Subject

Show how to use Decision Lists (DL) with TANAGRA.

Decision Lists have been popular methods in 90's in machine learning scientific publications. They produce a list of sorted production rules such as "IF condition_1 THEN conclusion_1 ELSE IF condition_2 THEN condition_2 ELSE IF...".

Decision Lists and Decision Trees have a similar representation bias but not the same learning bias, DL use the "separate-and-conquer" principle instead of "divide-and-conquer" principle. They can produce more specialized rules but they can also lead to overfitting: setting the right learning parameters is very important for the decision lists algorithm.

The algorithm that we have implemented in TANAGRA is suggested by CN2 (Clark & Niblett, ML-1989). We have introduced two main modifications: (1) we use a hill-climbing algorithm instead of a best-first search; (2) a new parameter, minimal support of a rule, can be adjusted to avoid non-significant rules.

Dataset

HEART dataset; detect heart-disease from patient's characteristics.

Decision Lists

Download dataset

First of all, download the DR_HEART.BDM dataset (File / Open).

Discretization of continuous features

DL cannot handle continuous input attributes, we must discretize them, for instance with MDLP supervised algorithm.

Set as INPUT all continuous attributes, and set COEUR as TARGET. Add the MDLPC component in the stream diagram.

Learning DL

Set as INPUT all discrete attributes (including the discretized attributes) except COEUR, which is the TARGET attribute.

Add learning components, DL produces a set of rules, resubstitution error rate is 20% and we obtain 9 rules.

Didacticiel - Etudes de cas

Listes de décision

Default title	Results				
III Dataset (heart.txt) ☐	Classifier performances				
🛓 🙀 Define status 2	Error rate		0.2	2074	
Supervised Learning 1 (Decision List)	Values prediction		Confusio	on matrix	
	Value Recall 1-Precisio	n	presence	absence	Sum
	presence 0.6583 0.159	6 presence	79	41	120
	absence 0.9000 0.233	absence	15	135	150
		Sum	94	176	270
	Classifier char Number of rules = 9 Knowledge-based	system			
	Classifier char Number of rules = 9 Knowledge-based	system *	ICS 60	onsequent	Distribution
	Classifier char Number of rules = 9 Knowledge-based Antecede	system *	ICS Co coeur	onsequent r in (presence)	Distribution (16; 3)
	Classifier char Number of rules = 9 Knowledge-based IF vaisseau in [D] ELSE IF type_douleur in [B]	system	Coeur coeur coeur	onsequent r in [presence] r in [absence]	Distribution (16; 3) (6; 35)
	Classifier char Number of rules = 9 Knowledge-based IF vaisseau in [D] ELSE IF type_douleur in [B] ELSE IF vaisseau in [C] angin	system at	ICS Coeur Coeur Coeur Coeur	onsequent r in [presence] r in [presence] r in [presence]	Distribution (16; 3) (6; 35) (15; 0)
	Classifier Char Number of rules = 9 Knowledge-based If vaisseau in [D] ELSE IF type_douleur in [B] ELSE IF vaisseau in [C] angin ELSE IF sexe in (feminin] type	system at at := in [oui] :_douleur in [C]	ICS Coeur coeur coeur coeur	onsequent r in [presence] r in [presence] r in [presence] r in [absence]	Distribution (16; 3) (6; 35) (15; 0) (1; 31)
	Classifier Char Number of rules = 9 Knowledge-based If vaisseau in [D] ELSE IF type_douleur in [B] ELSE IF vaisseau in [C] angin ELSE IF sexe in [feminin] type ELSE IF vaisseau in [B]	system t in [oui] :_douleur in [C]	Coeur coeur coeur coeur coeur	onsequent rin [presence] rin [presence] rin [presence] rin [presence] rin [presence]	Distribution (16; 3) (6; 35) (15; 0) (1; 31) (35; 9)
	Classifier char Number of rules = 9 Knowledge-based IF vaisseau in [D] ELSE IF type_douleur in [B] ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [B] ELSE IF type_douleur in [C]	system it in [oui] :_douleur in [C]	CC coeur coeur coeur coeur coeur coeur	r in (presence) r in (absence) r in (absence) r in (absence) r in (presence) r in (absence)	Distribution (16; 3) (6; 35) (15; 0) (1; 31) (35; 9) (7; 24)
	Classifier char Number of rules = 9 Knowledge-based If vaisseau in [D] ELSE IF type_douleur in [B] ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [B] ELSE IF type_douleur in [C] ELSE IF type_douleur in [A]	system nt e in [oui] e_douleur in [C]	CC Coeur Coeur Coeur Coeur Coeur Coeur Coeur	r in [presence] r in [presence] r in [presence] r in [presence] r in [presence] r in [absence] r in [absence]	Distribution (16; 3) (6; 35) (15; 0) (1; 31) (35; 9) (7; 24) (4; 13)
	Classifier char Number of rules = 9 Knowledge-based IF vaisseau in [D] ELSE IF type_douleur in [B] ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [B] ELSE IF type_douleur in [C] ELSE IF type_douleur in [A] ELSE IF type_douleur in [A] ELSE IF type_douleur in [A]	system st in [oui] :_douleur in [C] n [m_>=_1.70000	CC Coeur coeur coeur coeur coeur coeur coeur coeur	onsequent r in [presence] r in [absence] r in [presence] r in [absence] r in [absence] r in [absence] r in [presence]	Distribution (16; 3) (6; 35) (15; 0) (1; 31) (35; 9) (7; 24) (4; 13) (13; 3)
	Classifier char Number of rules = 9 Knowledge-based IF vaisseau in [D] ELSE IF type_douleur in [B] ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [B] ELSE IF type_douleur in [C] ELSE IF type_douleur in [A] ELSE IF type_douleur in [A] ELSE IF type_douleur in [A]	system it in [oui] :_douleur in [C] n [m_>=_1.70000	CC Coeur Coeur Coeur Coeur Coeur Coeur Coeur Coeur	r in [presence] r in [absence] r in [absence] r in [absence] r in [absence] r in [absence] r in [absence] r in [presence]	Distribution (16; 3) (6; 35) (15; 0) (1; 31) (35; 9) (7; 24) (4; 13) (13; 3)
	Classifier char Number of rules = 9 Knowledge-based IF vaisseau in [D] ELSE IF type_douleur in [B] ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [C] angin ELSE IF vaisseau in [B] ELSE IF vaisseau in [B] ELSE IF type_douleur in [C] ELSE IF type_douleur in [A] ELSE IF type_douleur in [D] ELSE IF type_douleur in [D] ELSE IF type_douleur in [D]	system nt e in [oui] e_douleur in [C] n [m_>=_1.70000	CC Coeur Coeur Coeur Coeur Coeur Coeur Coeur Coeur Coeur	r in [presence] r in [presence] r in [presence] r in [presence] r in [presence] r in [presence] r in [absence] r in [absence] r in [presence] r in [absence]	Distribution (16; 3) (6; 35) (15; 0) (1; 31) (35; 9) (7; 24) (4; 13) (13; 3) (23; 32) (0; 0)

Error rate evaluation

To obtain less biased error rate estimation, we use the BOOSTRAP component; the "true" error rate is 24%

Default title		Rootstran 1	
🖃 🏢 Dataset (heart.txt)	Parameters		
🖻 🙀 Define status 1	Replications : 25		
· · · · · · · · · · · · · · · · · · ·			
🖻 🏰 Define status 2			
🖮 🕨 Supervised Learning 1 (Decision List)		Results	
Bootstrap 1	Boostrap eri	or estimatio	
	Error rate		
	.632+ bootstrap	0.2359	
	.632 bootstrap	0.2343	
	Resubstitution	0.2074	
	Avg test set	0.2499	

R.R.

Comparison with C-RT decision tree algorithm

We want to compare these results with a popular decision tree algorithm (C-RT, Breiman & al., 1984). Because this method can handle both continuous and discrete input attributes, we do not need to discretize the continuous attributes before learning.

The estimated error rate with the BOOTSTRAP is 24%.

The majority of comparisons on benchmark datasets show that these methods -- "Decision Lists" and "Decision Trees" -- lead to very similar performances.

I think the Decision Lists are less known of general public essentially because they have never been implemented in popular data mining software.