the third sheet (Data.Deployment.Class.Value) contains the true label of the instances into the second sheet. We use this dataset for computing the true accuracy of the classifier.

| <b>N</b> | Microsoft  | Excel           | - wine_dep        | oloyment  | .xls           |                      |                |                             |              |               |            |              |
|----------|------------|-----------------|-------------------|-----------|----------------|----------------------|----------------|-----------------------------|--------------|---------------|------------|--------------|
| •        | Eichier    | <u>E</u> dition | <u>A</u> ffichage | Insertion | Forma <u>t</u> | <u>O</u> utils       | <u>D</u> onnée | s Fe <u>n</u> être <u>?</u> | Tanagra Sipi | na Tapez un   | e question | ×            |
| D        | <b>I</b> 0 | - 🛍             | nial              |           | -              | 8 -                  | G Z            | S = = = =                   | i 🗟 💱 %      | 000 58 498 1  | = 💷 + 🖇    | » - <u>A</u> |
|          | A1         | -               | f⊷ Ty             | уре       |                |                      |                |                             |              |               |            |              |
|          | A          |                 | В                 |           | С              | D                    |                | E                           | F            | G             | Н          |              |
| 1        | Тур        | e i             | Alcohol           | Mali      | _Acid          | Asł                  | 1              | Ash_Alcalinity              | Magnesium    | Total_Phenols | Flavanoids | nflavanoid   |
| 2        | в          |                 | 12                | .33       | 0.99           |                      | 1.95           | 14.8                        | 136          | 1.9           | 1.85       |              |
| 3        | А          |                 | 13                | .56       | 1.73           |                      | 2.46           | 20.5                        | 116          | 2.96          | 2.78       |              |
| 4        | B          |                 |                   | 12        | 0.92           |                      | 2              | 19                          | 86           | 2.42          | 2.26       |              |
| 5        | С          |                 | 12                | .51       | 1.24           |                      | 2.25           | 17.5                        | 85           | 2             | 0.58       |              |
| 6        | в          |                 | 12                | .21       | 1.19           |                      | 1.75           | 16.8                        | 151          | 1.85          | 1.28       |              |
| 7        | A          |                 | 14                | .22       | 3.99           |                      | 2.51           | 13.2                        | 128          | 3             | 3.04       |              |
| 8        | с          |                 | 12                | .82       | 3.37           |                      | 2.3            | 19.5                        | 88           | 1.48          | 0.66       |              |
| 9        | B          |                 | 12                | .47       | 1.52           |                      | 2.2            | 19                          | 162          | 2.5           | 2.27       |              |
| 10       | в          |                 | 12                | .37       | 1.63           |                      | 2.3            | 24.5                        | 88           | 2.22          | 2.45       |              |
| 11       | C          |                 | 12                | .81       | 2.31           |                      | 2.4            | 24                          | 98           | 1.15          | 1.09       |              |
| 12       | A          |                 | 13                | .73       | 1.5            |                      | 2.7            | 22.5                        | 101          | 3             | 3.25       |              |
| 13       | C          |                 | 13                | .36       | 2.56           |                      | 2.35           | 20                          | 89           | 1.4           | 0.5        |              |
| 14       | A          |                 | 13                | .50       | 1.66           |                      | 2.36           | 19.1                        | 106          | 2.00          | 3.19       |              |
| 16       | 0          |                 | 12                | .45       | 2.4            |                      | 2.42           | 20                          | 30           | 2.3           | 2.73       |              |
| 17       | A          |                 | 13                | .23       | 3.3            |                      | 2.20           | 17.3                        | 30           | 2.45          | 2.03       |              |
| 18       | 8          |                 | 13                | .03       | 1.05           |                      | 2.0            | 17.2                        | 34           | 2.45          | 2.33       |              |
| 19       | 8          |                 | 11                | 84        | 2.89           |                      | 2.23           | 18.5                        | 112          | 1.72          | 1.04       |              |
| 20       | B          |                 | 12                | 42        | 4.43           |                      | 2.73           | 26.5                        | 102          | 22            | 2.13       |              |
| 21       | A .        |                 | 1.                | 4.1       | 2.02           |                      | 2.10           | 18.8                        | 102          | 2.2           | 2.10       |              |
| 22       | Δ.         |                 | 1                 | 42        | 1.76           |                      | 2.45           | 15.2                        | 112          | 3.27          | 3.39       |              |
| 23       | B          |                 | 12                | .72       | 1.81           |                      | 2.2            | 18.8                        | 86           | 2.2           | 2.53       |              |
| 24       | c          |                 | 13                | .08       | 3.9            |                      | 2.36           | 21.5                        | 113          | 1.41          | 1.39       |              |
| 25       | B          |                 | 11                | .96       | 1.09           |                      | 2.3            | 21                          | 101          | 3.38          | 2.14       |              |
| 26       | в          |                 | 12                | .07       | 2.16           |                      | 2.17           | 21                          | 85           | 2.6           | 2.65       |              |
| 27       | в          |                 | 11                | .65       | 1.67           |                      | 2.62           | 26                          | 88           | 1.92          | 1.61       |              |
| 28       | B          |                 | 12                | .64       | 1.36           |                      | 2.02           | 16.8                        | 100          | 2.02          | 1.41       |              |
| 29       | С          |                 | 13                | .27       | 4.28           |                      | 2.26           | 20                          | 120          | 1.59          | 0.69       |              |
| 30       | С          |                 | 13                | .78       | 2.76           |                      | 2.3            | 22                          | 90           | 1.35          | 0.68       |              |
| 31       | С          |                 | 1:                | 3.4       | 4.6            |                      | 2.86           | 25                          | 112          | 1.98          | 0.96       |              |
| 32       | в          |                 | 12                | .51       | 1.73           |                      | 1.98           | 20.5                        | 85           | 2.2           | 1.92       |              |
| 33       | A          |                 | 13                | .71       | 1.86           |                      | 2.36           | 16.6                        | 101          | 2.61          | 2.88       |              |
| 34       | A          |                 | 13                | .29       | 1.97           |                      | 2.68           | 16.8                        | 102          | 3             | 3.23       |              |
| 35       | A          |                 | 1-                | 4.3       | 1.92           |                      | 2.72           | 20                          | 120          | 2.8           | 3.14       |              |
| 36       | B          |                 | 11                | .81       | 2.12           |                      | 2.74           | 21.5                        | 134          | 1.6           | 0.99       |              |
| 37       | B          |                 | 13                | .34       | 0.94           |                      | 2.36           | 17                          | 110          | 2.53          | 1.3        |              |
| 38       | A          |                 | 13                | .74       | 1.67           |                      | 2.25           | 16.4                        | 118          | 2.6           | 2.9        |              |
| 14 -     | • • • N    | Data.Le         | earning / C       | ata.Deplo | yment /        | Data.D               | eploym         | ent.Class.Value             | •            |               |            |              |
| De       | ssin + 🗟   |                 | automatique:      |           |                | ) 🖾 🚄                |                | 🗟 🔷 - 🏄                     | ( • 🛕 • 🔳 🛛  | = = • 🖌 .     |            |              |
| Prêt     |            |                 |                   |           |                | <ul> <li></li> </ul> | $\overline{}$  |                             |              |               | NUM        |              |

<sup>3</sup> UCI Machine Learning Repository - <u>http://www.ics.uci.edu/~mlearn/MLSummary.html</u> or <u>ftp://ftp.ics.uci.edu/pub/machine-learning-databases/wine/</u> <sup>4</sup> <u>http://eric.univ-lyon2.fr/~ricco/dataset/wine\_deployment.xls</u>

## 3 Learning and deployment

#### 3.1 Preparing the unlabeled sample

We can launch Sipina from Excel using an add-in<sup>5</sup>. Before to apply a model on a new sample, we must convert it into the native Sipina file format (\*.fdm).

First, we select the data range into the Data.Deployment sheet. We click on the SIPINA / EXECUTE SIPINA. We check the selection and we validate.



Sipina is automatically launched. We obtain 14 attributes and 78 instances. In this data preparation phase, we save only this sample in the FDM file format. We click on the FILE / SAVE AS menu. We set "wine\_data\_deployment.fdm" as file name.

<sup>&</sup>lt;sup>5</sup> See <u>http://eric.univ-lyon2.fr/~ricco/doc/sipina\_xla\_installation.htm</u> for the installation of the add-in; <u>http://eric.univ-lyon2.fr/~ricco/doc/sipina\_xla\_processing.htm</u>, for its utilization.

| Sipina Research Version - [Le             | earning se   | t editor]          |                  |                 |                 |                |             | _            |       |
|-------------------------------------------|--------------|--------------------|------------------|-----------------|-----------------|----------------|-------------|--------------|-------|
| 💦 File Edit Data Statistics Induc         | tion method: | Analysis Vi        | ew Window        | Help            |                 |                |             |              | - 8 × |
| New New                                   |              |                    |                  |                 |                 |                |             |              |       |
| Open                                      |              | lin                | lashal           | Malia Aaid      | 10 mb           | Lash Alaslini  | Maanaalum   | Total Dhar   |       |
| Att Save                                  |              | 1.00               | Alconor          | A CA            | Asri            | AST_AICAILTI   | oz oo       | D 40         |       |
| Save as                                   |              | Enregistrer sou    |                  |                 |                 |                | 22          | 4 70         | 2.1   |
|                                           | 2            | E                  |                  | de chilere becc |                 | 1. (b) and (0) |             | 0.60         | 1.0   |
| Access foreign databases 🔸                |              | Enregistrer dans : | D-measure for    | decision tree   | -               | - E C. E.      | ·           | 2.00         | 26    |
| Subsample management 🕨                    |              | 2                  | ini wine_data_de | aloyment.fdm    |                 |                |             | 2.00         | 2.0   |
| Exit                                      |              | Mes documents      |                  |                 |                 |                |             | 2.45         | 2.0   |
|                                           | 7            | récents            |                  |                 |                 |                |             | 2.00         | 2.6   |
|                                           | 8            |                    |                  |                 |                 |                |             | 2.53         | 2.6   |
|                                           | 9            | Bureau             |                  |                 |                 |                |             | 3.10         | 3.6   |
|                                           | 10           |                    |                  |                 |                 |                |             | 1.45         | 1.2   |
|                                           | 11           |                    |                  |                 |                 |                |             | 2.40         | 21    |
|                                           | 12           | mes documents      |                  |                 |                 |                |             | 2.00         | 1.5   |
|                                           | 13           |                    |                  |                 |                 |                |             | 2.86         | 3.0   |
|                                           | 14           | Poste de travail   |                  |                 |                 |                |             | 1.55         | 3.0   |
|                                           | 15           | ~                  |                  |                 |                 |                |             | 2.65         | 2.3   |
|                                           | 16           |                    |                  |                 |                 |                |             | 2.95         | 3.4   |
|                                           | 17           | Favoris réseau     | Nom du fichier : | wine_data_d     | leployment.fdm  | <u>└</u> , ⊡   | Enregistrer | 2.42         | 2.E   |
|                                           | 18           |                    | Туре:            | Data Manag      | er File (".FDM) |                | Annuler     | 2.74         | 3.1   |
| Learning method                           | 19           | 19.00              | 13.05            | 1.77            | 2.10            | 17.00          | 107.00      | 3.00         | 3.C   |
| MethodName=Improved ChAID (Tsc 👗          | 20           | 20.00              | 12.88            | 2.99            | 2.40            | 20.00          | 104.00      | 1.30         | 1.2   |
| MethodClassName=TArbreDecisionI           | 21           | 21.00              | 11.79            | 2.13            | 2.78            | 28.50          | 92.00       | 2.13         | 2.2   |
| Hdl=8<br>Merce=0.05                       | 22           | 22.00              | 13.72            | 1.43            | 2.50            | 16.70          | 108.00      | 3.40         | 3.E   |
| Split=0.001                               | 23           | 23.00              | 12.25            | 1.73            | 2.12            | 19.00          | 80.00       | 1.65         | 2.0   |
| TypeBonferroni=1                          | 24           | 24.00              | 11.61            | 1.35            | 2.70            | 20.00          | 94.00       | 2.74         | 2.9   |
| ValueBonterroni=1                         | 25           | 25.00              | 14.39            | 1.87            | 2.45            | 14.60          | 96.00       | 2.50         | 2.5   |
| Consulta a la dian                        | 26           | 26.00              | 12.52            | 2.43            | 2.17            | 21.00          | 88.00       | 2.55         | 2.2   |
| Examples selection                        | 27           | 27.00              | 13.87            | 1.90            | 2.80            | 19.40          | 107.00      | 2.95         | 2.5 🤜 |
| 0 examples idle                           | <            | 1                  |                  | 1               |                 |                |             | - · · · ·    | >     |
|                                           | Editing      | NEW EDM            |                  |                 | -               | Attribut       | es · 14     | Examples : 1 | 78    |
| ,<br>Improved ChAID (Tschuprow Goodpess o | f Solit)     | NEWS DPI           |                  |                 | •               | Accribac       | 03.14       | examples :   | - 11. |
| Improved Chinas (rachapi ow doodness o    | - opicy      |                    |                  |                 |                 |                |             |              | 11    |

We can close Sipina now. We are back into the Excel spreadsheet. We select the first sheet.

#### 3.2 Importing the learning sample into SIPINA

We select the data range into the "Data.Learning" sheet. Again, we click on the SIPINA / EXECUTE SIPINA menu. We check the range selection and we validate.



Sipina is automatically launched. We have 100 instances and 15 variables (14 predictive attributes and the class attribute) now.

#### 3.3 Decision tree learning

The default selected method is IMPROVED CHAID. It is a variant of CHAID learning algorithm (Kass, 1980). It is suitable for a first exploration of a dataset. Of course, we can select another decision tree induction method (C4.5, etc.) by clicking on the INDUCTION METHOD / STANDARD ALGORITHM menu. But here, we use the default approach. At the same time, all the instances are automatically selected for the learning process (we can modify this by clicking on the ANALYSIS / SELECT ACTIVE EXAMPLES menu). All these information are described in the left part of the main window.

| 💦 Sipina Research Version - [Le      | earning set | editor]      |           |            |      |             |              |              |         |
|--------------------------------------|-------------|--------------|-----------|------------|------|-------------|--------------|--------------|---------|
| 🔉 File Edit Data Statistics Induc    | tion method | Analysis Vie | ew Window | Help       |      |             |              |              | _ 8 ×   |
| 🛅 🛅 📸 🛤 🛤                            |             |              |           |            |      |             |              |              |         |
| × 1                                  |             | Туре         | Alcohol   | Malic_Acid | Ash  | Ash_Alcalin | il Magnesium | Total_Phene  | Flava 🔨 |
| Attribute selection                  | 1           | в            | 12.33     | 0.99       | 1.95 | 14.80       | 136.00       | 1.90         | 1.85 🔳  |
|                                      | 2           | A            | 13.56     | 1.73       | 2.46 | 20.50       | 116.00       | 2.96         | 2.78    |
|                                      | 3           | в            | 12.00     | 0.92       | 2.00 | 19.00       | 86.00        | 2.42         | 2.26    |
|                                      | 4           | с            | 12.51     | 1.24       | 2.25 | 17.50       | 85.00        | 2.00         | 0.58    |
|                                      | 5           | в            | 12.21     | 1.19       | 1.75 | 16.80       | 151.00       | 1.85         | 1.28    |
|                                      | 6           | A            | 14.22     | 3.99       | 2.51 | 13.20       | 128.00       | 3.00         | 3.04    |
|                                      | 7           | с            | 12.82     | 3.37       | 2.30 | 19.50       | 88.00        | 1.48         | 0.66    |
|                                      | 8           | в            | 12.47     | 1.52       | 2.20 | 19.00       | 162.00       | 2.50         | 2.27    |
|                                      | 9           | в            | 12.37     | 1.63       | 2.30 | 24.50       | 88.00        | 2.22         | 2.45    |
|                                      | 10          | с            | 12.81     | 2.31       | 2.40 | 24.00       | 98.00        | 1.15         | 1.09    |
|                                      | 11          | A            | 13.73     | 1.50       | 2.70 | 22.50       | 101.00       | 3.00         | 3.25    |
|                                      | 12          | с            | 13.36     | 2.56       | 2.35 | 20.00       | 89.00        | 1.40         | 0.50    |
|                                      | 13          | A            | 13.58     | 1.66       | 2.36 | 19.10       | 106.00       | 2.86         | 3.19    |
|                                      | 14          | в            | 11.45     | 2.40       | 2.42 | 20.00       | 96.00        | 2.90         | 2.79    |
|                                      | 15          | с            | 13.23     | 3.30       | 2.28 | 18.50       | 98.00        | 1.80         | 0.83    |
|                                      | 16          | A            | 13.83     | 1.65       | 2.60 | 17.20       | 94.00        | 2.45         | 2.99    |
|                                      | 17          | в            | 11.82     | 1.72       | 1.88 | 19.50       | 86.00        | 2.50         | 1.64    |
|                                      | 18          | в            | 11.84     | 2.89       | 2.23 | 18.00       | 112.00       | 1.72         | 1.32    |
|                                      | 19          | в            | 12.42     | 4.43       | 2.73 | 26.50       | 102.00       | 2.20         | 2.13    |
|                                      | 20          | A            | 14.10     | 2.02       | 2.40 | 18.80       | 103.00       | 2.75         | 2.92    |
| Learning method                      | 21          | A            | 14.20     | 1.76       | 2.45 | 15.20       | 112.00       | 3.27         | 3.39    |
| MethodName=Improved ChAID (Tsc A     | 22          | в            | 12.72     | 1.81       | 2.20 | 18.80       | 86.00        | 2.20         | 2.53    |
| MethodClassName=TArbreDecisionI      | 23          | с            | 13.08     | 3.90       | 2.36 | 21.50       | 113.00       | 1.41         | 1.39    |
| Hdl=8                                | 24          |              | 11.96     | 1.09       | 2.30 | 21.00       | 101.00       | 3.38         | 2.14    |
| Split=0.001                          | 1           |              | 12.07     | 2.16       | 2.17 | 21.00       | 85.00        | 2.60         | 2.65    |
| TypeBonferroni=1                     | 26          | в 💋          | 11.65     | 1.67       | 2.62 | 26.00       | 88.00        | 1.92         | 1.61    |
| ValueBonferroni=1                    | 27          | в            | 12.64     | 1.36       | 2.02 | 16.80       | 100.00       | 2.02         | 1.41    |
| j sampling=u 💌                       | 28          | с            | 13.27     | 4.28       | 2.26 | 20.00       | 120.00       | 1.59         | 0.69    |
| Examples selection                   | 29          |              | 13.78     | 2.76       | 2.30 | 22.00       | 90.00        | 1.35         | 0.68 👡  |
| 0 examples idle                      |             | Ъ <u>/</u>   | 1         | 1          | 1    | 1           | 1            | 1            | >       |
|                                      | Editing     | IEW.FDM      |           |            |      | Attribu     | tes : 14     | Examples : 1 | 00 /    |
| Improved ChAID (Tschuprow Goodness o | of Split)   |              |           |            |      |             |              |              |         |

In the next step, we want to specify the target attribute (TYPE) and the input ones (ALCOHOL to PROLINE). We click on the ANALYSIS / DEFINE CLASS ATTRIBUTE menu.

| 💦 Sipina Research Version - [Le      | arning set   | editor]               |                 |        |      |               |            |                             |          |              |
|--------------------------------------|--------------|-----------------------|-----------------|--------|------|---------------|------------|-----------------------------|----------|--------------|
| 🔉 File Edit Data Statistics Induc    | tion method: | Analysis Vi           | ew Windo        | w Help |      |               |            |                             |          | - 8 ×        |
| 15 16 De les                         |              | Define cla            | iss attribute   |        |      | -             |            |                             |          |              |
|                                      |              | Select act            | ive exampl      | es     |      | $\rightarrow$ |            | ,                           |          |              |
| Attribute selection                  |              | Sot woigh             | r Gold          |        | Acid | Ash           | Ash_Alcali | nil Magnesium               | Total_Ph | enol;Flava 📥 |
| Addibute selection                   | 1            | Set priors            | ic field        |        |      | 1.95          | 14.80      | 136.00                      | 1.90     | 1.85         |
|                                      | 2            | Set costs             |                 |        |      | 2.46          | 20.50      | 116.00                      | 2.96     | 2.78         |
|                                      | 3            | Set positi            | ve clace val    | 10     |      | 2.00          | 19.00      | 86.00                       | 2.42     | 2.26         |
|                                      | 4            |                       | 10 0035 10      | 00111  |      | 2.25          | 17.50      | 85.00                       | 2.00     | 0.58         |
|                                      | 5            | Learning.             |                 |        |      | 1.75          | 16.80      | 151.00                      | 1.85     | 1.28         |
|                                      | <u>ь</u>     | Stop and              | usia.           |        |      | 2.51          | 13.20      | 128.00                      | 3.00     | 3.04         |
|                                      | /            | Attribut              | e selectio      | n      |      |               |            |                             |          |              |
|                                      | <u> </u>     | Class -               |                 | _      |      |               |            | ariables                    |          |              |
|                                      | 3            | — Туре                |                 |        |      |               |            | ype                         |          |              |
|                                      | 10           | · · · · ·             |                 |        |      |               | <u> </u>   | alic_Acid                   |          |              |
|                                      | 12           | Attribut              | es              |        |      |               | A          | sh T                        |          |              |
|                                      | 13           | - Alcoho              | I               |        |      | ~             | M          | sn_Aicalinity<br>agnesium   |          |              |
|                                      | 14           | Malic_/               | Acid            |        |      |               | 1          | otal_Phenols                |          |              |
|                                      | 14           | Ash_A                 | calinity        |        |      |               | E N        | avanoids<br>onflavanoid Phe | nols     |              |
|                                      | 16           | LA Total I            | sium<br>Phenols |        | ~    |               |            | roanthocyanins              |          |              |
|                                      | 17           | Flavan                | oids            | <      | -    |               |            | olor_Intensity              |          |              |
|                                      | 18           | - Nonflar<br>B Proant | vanoid_Pher     | ols    | 1    |               |            | D280/0D315                  |          |              |
|                                      | 10           | Color_I               | ntensity        |        |      |               |            | roline                      |          |              |
|                                      | 13           | P Hue                 |                 |        |      |               |            |                             |          |              |
| Learning contract                    | 20           |                       |                 |        |      |               |            |                             |          |              |
| MethodNamo-Improved ChAID (Tec -     | 22           |                       | nly discrete    | 2      |      |               |            |                             |          |              |
| MethodClassName=TArbreDecision       | 23           |                       | nly continu     | ous    |      |               |            |                             |          |              |
| Hdl=8                                | 24           | E © B                 | oth             |        |      |               |            |                             |          |              |
| Merge=0.05                           | 24           |                       |                 |        |      |               |            |                             |          |              |
| TupeBonferroni=1                     | 20           |                       |                 |        |      |               |            | 🔹 🖌 🗸 🕻                     | 23       | 🗙 Annuler    |
| ValueBonferroni=1                    | 20           |                       | 13.64           | 1.26   |      | 2.02          | 16.90      | 100.00                      | 12.0     | 1.41         |
| Sampling=0 💌                         | 28           |                       | 13.04           | 1.30   |      | 2.02          | 20.00      | 120.00                      | 1.50     | 0.69         |
| Examples selection                   | 20           | Lo Contraction        | 13.27           | 7.20   |      | 2.20          | 22.00      | 90.00                       | 1.35     | 0.68         |
| 100 examples selected                | 23           | 10                    | 15.70           | 2.70   |      | 2.50          | 22.00      | 30.00                       | 1.55     | 0.00         |
| 0 examples idle                      |              |                       |                 |        |      |               |            |                             |          | >            |
| 1                                    | Editing N    | IEW.FDM               |                 |        |      |               | Attrib     | utes : 14                   | Examples | :100 //      |
| Improved ChAID (Tschuprow Goodness o | f Split)     |                       |                 |        |      |               |            |                             |          |              |

The variable selection is summarized in the left part of the main window.

Then, we can launch the learning process by clicking on the ANALYSIS / LEARNING menu.

| 🔉 Sipina Research Version - [Le      | arning set  | editor]              |                                   |        |      |      |           |                |            |             |
|--------------------------------------|-------------|----------------------|-----------------------------------|--------|------|------|-----------|----------------|------------|-------------|
| 🔉 File Edit Data Statistics Induc    | tion method | Analysis             | view Windov                       | / Help |      |      |           |                |            | _ 8 ×       |
| <u> 🖹 📑</u> 🐴 🖻                      | -           | Define o<br>Select a | lass attribute.<br>ctive example: | <br>   |      |      |           |                |            |             |
| ×                                    |             |                      |                                   |        | Acid | Ash  | Ash_Alcal | inil Magnesium | Total_Pher | iol Flava 🔨 |
|                                      | 1           | Set weig             | pht held                          |        |      | 1.95 | 14.80     | 136.00         | 1.90       | 1.85 📃      |
|                                      | 2           | Set prio             | rs                                |        |      | 2.46 | 20.50     | 116.00         | 2.96       | 2.78        |
|                                      | 3           | Set cost             | s                                 |        |      | 2.00 | 19.00     | 86.00          | 2.42       | 2.26        |
|                                      | 4           | Set posi             | tive class valu                   | 3      |      | 2.25 | 17.50     | 85.00          | 2.00       | 0.58        |
| Malio Aoid                           | 5           | Learning             | 1                                 | 2 3    |      | 1.75 | 16.80     | 151.00         | 1.85       | 1.28        |
| Ash                                  | 6           | Stop an              | alvsis                            | -74    | ~    | 2.51 | 13.20     | 128.00         | 3.00       | 3.04        |
| Ash Alcalinitu                       | 7           |                      |                                   |        |      | 2.30 | 19.50     | 88.00          | 1.48       | 0.66        |
| Magnesium                            | 8           | Classific            | ation                             |        |      | 2.20 | 19.00     | 162.00         | 2.50       | 2.27        |
|                                      | 9           | Test                 |                                   |        |      | 2.30 | 24.50     | 88.00          | 2.22       | 2.45        |
| - Flavanoids                         | 10          | LIFT P               |                                   |        |      | 2.40 | 24.00     | 98.00          | 1.15       | 1.09        |
| Nonflavanoid Phenols                 | 11          |                      |                                   |        |      | 2.70 | 22.50     | 101.00         | 3.00       | 3.25        |
| Proanthocyanins                      | 12          | Error measurements   |                                   |        |      | 2.35 | 20.00     | 89.00          | 1.40       | 0.50        |
| Color_Intensity                      | 13          | E                    |                                   |        |      | 2.36 | 19.10     | 106.00         | 2.86       | 3.19        |
| Hue -                                | 14          | - Feature            | selection                         |        |      | 2.42 | 20.00     | 96.00          | 2.90       | 2.79        |
| - C 0D280/0D315                      | 15          | Personn              | al tests                          | •      |      | 2.28 | 18.50     | 98.00          | 1.80       | 0.83        |
| - C Proline                          | 16          | A                    | 13.83                             | 1.65   |      | 2.60 | 17.20     | 94.00          | 2.45       | 2.99        |
| J                                    | 17          | в                    | 11.82                             | 1.72   |      | 1.88 | 19.50     | 86.00          | 2.50       | 1.64        |
| Learning method                      | 18          | в                    | 11.84                             | 2.89   |      | 2.23 | 18.00     | 112.00         | 1.72       | 1.32        |
| MethodName=Improved ChAID (Tsc 🔨     | 19          | в                    | 12.42                             | 4.43   |      | 2.73 | 26.50     | 102.00         | 2.20       | 2.13        |
| MethodClassName=TArbreDecisionI      | 20          | A                    | 14.10                             | 2.02   |      | 2.40 | 18.80     | 103.00         | 2.75       | 2.92        |
| Hdl=8                                | 21          | A                    | 14.20                             | 1.76   |      | 2.45 | 15.20     | 112.00         | 3.27       | 3.39        |
| Split=0.001                          | 22          | в                    | 12.72                             | 1.81   |      | 2.20 | 18.80     | 86.00          | 2.20       | 2.53        |
| TypeBonferroni=1                     | 23          | c                    | 13.08                             | 3.90   |      | 2.36 | 21.50     | 113.00         | 1.41       | 1.39        |
| ValueBonferroni=1                    | 24          | B                    | 11.96                             | 1.09   |      | 2.30 | 21.00     | 101.00         | 3.38       | 2.14        |
|                                      | 25          | B                    | 12.07                             | 2.16   |      | 217  | 21.00     | 85.00          | 2.60       | 2.65        |
| Examples selection                   | 26          | B                    | 11.65                             | 1.67   |      | 2.62 | 26.00     | 88.00          | 1.92       | 1.61        |
| 100 examples selected                |             | -12                  | 11.00                             | 1.01   |      | 2.02 | 20.00     | 50.00          | 1.002      |             |
| o examples idle                      |             |                      |                                   | _      | _    |      |           |                |            | 2           |
| J]                                   | Editing     | NEW.FDM              |                                   |        |      |      | Attrib    | utes : 14      | Examples : | 100         |
| Improved ChAID (Tschuprow Goodness o | f Split)    |                      |                                   |        |      |      |           |                |            | 1           |

The obtained decision tree is rather simple.



#### 3.4 Applying the decision tree on the unlabeled sample

In order to apply the learned tree on the unlabeled sample, the data file must be in FDM format. Sipina needs only the variables which are selected into the decision tree. It makes the correspondence by using the names of the variables (case sensitive). We click on the ANALYSIS / CLASSIFICATION / **ON OTHER DATASET** menu, we select wine\_data\_deployment.fdm.



The dataset is loaded into a new visualization grid, and the column with the predicted values is added (C\_TYPE in our example).

| 😹 Sipina Research Version             |        |         |           |        |             |       |        |         |         |          |          |              |              |
|---------------------------------------|--------|---------|-----------|--------|-------------|-------|--------|---------|---------|----------|----------|--------------|--------------|
| Induction method Analysis View Wir    | ndow   | Help    |           |        |             |       |        |         |         |          |          |              |              |
| 🖸 🗎 🐂 🐂 🐚                             |        |         |           |        |             |       |        |         |         |          |          | /            |              |
| Attribute selection                   | 8      | Learnin | g set edi | tor    |             |       |        |         |         |          | B        |              | ^            |
| Class attribute                       |        |         | Type      | Alcoho |             | Malic | Acid   | Ash     | 1       | Ash Alca | Magne    | sium Total R | henol:Elay   |
| D Type                                | 1      |         | 1300      | 40.99  | ~           | 0.00  | Hold   | 4.05    |         | 14 90    | 126.00   | 1.00         | 1.85         |
| 🖻 🗊 Predictive attributes             |        |         |           |        |             |       |        |         |         |          |          |              | 2.76         |
| C Alcohol                             |        | 🔊 An    | other dat | aset : | <u>_/Ja</u> | taMin | ing₩   | ataba   | ises_fo | or_min   | /···· [= |              | 2.26         |
| Malic_Acid                            | 4      |         | -         | nensi  | ue          |       | OD280. | /OD31[1 | Proline | C_Typ    | e        | ^            | 0.58         |
| Ash                                   | 5      | 1       | 1.90      | 1      | 1.71        |       | 2.87   |         | 407.00  | в        |          |              | 1.26         |
| Ash_Alcalinity                        | 6      | 2       | 2.45      | 1      | 1.33        |       | 2.26   |         | 495.00  | в        |          |              | 3.04         |
| Total Phenole                         | 7      | 3       | 11.75     | 5 (    | ).57        |       | 1.78   |         | 620.00  | С        |          |              | 0.66         |
| Elavanoids                            | 8      | 4       | 4.80      | 0      | ).92        |       | 3.22   |         | 1195.00 | ) A      |          |              | 2.27         |
| Nonflavanoid Phenols                  | 9      | 5       | 4.28      | 0      | ).91        |       | 3.00   |         | 1035.00 | ) A      |          |              | 2.45         |
| Proanthocyanins                       | 10     | 6       | 8.90      | 1      | i.12        |       | 3.10   |         | 1260.00 | ) A      |          |              | 1.05         |
| Color_Intensity                       | 11     | 7       | 3.84      | 1      | .23         |       | 2.87   |         | 990.00  | A        |          |              | 3.25         |
| - C Hue                               | 12     | 8       | 3.52      | 1      | .12         |       | 3.82   |         | 845.00  | A        |          |              | 0.50         |
| - C 0D280/0D315                       | 13     | 9       | 5.40      | 1      | .25         |       | 2.73   |         | 1150.00 | ) A      |          |              | 3.19         |
| Proline                               | 14     | 10      | 3.60      | 1      | .05         |       | 2.65   |         | 450.00  | в        |          |              | 2.79         |
|                                       | 15     | 11      | 3.95      | 1      | .02         |       | 2.77   |         | 1285.00 | ) A      |          |              | 0.83         |
| Learning method                       | 16     | 12      | 2.20      | 1      | .31         |       | 2.72   |         | 630.00  | В        |          |              | 2.95         |
| MethodName=Improved ChAID (Tsc 🔨      | 17     | 13      | 2.80      |        | ).75        |       | 3.64   |         | 380.00  | С        |          |              | 1.64         |
| MethodClassName=TArbreDecisionI       | 18     | 14      | 8.66      | 0      | ).74        |       | 1.80   |         | 750.00  | С        |          |              | 1.32         |
| Merge=0.05                            | 19     | 15      | 4.70      | 1      | .04         |       | 3.59   |         | 1035.00 | ) A      |          |              | 2.13         |
| Split=0.001                           | 20     | 16      | 6.60      | 1      | .13         |       | 2.57   |         | 1130.00 | ) A      |          |              | 2.92         |
| TypeBonferroni=1                      | 21     | 17      | 4.60      | 1      | .19         |       | 2.30   |         | 678.00  | в        |          | -            | 3.35         |
| Sampling=0                            | 22     | 18      | 3.94      | 0      | 1.69        |       | 2.84   |         | 352.00  | C        |          |              | 2.53         |
| Examples selection                    | 23     |         |           |        | _           | _     |        | _       | _       |          | _        |              | 1.39         |
| 100 examples selected                 | 24     |         | в         | 11.96  |             | 1.09  |        | 2.30    |         | 21.00    | 101.00   | 3.38         | 2.14         |
| 0 examples idle                       | 25     |         | в         | 12.07  |             | 2.16  |        | 2.17    |         | 21.00    | 85.00    | 2.60         | 2.65 🤜       |
|                                       | <      |         |           |        |             |       |        |         |         |          |          |              | >            |
| Improved ChAID (Tschuprow Goodness of | Split) |         |           |        |             |       |        |         |         |          |          |              | Time : 94 // |

The predicted column is defined as the class attribute, it is a discrete attribute with the same values.

### 3.5 Retrieving the predicted column

We want to retrieve the predicted column and copying it into the third sheet of the Excel workbook. The aim is to compare latter the observed values and the predicted values of the target attribute. To do this, we activate the contextual menu by (right) clicking on the header of the column. We select the COPY SELECTION menu.

| 😹 Sipina Research Version             |                |         |           |            |            |            |            |             |                |              |
|---------------------------------------|----------------|---------|-----------|------------|------------|------------|------------|-------------|----------------|--------------|
| Induction method Analysis View Win    | idow He        | lp      |           |            |            |            |            |             |                |              |
| 15 🚯 📴 🦡 🖪                            |                |         |           |            |            |            |            |             |                |              |
|                                       | r              |         |           |            |            |            |            |             |                |              |
| Attribute selection                   | 💦 Lea          |         |           |            |            |            |            |             |                | <u></u>      |
| 🖃 🗊 Class attribute                   |                | Type    |           | Noohol     | Malic Acid | Ash        | Ash Al     | alini Magne | sium Total P   | henol        |
| <b>D</b> Туре                         | 1              | _ 0     |           | 1.22       | 0.00       | 1.05       | 44.90      | 126.00      | 1.00           | 1.85         |
| Predictive attributes                 | 2              | Another | datas     | ot · D·\Da | laMining\[ | atabaso    | e for mir  | vina)       |                | 2.76         |
| Alcohol Malia Asid                    | 3              | Another | uatas     | st . D. Da | amingu     | /atabase   | s_101_1111 |             | <u>مالات</u>   | 2.26         |
| Ash                                   | 4              |         | Color_Int | tensilHue  | OD280      | 0/OD31 Pro | line C     | Туре        | =ile           | ▶ 0.58       |
| Ash Alcalinity                        | 5 1            |         | 1.90      | 1.71       | 2.87       | 407        | .00 8      |             | Cut            | 1.26         |
| C Magnesium                           | 6 4            |         | 2.43      | 0.57       | 1.78       | 480        |            |             | Copy selection | 3.04         |
| C Total_Phenols                       | $\frac{7}{4}$  |         | 4.80      | 0.92       | 3.22       | 119        | 1500 A     |             | Paste          |              |
| Flavanoids                            | <u> </u>       |         | 4.28      | 0.91       | 3.00       | 103        | 5.00 A     |             | Replace        | 2.45         |
| Nonflavanoid_Phenois                  | 10 6           |         | 8.90      | 1.12       | 3.10       | 126        | 0.00 A     |             | Fyamples       | ► 1.05       |
| Color Intensity                       | 11 7           |         | 3.84      | 1.23       | 2.87       | 990        | ).00 A     |             | variables      | 3.25         |
| - C Hue                               | 12 8           |         | 3.52      | 1.12       | 3.82       | 845        | 5.00 A     |             |                | 0.50         |
|                                       | 13 9           |         | 5.40      | 1.25       | 2.73       | 115        | 60.00 A    |             |                | 3.19         |
| Proline                               | 14 1           | 0       | 3.60      | 1.05       | 2.65       | 450        | ).00 🛛 🖪   |             |                | 2.75         |
| <u> </u>                              | <u>15</u>      | 1       | 3.95      | 1.02       | 2.77       | 128        | 85.00 A    |             |                | 0.85         |
| Learning method                       | <u>16</u><br>1 | 2       | 2.20      | 1.31       | 2.12       | 290        |            |             |                | 2.95         |
| MethodName=Improved ChAID (Tsc A      | 17 1           | 4       | 2.00      | 0.73       | 1.80       | 750        |            |             |                | 1.64         |
| Hdl=8                                 | 18 1           | 5       | 4.70      | 1.04       | 3.59       | 103        | 5.00 A     |             |                | 1.32         |
| Merge=0.05                            | 20 1           | -<br>Б  | 6.60      | 1.13       | 2.57       | 113        | 0.00 A     |             |                | 2.10         |
| TypeBonferroni=1                      | 21 1           | 7       | 4.60      | 1.19       | 2.30       | 678        | 3.00 B     |             |                | 3.35         |
| ValueBonferroni=1                     | 22 1           | в       | 3.94      | 0.69       | 2.84       | 352        | 2.00 C     |             | ~              | 2.53         |
| Samping=U                             | 23             |         |           |            |            |            |            |             |                | 1.39         |
| Examples selection                    | 24             | в       | 1         | 1.96       | 1.09       | 2.30       | 21.00      | 101.00      | 3.38           | 2.14         |
| 0 examples idle                       | 25             | в       | 1         | 2.07       | 2.16       | 2.17       | 21.00      | 85.00       | 2.60           | 2.65 🤜       |
|                                       | <              |         |           |            |            |            |            |             |                | >            |
| Improved ChAID (Tschuprow Goodness of | Split)         |         |           |            |            |            |            |             |                | Time : 94 // |

Into Excel, we select the third sheet (Data.Deployment.Class.Value) and we paste the dataset.

| <b>N</b> | Aicrosoft Exce                 | el - wine_dep       | oloyment.xls | 7                            |                       |                   |           |            |
|----------|--------------------------------|---------------------|--------------|------------------------------|-----------------------|-------------------|-----------|------------|
| 8        | <u>F</u> ichier <u>E</u> ditio | n <u>A</u> ffichage | Insern 🔔     | na <u>t O</u> utils <u>D</u> | onnées Fe <u>n</u> êt | re <u>?</u> Tanag | ra Sipina | - 8 ×      |
| D        | 🚔 🔲 🔒 🎙                        | 5 🗠 🖏               | 2   <b>)</b> | - 🚿 🗠 -                      | CH + 🍓 Σ              | - 21 21 🛍         | 100%      | - 🛛 🗸      |
| Aria     | al                             | - 8 -               | 6 S 🗏        |                              | S % 000               | *28 208 €≣ €      | 😑 🛛 🗸 🕭   | - A -      |
| -        | C1 -                           | f≱ C                |              |                              |                       | 100 110 1.        |           | <b>—</b> • |
|          | A                              | B                   |              | D                            | E                     | F                 | G         | Н          |
| 1        | ID                             | Туре                | C_Type       |                              |                       |                   |           |            |
| 2        | 1                              | в                   | в            |                              |                       |                   |           |            |
| 3        | 2                              | B                   | B            |                              |                       |                   |           |            |
| 4        | 3                              | С                   | С            |                              |                       |                   |           |            |
| 5        | 4                              | A                   | A            |                              |                       |                   |           |            |
| <u> </u> | 5                              | A                   | A            |                              |                       |                   |           |            |
|          | 6 7                            | A .                 | A            |                              |                       |                   |           |            |
| - ä      |                                | A<br>A              | A<br>A       |                              |                       |                   |           |            |
| 10       | 9                              | A<br>A              | A<br>A       |                              |                       |                   |           |            |
| 11       | 10                             | B                   | B            |                              |                       |                   |           |            |
| 12       | 11                             | A                   | A            |                              |                       |                   |           |            |
| 13       | 12                             | в                   | в            |                              |                       |                   |           |            |
| 14       | 13                             | в                   | с            |                              |                       |                   |           |            |
| 15       | 14                             | С                   | С            |                              |                       |                   |           |            |
| 16       | 15                             | A                   | A            |                              |                       |                   |           |            |
| 17       | 16                             | A                   | A            |                              |                       |                   |           |            |
| 18       | 17                             | в                   | в            |                              |                       |                   |           |            |
| 19       | 18                             | в                   | с            |                              |                       |                   |           |            |
| 20       | 19                             | A                   | A            |                              |                       |                   |           |            |
| 21       | 20                             | C                   | C            |                              |                       |                   |           |            |
| 22       | 21                             | 8                   | 8            |                              |                       |                   |           |            |
| 23       | 22                             | B                   | A A          |                              |                       |                   |           |            |
| 25       | 23                             | 8                   | 8            |                              |                       |                   |           |            |
| 26       | 24                             | A                   | A            |                              |                       |                   |           |            |
| 27       | 26                             | B                   | B            |                              |                       |                   |           |            |
| 14       | ► ► ∠ Data                     | .Deployment         | Data.Deploy  | ment.Class.V                 | alue                  |                   |           |            |
| Des      | sin 🕶 🔓 🛛 Forn                 | nes automatique     | s • 🔪 📜      | ○ 🖾 ᆀ :                      |                       | - <u>- A</u>      | • = = =   |            |
| Prêt     | _                              |                     |              |                              |                       |                   | NUM       |            |

We utilize these values below in order to evaluate the "true" model accuracy.

## 4 Resampling error rate evaluation

We want to estimate the generalization error rate using the labeled sample only (Data.Learning). Because the size of our dataset is rather small, we cannot reasonably subdivide it into train and test samples for learning and assessing a model. Thus, we use the bootstrap resampling approach.

#### 4.1 Bootstrap

To launch the bootstrap process with Sipina, we must stop the current analysis before. We click on the ANALYSIS / STOP ANALYSIS menu.

| 🔉 Sipina Reseau                        | rch Version          |          |        |         |              |             |               |            |               | ſ          |               |
|----------------------------------------|----------------------|----------|--------|---------|--------------|-------------|---------------|------------|---------------|------------|---------------|
| Induction method                       | Analysis View Wir    | ndow Hel | n      |         |              |             |               |            |               |            |               |
|                                        | Define class attrib  | uto      |        |         |              |             |               |            |               |            |               |
| 山山中                                    | Select active exam   | noles    |        |         |              |             |               |            |               |            |               |
|                                        | Soloce dealto oxali  | piositi  | -      |         |              |             |               |            |               |            | ^             |
| Attribute selection                    | Set weight field     |          | nng s  | eteano  | or           |             |               |            |               |            |               |
| E 🗊 Ulass attrib                       | Set priors           |          | Тур    | e       | Alcohol      | Malic_Acid  | Ash           | Ash_Alcal  | inil Magnesiu | m Total_Ph | nenol:Flav    |
| Predictive                             | Set costs            |          |        |         | 40.92        | 0.00        | 14.05         | 14.00      | 126.00        | 1 00       | 1.85          |
|                                        | Set positive class   | value    | _\noth | er data | iset : D:\Da | ntaMining\I | Databases,    | _for_minir | ıg\ 🗖         |            | 2.78          |
| Malic_                                 | Learning             |          |        | Color   | IntensilHue  | 0028        | 0/OD31 Prolin | е Сту      | me            |            | 2.26          |
| C Ash                                  | Stop analysis        | 2        | 3      | 1.90    | 1.71         | 2.87        | 407.0         | )0 B       |               |            | 1.56          |
| C Ash_A                                | Classification       | - 71     | N      | 2.45    | 1.33         | 2.26        | 495.0         | DO B       |               |            | 3.04          |
| - C Magne                              | Test                 |          |        | 11.75   | 0.57         | 1.78        | 620.0         | 00 C       |               |            | 0.66          |
| I otal_I                               |                      |          | -      | 4.80    | 0.92         | 3.22        | 1195          | .00 A      |               |            | 2.27          |
| Nopfla                                 | LIFT ROC curve       |          |        | 4.28    | 0.91         | 3.00        | 1035          | .00 A      |               |            | 2.45          |
| Proant                                 | Error measuremen     | its I    |        | 8.90    | 1.12         | 3.10        | 1260          | .00 A      |               |            | 1.05          |
| Color_1                                | En alema and address |          |        | 3.84    | 1.23         | 2.87        | 990.0         | 00 A       |               |            | 3.25          |
| C Hue                                  | Feature selection    |          |        | 3.52    | 1.12         | 3.82        | 845.0         | 00 A       |               |            | 0.50          |
| - C 0D280                              | Personnal tests      | 1        | •      | 5.40    | 1.25         | 2.73        | 1150          | .00 A      |               |            | 3.15          |
| 🔤 🚺 Proline                            |                      | 14 14    |        | 3.60    | 1.05         | 2.65        | 450.0         |            |               |            | 2.75          |
| ļ                                      |                      | 15 11    |        | 3.95    | 1.02         | 2.77        | 1285          | .UU A      |               |            | 0.83          |
| Learning method                        |                      | 16 12    |        | 2.20    | 0.75         | 2.12        | 200.0         |            |               |            | 2.95          |
| MethodName=Impro                       | oved ChAID (Tisc 🔺   | 17 13    |        | 8.66    | 0.75         | 1.80        | 750.0         | 0 C        |               |            | 1.64          |
| Hdl=8                                  | - Albiebecision      | 18 15    |        | 4 70    | 1.04         | 3.59        | 1035          |            |               |            | 1.32          |
| Merge=0.05                             | =                    | 20 16    |        | 6.60    | 1.13         | 2.57        | 1130          | .00 A      |               |            | 2.10          |
| TypeBonferroni=1                       |                      | 20 17    |        | 4.60    | 1.19         | 2.30        | 678.0         | 00 B       |               |            | 3.30          |
| ValueBonferroni=1                      | _                    | 22 18    |        | 3.94    | 0.69         | 2.84        | 352.0         | 00 C       |               | 🗸 🕹        | 2.55          |
| Sampling=0                             | <b>×</b>             | 23       |        |         |              |             |               |            |               |            | 1.35          |
| <ul> <li>Examples selection</li> </ul> | ·                    | 24       | в      |         | 11.96        | 1.09        | 2.30          | 21.00      | 101.00        | 3.38       | 2.14          |
| 100 examples select                    | ted                  | 25       | в      |         | 12.07        | 2.16        | 2.17          | 21.00      | 85.00         | 2.60       | 2.65 🥃        |
| o champios idio                        |                      | <        | -      |         |              |             |               |            | i             | i          | >             |
| ,<br>Improved ChâiD (Tsr               | chuprow Goodpess of  | Solit)   |        |         |              |             |               |            |               |            | Time · 94     |
| Improved Crimito (Tst                  | chaprow aboundss of  | Spiic)   |        |         |              |             |               |            |               | 1          | 11110 . 97 // |

Then, we select the ANALYSIS / ERROR MEASUREMENTS / .632 BOOTSTRAP menu<sup>6</sup>. A dialog box appears. We ask 20 replications. We click on the OK button.

<sup>&</sup>lt;sup>6</sup> See <u>http://eric.univ-lyon2.fr/~ricco/cours/slides/resampling\_evaluation.pdf</u> ; and <u>http://bioinformatics.oxfordjournals.org/cgi/content/full/21/15/3301</u>

| 🔉 Sipina Research Version            |           |          |           |            |      |            |           |             |               |           |              |
|--------------------------------------|-----------|----------|-----------|------------|------|------------|-----------|-------------|---------------|-----------|--------------|
| File Edit Data Statistics Induction  | method    | Analysis | View      | Window H   | Help | _          |           |             |               |           |              |
| 沓 🐴 🛤 🐚                              |           | Define   | e class a | ttribute   |      |            |           |             |               |           |              |
| ×                                    |           | Select   | active    | examples   |      |            |           |             |               |           |              |
| Attribute selection                  | 👗 Le      | Set we   | eight fie | ld         |      |            |           |             |               |           | <u> </u>     |
| 🖃 🗊 Class attribute                  |           | Set pri  | iors      |            |      | /alic Acid | Ash       | Ash Alcali  | nil Maanesium | Total Phe | nol:Fla      |
| D Type                               | 1         | Set co   | sts       |            |      | ).99       | 1.95      | 14.80       | 136.00        | 1.90      | 1.8          |
| 🖻 📭 Predictive attributes            | 2         | Set po   | sitive d  | lass value |      | .73        | 2.46      | 20.50       | 116.00        | 2.96      | 2.7          |
|                                      | 3         |          |           |            |      | ).92       | 2.00      | 19.00       | 86.00         | 2.42      | 2.2          |
| Malic_Acid                           | 4         | Learni   | ng        |            |      | .24        | 2.25      | 17.50       | 85.00         | 2.00      | 0.5          |
| Ash                                  | 5         | Scop a   | Inalysis  |            |      | .19        | 1.75      | 16.80       | 151.00        | 1.85      | 1.2          |
| Asn_Alcalinity                       | 6         | Classif  | ication   |            | ×    | 3.99       | 2.51      | 13.20       | 128.00        | 3.00      | 3.0          |
| Total Phenols                        | 7         | Test     |           |            |      | 3.37       | 2.30      | 19.50       | 88.00         | 1.48      | 0.E          |
| Flavanoids                           | 8         |          |           |            |      | .52        | 2.20      | 19.00       | 162.00        | 2.50      | 2.2          |
| Nonflavanoid Phenols                 | 9         |          | - ROC C   | urve       |      | .63        | 2.30      | 24.50       | 88.00         | 2.22      | 2.4          |
| Proanthocyanins                      | 10        | Error r  | measure   | ements     | ►    | Cross-Va   | lidation  |             | 98.00         | 1.15      | 1.0          |
| Color_Intensity                      | 11        | Easter   |           |            |      | .632 Boo   | tstrap    |             | 101,00        | 3.00      | 3.2          |
|                                      | 12        | Featur   | re selec  | tion       | *    | Multi-L.Z  |           | d-M         | 89.0          | 1.40      | 0.5          |
| - C 0D280/0D315                      | 13        | Persor   | nnal tes  | ts         | ►    | Multiple C | ross-vall | dation      | 106.00        | 2.86      | 3.1          |
| Proline                              | 14        | В        |           | 11.45      |      | .032+ DU   | ocstrap.  |             | 96.00         | 2.90      | 2.7          |
| Learning method                      | 15        | С        |           | 13.23      |      | Stratified |           |             | 11 <b>V</b>   | 1         |              |
| MethodName-Improved ChAID (Tac       | 16        | A        |           | 13.83      |      | Clustered  | .632      | l bootstrap | parameter     |           | $\mathbf{X}$ |
| MethodClassName=TArbreDecisionI      | 17        | в        |           | 11.82      |      | Die e Heui | - Ber     | plication   |               |           |              |
| Hdl=8                                | <u>18</u> | В        |           | 11.84      |      | DIdS-VdFk  | 110       |             |               | •         |              |
| Merge=0.05                           | <u>19</u> | в        |           | 12.42      |      | 4.43       |           | 20          |               | -         | 1            |
| TypeBonferroni=1                     | 20        | A        |           | 14.10      |      | 2.02       |           |             |               |           |              |
| ValueBonferroni=1                    | 21        | A        |           | 14.20      |      | 1.76       |           |             | / nxm2        | Y Annul   |              |
| Sampling=0 💌                         | 22        | в        |           | 12.72      |      | 1.81       |           |             | W             | Annui     |              |
| Examples selection                   | 23        | С        |           | 13.08      |      | 3.90       | 2.36      | 21.50       | 113.00        | 1.41      | 1.3          |
| 100 examples selected                | 24        | в        |           | 11.96      |      | 1.09       | 2.30      | 21.00       | 101.00        | 3.38      | 2.1          |
| u examples idle                      | 25        | IR       |           | 12.07      |      | 216        | 2.17      | 21.00       | 85.00         | 2.60      | 2 6          |
|                                      |           |          |           |            | _    |            |           |             |               |           | 2            |
| Improved ChAID (Tschuprow Goodness o |           |          |           |            |      |            |           |             | Tir           | ne:94 /   |              |

The process is rather quick. The decision tree learning algorithm is in general fast and we use a small dataset. We obtain a confusion matrix and the related error rate. We have also the confusion matrix for each trial. But they are not really useful.

| 🔉 Sipina Research Version                                           |           |               |             |            |      |              |           |             |          |
|---------------------------------------------------------------------|-----------|---------------|-------------|------------|------|--------------|-----------|-------------|----------|
| Induction method Analysis View Wir                                  | ndow Help |               |             |            |      |              |           |             |          |
| 🖰 🗄 🛤 🐂                                                             |           |               |             |            |      |              |           |             |          |
| X                                                                   | <u> </u>  |               |             |            |      |              |           |             |          |
| Attribute selection                                                 | 🔊 Lear    | ning set edit |             |            |      |              |           |             |          |
| 🖃 🗊 Class attribute                                                 |           | Туре          | Alcohol     | Malic Acid | Ash  | Ash Alcalini | Magnesium | Total Pheno | l:Fla    |
| 🛛 🕖 Туре                                                            | 1         | В             | 12.33       | 0.99       | 1.95 | 14.80        | 136.00    | 1.90        | 1.8      |
| Predictive attributes                                               | 2         | A             | 13.56       | 1.73       | 2.46 | 20.50        | 116.00    | 2.96        | 2.7      |
| Alcohol                                                             | 3         | B             | 12.00       | 0.92       | 2.00 | 19.00        | 86.00     | 2.42        | 2.2      |
| Malic_Acid                                                          | 4         | S. 20-boots   | trap : NEW  | .FDM       |      |              |           | 2.00        | 0.5      |
| Ash                                                                 | 5         | Tupe          |             |            |      |              |           | 1.85        | 1.2      |
| Ash_Alcalinity                                                      | 6         | Operrall and  | 0           |            |      | aan ang Émaa |           | 3.00        | 3.0      |
| Total Phenols                                                       | 7         |               | ODEITAL SCG | 11101 1-1  |      |              |           | 1.48        | 0.6      |
| Flavanoide                                                          | 8         |               | B.          | A          | C    |              |           | 2.50        | 2.2      |
| Nonflavanoid Phenols                                                | 9         | B             | 11.50       | 1.60       | 1.95 |              |           | 2.22        | 2.4      |
| Proanthocyanins                                                     | 10        | C.            | 0.10        | 10.25      | 7.75 |              |           | 1.15        | 1.0      |
| Color Intensity                                                     | 11        | <u> </u>      | 0.50        | 0.00       |      |              |           | 3.00        | 3.2      |
| - Hue                                                               | 12        |               |             |            |      |              |           | 1.40        | 0.5      |
| C 0D280/0D315                                                       | 13        |               |             |            |      |              |           | 2.86        | 3.1      |
| C Proline                                                           | 14        |               |             |            |      |              |           | 2.90        | 2.7      |
|                                                                     | 15        |               |             |            |      |              |           | 1.80        | 0.8      |
| Learning method                                                     | 16        | <u> </u>      |             |            |      |              |           | 2.45        | 2.9      |
| MethodName=Improved UhAID (1 sc A<br>MethodClassName=TArbreDecision | 17        | Cost : 0.1422 |             |            |      |              |           | 2.50        | 1.6      |
| Hdl=8                                                               | 18        | в             | 11.84       | 2.89       | 2.23 | 18.00        | 112.00    | 1.72        | 1.3      |
| Merge=0.05                                                          | 19        | в             | 12.42       | 4.43       | 2.73 | 26.50        | 102.00    | 2.20        | 2.1      |
| Split=0.001                                                         | 20        | A             | 14.10       | 2.02       | 2.40 | 18.80        | 103.00    | 2.75        | 2.9      |
| ValueBonferroni=1                                                   | 21        | A             | 14.20       | 1.76       | 2.45 | 15.20        | 112.00    | 3.27        | 3.3      |
| Sampling=0 💌                                                        | 22        | в             | 12.72       | 1.81       | 2.20 | 18.80        | 86.00     | 2.20        | 2.5      |
| Examples selection                                                  | 23        | С             | 13.08       | 3.90       | 2.36 | 21.50        | 113.00    | 1.41        | 1.3      |
| 100 examples selected                                               | 24        | в             | 11.96       | 1.09       | 2.30 | 21.00        | 101.00    | 3.38        | 2.1      |
| 0 examples idle                                                     | 25        | в             | 12.07       | 2.16       | 2.17 | 21.00        | 85.00     | 2.60        | 2.6 💙    |
|                                                                     | <         |               |             |            |      |              |           |             | >        |
| Improved ChAID (Tschuprow Goodness o                                | Split)    |               |             |            |      |              |           | Time :      | 125 r // |

The estimated generalization error rate using the bootstrap procedure is 0.1422 i.e. when we apply this classifier on an unlabeled case, the misclassification probability is 14.22%.

#### 4.2 Checking out on the generalization sample

In a normal situation, the labels of the instances in the generalization sample are not available. One of the aim of our experiments is to compare the bootstrap (more generally resampling scheme) error rate estimation with the "true" error rate when we deploy the model.

We come back to our Excel workbook. We use the pivot table<sup>7</sup> in order to cross-tabulate the observed labels and the predicted labels into the third sheet (DATA.DEPLOYMENT.CLASS.VALUE).

| Nombre de Type | C_Type |    |    |    |       |
|----------------|--------|----|----|----|-------|
| Туре           | А      | В  | }  | С  | Total |
| A              |        | 28 | 1  |    | 29    |
| В              |        | 2  | 23 | 4  | 29    |
| С              |        |    | 4  | 16 | 20    |
| Total          |        | 30 | 28 | 20 | 78    |

The measured error rate is  $\varepsilon = \frac{1+2+4+4}{78} = 14.10\%$ 

The error rate obtained by bootstrap on the learning sample seems to be a good estimation of the "true" error rate measured on the generalization sample. However, the precision of the estimation is not always as well as on our dataset.

## 5 About the other learning methods

Sipina is especially intended to decision tree. But other supervised learning algorithms are also available. We can use the same process in order to create a classifier and apply it on unlabeled instances.

Let's take a Linear Discriminant Analysis<sup>8</sup> (LDA) for instance.

We stop the current analysis by clicking on the WINDOW / CLOSE ALL menu. Then we click on the INDUCTION METHOD / STANDARD ALGORITHM menu. A dialog box appears, we select the DISCRIMINANT ANALYSIS tab. We select the LINEAR DISCRIMINANT ANALYSIS method.

<sup>&</sup>lt;sup>7</sup> http://en.wikipedia.org/wiki/Pivot\_table

<sup>&</sup>lt;sup>8</sup> <u>http://en.wikipedia.org/wiki/Linear\_discriminant\_analysis</u>



Another dialog box appears. We validate the default settings.

| Parameters for linear Discrimina                                                              | ant Analysis 🛛 🔀                               |
|-----------------------------------------------------------------------------------------------|------------------------------------------------|
| Priors <u>U</u> ser defined <u>Same of all classes      Upconditional Class Distribution </u> | Costs<br>C User defined<br>C Symmetrical costs |
|                                                                                               | V 012443                                       |

We launch the learning process by clicking again on the ANALYSIS / LEARNING menu.

The classifier is described in a new window. There are: (1) the conditional mean of each descriptor according to the values of the target attribute (A, B and C); (2) the correlation matrix; (3) the classification functions which are used to assign the predicted value when we deploy the model.

Certainly, some important indications are missing, such as global significance of the model or individual significance of the descriptors. It is one of the reason for which I advise to use Tanagra (<u>http://eric.univ-lyon2.fr/~ricco/tanagra/</u>) for the other supervised learning methods than the decision tree learning<sup>9</sup>.

<sup>&</sup>lt;sup>9</sup> In effect, Tanagra implements also decision tree learning algorithms (CART, C<sub>4.5</sub>, ID<sub>3</sub>, etc.). But it does not supply, currently, the same interactive capabilities as Sipina when we explore a tree (choosing manually the split attribute, extracting the examples or computing descriptive statistics on each node, etc.).

| IN 188 IN 18                                                                                                                                                          | 2437203 - 33537233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                                                                                                                                                                        |          |                 |              |            |         |                |             |               |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|--------------|------------|---------|----------------|-------------|---------------|------------|
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                                                                                                                                                                        |          |                 |              |            |         |                |             |               |            |
| With the exclusion                                                                                                                                                    | 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                                                                                                                                                                        |          |                 |              |            |         |                |             |               |            |
| - Pa Class attribute                                                                                                                                                  | 🚆 🚨 Linear d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | liscrimin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ant analysi                                                                                                                                            | s results                                                                                                                                                                              |          |                 |              |            |         |                | - <u>()</u> |               |            |
|                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conditional                                                                                                                                            | average                                                                                                                                                                                |          |                 |              |            | Corre   | elation matrix |             |               |            |
| Predictive attributes                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                      | C                                                                                                                                                                                      |          |                 | Alcohol      | Malic_Acid | Ash     | Ash_Alcalinity | y Magneolom | Total_Phenois | Flavanoids |
| Alcohol                                                                                                                                                               | Alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.2729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.8627                                                                                                                                                | 13.1379                                                                                                                                                                                |          | Alcohol         | 1.0000       | 0.0970     | 0.2108  | -0.3018        | 0.2844      | 0.3236        | 0.2338     |
| Malic Acid                                                                                                                                                            | Malic_Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0887                                                                                                                                                 | 3.3207                                                                                                                                                                                 |          | Malic_Acid      | 0.0970       | 1.0000     | 0.2885  | 0.2935         | 0.0108      | -0.4086       | -0.4499    |
| Ash                                                                                                                                                                   | 4 Ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2274 2.4600 2.4339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        | Ash                                                                                                                                                                                    | 0.2108   | 0.2885          | 1.0000       | 0.4492     | 0.2755  | 0.1307         | 0.1082      |               |            |
| Ash_Alcalinity                                                                                                                                                        | 5 Ash_Alcalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.919D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.8067                                                                                                                                                | 21.4107                                                                                                                                                                                |          | Ash_Alcalinity  | -0.3018      | 0.2935     | 0.4492  | 1.0000         | -0.1487     | -D.363D       | -0.3612    |
| - C Magnesium                                                                                                                                                         | 6 Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.2857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.8333                                                                                                                                               | 100.3571                                                                                                                                                                               |          | Magnesium       | 0.2844       | 0.0108     | 0.2755  | -0.1487        | 1.0000      | 0.1827        | 0.1690     |
| C Total_Phenols                                                                                                                                                       | Z Total_Phenois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.9203                                                                                                                                                 | 1.6650                                                                                                                                                                                 |          | Total_Phenois   | 0.3236       | -0.4086    | 0.1307  | -0.3630        | 0.1827      | 1.0000        | 0.8603     |
| E Flavanoids                                                                                                                                                          | 8 Flavanoids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0350                                                                                                                                                 | 0.7886                                                                                                                                                                                 |          | Flavanoids      | 0.2338       | -0.4499    | 0.1082  | -0.3612        | 0.1690      | 0.8603        | 1.0000     |
| C Nonflavanoid_Phenols                                                                                                                                                | 9 Nonflavanoid_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2747                                                                                                                                                 | 0.4325                                                                                                                                                                                 |          | Nonflavanoid    | -0.1626      | 0.2929     | 0.1393  | 0.3291         | -0.2974     | -0.4094       | -0.4913    |
| C Proanthocyanins                                                                                                                                                     | 1 Proanthocyanin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9283                                                                                                                                                 | 1.1379                                                                                                                                                                                 |          | Proanthocyani   | 0.2363       | -0.3359    | -0.0184 | -0.2664        | 0.3472      | 0.6004        | 0.6363     |
| Color_Intensity                                                                                                                                                       | 1 Color_Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.7170                                                                                                                                                 | 7.3357                                                                                                                                                                                 |          | Color_Intensity | 0.5754       | 0.3069     | 0.2905  | 0.0657         | 0.1797      | -0.0372       | -0.1642    |
| - C Hue                                                                                                                                                               | 1 Hue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0423                                                                                                                                                 | 0.6946                                                                                                                                                                                 |          | Hue             | -0.0828      | -0.5597    | -0.2094 | -0.3580        | 0.0620      | 0.4668        | 0.5753     |
| C 0D280/0D315                                                                                                                                                         | 1 0D280/0D315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.8098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2330                                                                                                                                                 | 1.6968                                                                                                                                                                                 |          | OD280/OD315     | 0.0857       | -0.4165    | -0.0217 | -0.3472        | 0.0756      | 0.6829        | 0.7889     |
| C Proline                                                                                                                                                             | 1 Proline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 524.0714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1121.5667                                                                                                                                              | 644.6429                                                                                                                                                                               |          | Proline         | 0.6591       | -0.1379    | 0.2657  | -0.4494        | 0.4301      | 0.5079        | 0.4560     |
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                                                                                                                                                                        |          | Discrim         | inant functi | ion        |         |                |             |               |            |
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                      | C                                                                                                                                                                                      |          |                 |              |            |         |                |             |               |            |
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                                                                                                                                                                        |          |                 |              |            |         |                |             |               |            |
|                                                                                                                                                                       | 1 Alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.0456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75.8063                                                                                                                                                | 68.8171                                                                                                                                                                                |          |                 |              |            |         |                |             |               |            |
|                                                                                                                                                                       | 1 Alcohol<br>2 Malic_Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.0456<br>2.4433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75.8063<br>3.6496                                                                                                                                      | 68.8171<br>4.4530                                                                                                                                                                      |          |                 |              |            |         |                |             |               |            |
|                                                                                                                                                                       | 1 Alcohol<br>2 Malic_Acid<br>2 Ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67.0456<br>2.4433<br>51.4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75.8063<br>3.6496<br>65.1975                                                                                                                           | 68.8171<br>4.4530<br>56.5170                                                                                                                                                           |          |                 |              |            |         |                |             |               |            |
|                                                                                                                                                                       | 1 Alcohol<br>2 Malic_Acid<br>2 Ash<br>2 Ash_Alcalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67.0456<br>2.4433<br>51.4372<br>-0.3279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75.8063<br>3.6496<br>65.1975<br>-1.6040                                                                                                                | 68.8171<br>4.4530<br>56.5170<br>-0.2489                                                                                                                                                |          |                 |              |            |         |                |             |               |            |
|                                                                                                                                                                       | 1 Alcohol<br>2 Malic_Acid<br>2 Ash<br>2 Ash_Alcalinity<br>2 Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.0466<br>2.4433<br>51.4372<br>-0.3279<br>0.4379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75.8063<br>3.6496<br>65.1975<br>-1.6040<br>0.4176                                                                                                      | 68.8171<br>4.4530<br>56.5170<br>-0.2489<br>0.3992                                                                                                                                      | <u>9</u> |                 |              |            |         |                |             |               |            |
|                                                                                                                                                                       | 1 Alcohol<br>2 Malic_Acid<br>2 Ash<br>2 Ash_Acalinity<br>2 Magnesium<br>2 Total_Phenols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67.0456<br>2.4433<br>51.4372<br>-0.3279<br>0.4379<br>-4.6791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75.8063<br>3.6496<br>65.1975<br>-1.6040<br>0.4176<br>-7.6797                                                                                           | 68.8171<br>4.4530<br>56.5170<br>-0.2489<br>0.3992<br>-2.9283                                                                                                                           | 3        |                 |              |            |         |                |             |               |            |
|                                                                                                                                                                       | 1 Acohol<br>2 Malio_Acid<br>2 Ash<br>2 Ash_Acalinity<br>2 Magnesium<br>2 Tota_Phenols<br>5 Flavanoids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.0466<br>2.4433<br>51.4372<br>-0.3279<br>0.4379<br>-4.0791<br>6.5810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.8063<br>3.6496<br>65.1975<br>-1.6040<br>0.4176<br>-7.6797<br>10.7379                                                                                | 68.8171<br>4.4530<br>56.5170<br>-0.2489<br>0.3992<br>-2.9283<br>-0.7734                                                                                                                | 3        |                 |              |            |         |                |             |               |            |
| saming method                                                                                                                                                         | 1         Acohol           2         Malio_Acid           2         Ash           2         Ash_Alcalinity           2         Magnesium           2         Total_Phenols           2         Flavanoids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.0466<br>2.4433<br>51.4372<br>-0.3279<br>0.4379<br>-4.6791<br>6.5810<br>5.3319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75.8063<br>3.6496<br>65.1975<br>-1.6040<br>0.4176<br>-7.6797<br>10.7379<br>-6.1810                                                                     | 68.8171<br>4.4530<br>56.5170<br>-0.2489<br>0.3992<br>-2.9283<br>-0.7734<br>-4.1768                                                                                                     | 3        |                 |              |            |         |                |             |               |            |
| saming method<br>ethodName=Linead discriminant anely:<br>ethodNameLinearDia                                                                                           | 1 Alcohol<br>2 Matic_Acid<br>2 Ash<br>2 Ash_Alcalinity<br>2 Magnesium<br>2 Total_Phenois<br>2 Flavanoids<br>2 Nonflavanoid_1<br>2 Poanthocyanir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67.0466<br>2.4433<br>51.4372<br>-0.3279<br>0.4379<br>-4.6791<br>6.5810<br>5.3319<br>-8.8987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.8063<br>3.8496<br>65.1975<br>-1.6040<br>0.4176<br>-7.6797<br>10.7379<br>-6.1810<br>-11.1828                                                         | 68.8171<br>4.4530<br>56.5170<br>-0.2489<br>0.3992<br>-2.9283<br>-0.7734<br>-4.1768<br>-9.8899                                                                                          | 3        |                 |              |            |         |                |             |               |            |
| aming method<br>ethodName=Linear discriminant analys<br>ethodDasName=TLinearDA<br>l=11                                                                                | 1 Alcohol<br>2 Matic_Acid<br>2 Ash<br>2 Ash<br>2 Ash_Acalinity<br>2 Magnesium<br>2 Total_Phenols<br>2 Flavanoids<br>2 Nonflavanoid<br>2 Proanthocyanit<br>Color_Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.0466<br>2.4433<br>51.4372<br>-0.3279<br>0.4379<br>-4.6791<br>6.5810<br>5.3319<br>-8.8987<br>-5.5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.8063<br>3.8496<br>65.1975<br>-1.6040<br>0.4176<br>-7.6797<br>10.7379<br>-6.1810<br>-11.1828<br>-5.9097                                              | 68.8171<br>4.4530<br>56.5170<br>-0.2489<br>0.3992<br>-2.9283<br>-0.7734<br>-4.1768<br>-9.8899<br>-3.1997                                                                               | 3        |                 |              |            |         |                |             |               |            |
| earning method<br>ethodName=Linear discriminant analy:<br>ethodClassName=TLinearDA<br>gi=11<br>size=2                                                                 | 1 Alcohol<br>2 Malic_Acid<br>2 Ash<br>2 Ash_Alcalinity<br>4 Magnesium<br>2 Total_Phenols<br>5 Flavanoids<br>9 Proanthocyanit<br>2 Color_Intensity<br>1 Hue<br>1 Hu | 67.0466<br>2.4433<br>51.4372<br>-0.3279<br>0.4379<br>-4.6791<br>6.5810<br>5.3319<br>-8.8987<br>-5.5660<br>63.9350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75.8063<br>3.8496<br>65.1975<br>-1.6040<br>0.4176<br>-7.6797<br>10.7379<br>-8.1810<br>-11.1828<br>-5.9097<br>61.3630                                   | 68.8171<br>4.4530<br>56.5170<br>-0.2489<br>0.3992<br>-2.9283<br>-0.7734<br>-4.1768<br>-9.8999<br>-3.1997<br>-5.3.4904                                                                  | 3        |                 |              |            |         |                |             |               |            |
| aming method<br>sthodName=Linear discriminant analy:<br>sthodElasName=TLinearDA<br>j=11<br>ors=2<br>sts=1                                                             | 1 Acohol<br>2 Malio_Acid<br>2 Ash<br>2 Ash_Atcalinity<br>4 Magnesium<br>2 Total_Phenols<br>7 Intal_Phenols<br>2 Rearthocyanic<br>2 Color_Intensity<br>1 Hue<br>0 D280/0 D315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67.0466<br>2.4433<br>51.4372<br>-0.3279<br>0.4379<br>-4.6791<br>6.5810<br>5.3319<br>-8.8987<br>-5.5660<br>63.9350<br>21.1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75.8063<br>3.6496<br>65.1975<br>-1.6040<br>0.4176<br>-7.6797<br>10.7379<br>-6.1810<br>-11.828<br>-5.9097<br>61.3630<br>24.9293                         | 68.8171<br>4.4630<br>56.5170<br>-0.2489<br>0.3992<br>-2.9283<br>-0.7734<br>-4,1768<br>-9.8999<br>-3.1997<br>53.4904<br>16.9103                                                         | 3        |                 |              |            |         |                |             |               |            |
| earning method<br>ethodName=Linear discriminant analys<br>ethodClassName=TLinearDA<br>di=11<br>cors=2<br>sts=1                                                        | 1         Acohol           2         Malic_Acid           2         Ach           2         Ach           2         Ach           2         Achenity           2         Magnesium           2         Total_Phenois           2         Flavanoids           1         Proanthocyanit           2         Color_Intensity           4         Hue           3         Polav070016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67.0456<br>2.4433<br>51.4372<br>-0.3279<br>0.4379<br>-4.6791<br>6.5810<br>5.3319<br>-8.8987<br>-5.5660<br>63.9350<br>21.1008<br>0.0077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.8063<br>3.6406<br>65.1975<br>-1.6040<br>0.4178<br>-7.6797<br>10.7379<br>-6.1810<br>-11.1828<br>-5.9097<br>61.3630<br>24.9293<br>0.0299              | 68.8171<br>4.4530<br>66.5170<br>0.2489<br>0.3992<br>-2.9283<br>-0.7734<br>-4.1768<br>-9.8999<br>-3.1997<br>63.4604<br>16.9103<br>0.0111                                                | <b>S</b> |                 |              |            |         |                |             |               |            |
| saming method<br>ethodParse=Linear discriminant anely:<br>ethodParsName=TLinearDA<br>di=11<br>ios=2<br>atts=1                                                         | Acohol           Amio_Acid           Ash           Ash_Alcalinity           Arad_Phenols           Flavanoids           Flavanoids           Proathocyanit           Color_intensity           Hue           OD280/00316           Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.0466<br>2.4433<br>51.4372<br>-0.3279<br>0.4379<br>4.6791<br>6.5910<br>5.3319<br>-8.8987<br>-5.5660<br>63.9350<br>21.1008<br>0.0077<br>-540.0945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.8063<br>3.8496<br>65.1975<br>-1.8040<br>0.4176<br>-7.6797<br>10.7379<br>-6.1810<br>-11.1828<br>-5.9097<br>61.3630<br>24.9293<br>0.0299<br>-684.4073 | 68.8171<br>4.4530<br>56.5170<br>-0.2489<br>0.3992<br>-2.9283<br>-0.7734<br>-4.1768<br>-9.8999<br>-3.1997<br>53.4904<br>16.9103<br>0.0111<br>-681.0825                                  | 3        |                 |              |            |         |                |             |               |            |
| saming method<br>ethod Name-Linear discriminant analys<br>ethod Lasst Name = LinearDA<br>d=11<br>d=11<br>d=11<br>d=11<br>d=11<br>d=11<br>d=11<br>d=1                  | 1 Alcohol 2 Malic_Aeid 2 Aeh, 4 Ach, 2 Aeh, 4 Calinity 2 Aeh, 4 Calinity 2 Magnesium 2 Total_Phenois 2 Flavanoid; 2 Proartheoyanic; 2 Proartheoyanic; 2 Proartheoyanic; 3 Proline 3 Color_intensity 4 Nue 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67.0466<br>2.4433<br>51.4372<br>0.3279<br>0.4379<br>-4.8791<br>6.6510<br>6.3319<br>-8.8987<br>-5.5660<br>63.9360<br>21.1008<br>0.0077<br>-640.0945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.8063<br>3.8496<br>65.1975<br>-1.8040<br>0.4176<br>-7.6797<br>10.7379<br>-6.1810<br>-11.1828<br>-5.9097<br>61.3630<br>24.9293<br>0.0299<br>-884.4973 | 88.8171<br>4.4530<br>56.5170<br>0.2488<br>0.3992<br>-2.0283<br>0.7734<br>4.1768<br>-9.8999<br>-3.1997<br>53.4904<br>16.9103<br>0.0111<br>-501.0825                                     | 3        |                 |              |            |         |                |             |               |            |
| saming method<br>ethodName=Linear discriminant analys<br>ethodClassName=TLinearDA<br>J=11<br>ors=2<br>sts=1<br>xamples selection<br>Researche selection               | 1 Acohol<br>2 Malio_Acid<br>2 Ach, Acalinity<br>2 Ach, Acalinity<br>2 Magnesium<br>2 Tata_Mole<br>2 Flavanoids<br>2 Flavanoids<br>2 Flavanoids<br>2 Colo_Texeo<br>3 Constant<br>3 Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67.0466<br>2.4433<br>61.4372<br>-0.3279<br>0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.4379<br>-0.5560<br>-0.5560<br>-0.100<br>-0.1008<br>-0.1008<br>-0.1008<br>-0.1008<br>-0.1008<br>-0.1008<br>-0.1008<br>-0.4079<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>-0.4009<br>- | 75.8063<br>3.6466<br>65.1975<br>-1.6040<br>0.4176<br>-7.0797<br>10.7379<br>-6.1810<br>-11.1828<br>-5.9097<br>61.3630<br>24.9293<br>0.0299<br>-884.4073 | 88.8171<br>4.4530<br>65.5170<br>-0.2489<br>0.3992<br>-2.9283<br>-0.7734<br>-4.1768<br>-9.8999<br>-3.1897<br>-3.1897<br>-3.1897<br>-3.1897<br>-5.4804<br>18.9103<br>0.0111<br>-561.0825 | 3        |                 |              |            |         |                |             |               |            |
| saming method<br>ethod Name-Linear discriminant analys<br>ethod Class Name-T LinearDA<br>iora-2<br>zata=1<br>xamples selection<br>0 examples selected<br>xamples file | 1 Alcohol<br>2 Malic_Acid<br>2 Ash_Acalinty<br>2 Ash_Acalinty<br>4 Malg.esium<br>1 Tatal_Phenols<br>2 Flavanoida<br>2 Flavanoida<br>2 Flavanoida<br>2 Proamtooyan<br>9 Proamtooyan<br>9 On290/00316<br>9 Poline<br>3 Octostant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67.0466<br>2.4433<br>61.4372<br>-0.3279<br>0.4379<br>0.4379<br>0.4379<br>6.5810<br>6.5319<br>-8.8987<br>-5.5660<br>21.1008<br>0.0077<br>-5.40.0945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.8063<br>3.8406<br>65.1975<br>-1.6040<br>0.4176<br>-7.6797<br>10.7379<br>-6.1810<br>-11.1828<br>-5.9097<br>61.3630<br>24.9293<br>0.0299<br>-884.4073 | 88.8171<br>4.4500<br>66.5170<br>-0.2488<br>0.3992<br>-2.9283<br>-0.7734<br>-4.1768<br>-9.8999<br>53.4604<br>16.9103<br>0.0111<br>-561.0825                                             | 3        |                 |              |            |         |                |             |               |            |

We can apply this model on the unlabeled sample. We click on the ANALYSIS / CLASSIFICATION / ON OTHER DATASET menu. We select « wine\_data\_deployment.fdm ».



A data visualization grid appears. In addition to the descriptors, we have now a new column with the predicted values of the LDA classifier.

| nduction method Analysis View Wir     | ndow Help    |            |             |            |                    |              |                             |          |            |             |                |          |
|---------------------------------------|--------------|------------|-------------|------------|--------------------|--------------|-----------------------------|----------|------------|-------------|----------------|----------|
| D 🖻 📲 📥 🛼                             |              |            |             |            |                    |              |                             |          |            |             |                |          |
| And the second second                 | ×            |            |             |            |                    |              |                             |          |            |             |                |          |
| Attribute selection                   | 🚆 🔊 Linea    |            |             |            |                    |              |                             |          |            |             |                |          |
| - Uass attribute                      | Condition    | al average |             |            | Correlation matrix |              |                             |          |            |             |                |          |
| Predictive attributes                 | 1            | в          | A           | lc         |                    |              | -                           | Alcohol  | Malic Acid | Ash         | Ash Alcalinity | Magnesiu |
|                                       | 2<br>Alcohol | 12.2729    | 13.8627     | 13.1379    | _                  |              | Alcohol                     | 1.0000   | 0.0970     | 0.2108      | -0.3018        | 0.2844   |
| Malic Acid                            | 3 Malic Acid | 1.8660     | 2.0887      | 3.3207     | _                  |              | Malic Acid                  | 0.0970   | 1.0000     | 0.2885      | 0.2935         | 0.0108   |
| Ash                                   | 4            | 2 2274     | 1800        | 2 4220     |                    |              | Arb                         | 0.2109   | 2000 n     | 1.0000      | 0.4402         | 0.2766   |
| Ash_Alcalinity                        | 🔊 Anothe     | er dataset | \DataMi     | ning\Datal | oases_fo           | _mining\     | dataset_for                 | _soft_de | /_and_com  | parison\f-m | easu           |          |
| Magnesium                             |              | Magnesium  | Total_Pheno | Flavanoids | Nonflava           | noic Proanth | ocya <sup>l</sup> Color_Int | ensilHue | OD280/0    | D31 Proline | C_Type         | 1        |
| Flaumeide                             | 40           | 139.00     | 3.30        | 2.89       | 0.21               | 1.96         | 3.35                        | 1.31     | 3.50       | 985.00      | B              | _        |
| Nonflavanoid Phanola                  | 41           | 122.00     | 1.51        | 1.25       | 0.21               | 0.94         | 4.10                        | 0.76     | 1.29       | 630.00      | С              |          |
| Proanthocuanins                       | 42           | 95.00      | 2.20        | 2.43       | 0.26               | 1.57         | 5.00                        | 1.17     | 2.82       | 1280.00     | A              |          |
| Color Intensitu                       | 43           | 86.00      | 1.98        | 1.60       | 0.30               | 1.53         | 1.95                        | 0.95     | 3.33       | 495.00      | B              |          |
| Hue                                   | 44           | 108.00     | 2.00        | 2.09       | 0.34               | 1.61         | 2.06                        | 1.06     | 2.96       | 345.00      | в              |          |
| OD280/0D315                           | 45           | 91.00      | 1.68        | 0.70       | 0.44               | 1.24         | 9.70                        | 0.62     | 1.71       | 660.00      | С              |          |
| Proline                               | 46           | 96.00      | 1.79        | 0.60       | 0.63               | 1.10         | 5.00                        | 0.82     | 1.69       | 515.00      | С              |          |
|                                       | 47           | 98.00      | 2.45        | 2.43       | 0.29               | 1.44         | 4.25                        | 1.12     | 2.51       | 1105.00     | A              |          |
|                                       | 48           | 124.00     | 2.63        | 2.68       | 0.47               | 1.92         | 3.58                        | 1.13     | 3.20       | 830.00      | A              |          |
|                                       | 49           | 103.00     | 1.48        | 0.58       | 0.53               | 1.40         | 7.60                        | 0.58     | 1.55       | 640.00      | С              |          |
|                                       | 50           | 86.00      | 2.95        | 2.86       | 0.21               | 1.87         | 3.38                        | 1.36     | 3.16       | 410.00      | в              |          |
|                                       | 51           | 97.00      | 1.55        | 0.52       | 0.50               | 0.55         | 4.35                        | 0.89     | 2.06       | 520.00      | С              |          |
|                                       | 52           | 105.00     | 2.95        | 3.32       | 0.22               | 2.38         | 5.75                        | 1.25     | 3.17       | 1510.00     | A              |          |
|                                       | 53           | 112.00     | 1.48        | 1.36       | 0.24               | 1.26         | 10.80                       | 0.48     | 1.47       | 480.00      | С              | 1        |
| exprise method                        | 54           | 80.00      | 0.98        | 0.34       | 0.40               | 0.68         | 4.90                        | 0.58     | 1.33       | 415.00      | С              |          |
| AethodName-Linear discriminant analys | 55           | 92.00      | 2.72        | 3.27       | 0.17               | 2.91         | 7.20                        | 1.12     | 2.91       | 1150.00     | A              |          |
| tethodClassName=TLinearDA             | 56           | 81.00      | 1.60        | 1.50       | 0.52               | 1.64         | 2.40                        | 1.08     | 2.27       | 480.00      | B              |          |
| Idl=11                                | 57           | 86.00      | 2.62        | 2.65       | 0.30               | 2.01         | 2.60                        | 0.73     | 3.10       | 380.00      | в              |          |
| Priors=2                              | 58           | 94.00      | 2.10        | 1.79       | 0.32               | 0.73         | 3.80                        | 1.23     | 2.46       | 630.00      | в              |          |
| 03(3=1                                | 59           | 88.00      | 2.30        | 0.92       | 0.50               | 1.04         | 7.65                        | 0.56     | 1.58       | 520.00      | С              | _        |
|                                       | 60           | 120.00     | 1.65        | 0.68       | 0.53               | 1.46         | 9.30                        | 0.60     | 1.62       | 840.00      | с              |          |
|                                       | <            |            |             |            |                    |              |                             |          |            |             | 1.             |          |
| Examples selection                    | 3            | -          |             |            |                    |              |                             |          |            |             |                |          |
| 00 examples selected                  | Proline      | 0.0077     | 0.0299      | 0.0111     | _                  |              |                             |          |            |             |                |          |
| J examples idle                       | Constant     | -540.0945  | -684,4973   | -561.0825  |                    |              |                             |          |            |             |                |          |

Again, we can estimate the generalization error rate by using the bootstrap method. We stop the current analysis by activating the ANALYSIS / STOP ANALYSIS menu. Afterwards, we click on the ANALYSIS / ERROR MEASUREMENTS / .6<sub>32</sub> BOOTSTRAP menu.

| 🔊 Sipina Research Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Induction method Analysis View Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 🖸 🗃 👺 🍓 🖕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Attribute selection       X       Learning set editor         Image: transmitted selection       Type       Alcohol       Malic_Acid       Ash       Ash       Ash       Ash       Ash       Alcohol       190       182         Image: transmitted selection       Image: transmitted selectin       Image: transmitted selectin |

The estimated generalization error rate is 2.23%. LDA outperforms definitely the decision tree (IMPROVED CHAID) on the Wine dataset.

## 6 Conclusion

In this tutorial, we show how to apply a classifier on unlabeled sample with Sipina. We show also how to estimate the generalization error rate using a resampling scheme such as bootstrap.

We were able to check out the credibility of this estimation because we have in reality the true labels of the observations of the generalization sample. We note that it is rather accurate.