1 Topic

Discretization of continuous features as preprocessing for supervised learning process.

The discretization transforms a continuous attribute into a discrete one. To do that, it partitions the range into a set of intervals by defining a set of cut points. Thus we must answer to two questions to lead this data transformation: (1) how to determine the right number of intervals; (2) how to compute the cut points. The resolution is not necessarily in that sequence.

The best discretization is the one performed by an expert domain. Indeed, he takes into account other information than those only provided by the available dataset. Unfortunately, this kind of approach is not always feasible because: often, the domain knowledge is not available or it does not allow to determine the appropriate discretization; the process cannot be automated to handle a large number of attributes. So, we are often forced to found the determination of the best discretization on a numerical process.

Discretization of continuous features as preprocessing for supervised learning process. First, we must define the context in which we perform the transformation. Depending on the circumstances, it is clear that the process and criteria used will not be the same. In this tutorial, we are in the supervised learning framework. We perform the discretization prior to the learning process i.e. we transform the continuous predictive attributes into discrete before to present them to a supervised learning algorithm. In this context, the construction of intervals in which one and only one of the values of the target attribute is the most represented is desirable. The relevance of the computed solution is often evaluated through an impurity based or an entropy based functions.

There are multiple motivations for performing discretization as a preprocessing step¹: some learning methods do not handle continuous attributes; the data transformed in a set of intervals are more cognitively relevant for a human interpretation; the computation process goes faster with a reduced number of data, particularly when some attributes are suppressed from the representation space of the learning problem if it is impossible to find a relevant cutting; the discretization allows to discover non-linear relations – e.g. the infants and the elderly people are more sensitive to the illness, the relation between age and illness is then not linear – and that is why many authors propose to discretize the data even if the learning method can handle continuous attributes; lastly a discretization can harmonize the nature of the data if there are heterogeneous e.g., in text categorization, the attributes are a mix of numerical values and occurrence terms.

There are several ways to distinguish the discretization algorithms.

¹ F. Muhlenbach, R. Rakotomalala, « Discretization of Continuous Attributes », in Encyclopedia of Data Warehousing and Mining, John Wang (Ed.), pp. 397-402, 2005 (http://hal.archives-ouvertes.fr/hal-00383757/fr/).

Univariate vs. Multivariate. The multivariate approaches discretize the continuous descriptors simultaneously. These are the best solutions because the descriptors are often correlated. However, they are rarely used because they are time consuming, and above all, they are unavailable in the popular tools. On the other hand, the univariate approaches are very popular because they are fast and simple to use. But the cut points are defined individually for each continuous descriptor. We do not take into account the eventual interdependence between them.

Unsupervised vs. Supervised. The unsupervised approaches make use only of the attribute to discretize to define the cut points. Often, but not always², the number of intervals is a parameter of the algorithm. Their main advantage is that we can use them in any context, including the supervised learning context. Their main drawback is that they are not especially intended to a supervised learning, they do not use the information provided by the target attribute. The supervised approaches use explicitly the target attribute during the discretization process. They often provide at the same time both the number of intervals and the cut points. They are the most interesting ones in our context.

In this tutorial, we use only the univariate approaches. We compare the behavior of the supervised and the unsupervised algorithms on an artificial dataset. We use several tools for that: Tanagra 1.4.35, Sipina 3.3, R 2.9.2 (package dprep), Weka 3.6.0, Knime 2.1.1, Orange 2.0b and RapidMiner 4.6.0. We highlight the settings and the reading of the results.

About Tanagra, we show how to utilize the transformed variables after the discretization process. Almost all the tools discussed in this tutorial provide the same functionality.

² There are various formulas to determine automatically the number of intervals. They are mainly based on the sample size, and sometimes on the range of the values and the standard deviation (<u>http://www.info.univ-angers.fr/~gh/wstat/discr.php</u>) :

Approach	Formula
Brooks-Carruthers	$5 \times \log_{10}(n)$
Huntsberger	$1+3.332 \times \log_{10}(n)$
Sturges	$\log_2(n+1)$
Scott	$\frac{b-a}{3.5\times\sigma\times n^{(-1/3)}}$
Freedman-Diaconis	$\frac{b-a}{2 \times q \times n^{(-1/3)}}$

Where n is the sample size; b the maximum; a the minimum; σ the standard deviation; q the interquartile range.

2 Dataset

We use an artificial dataset in this tutorial. The target attribute is binary (positive vs. negative). The 4 continuous predictive variables are generated according various conditional distributions.

Such experimentation is usual in the publications³. Indeed, knowing the characteristics of the data, we know the proper solutions. First, we give here the distribution of the attributes without taking into account the class membership (Figure 1).

Figure 1 – Unconditional distribution of the predictive attributes

It is difficult to visually detect the cut points using these density functions. Even if it seems there are several modes in some cases, we do not know if these modes are associated to different class values or not.

For the same variables, we draw the density function according the class membership (Figure 2). The conclusions are very different. Excluding the variable X2 for which the conditional densities functions are not discernible, for the others, we note that we can found some cut points in order to define intervals associated to one of the values of the target attribute.

³ E.g. M. Ismail, V. Ciesielski, "An Empirical Investigation of the Impact of Discretization on Common Data Distributions", in Design and Application of hybrid intelligent systems, 2003; http://portal.acm.org/citation.cfm?id=998117&dI=GUIDE&coll=GUIDE&CFID=88985182&CFTOKEN=88220030

Figure 2 - Conditional distributions of the predictive attributes

Thus, in the supervised learning context, the utilization of the information provided by the target attribute during the discretization process is essential.

In what follows, we will use both the unsupervised and supervised techniques implemented in several data mining tools. For the former, we focus mainly on equal width intervals and equal frequency intervals approaches⁴. Both require the indication of the number of intervals. We will set it to 5. We set a fairly large number of intervals in order to obtain relatively pure intervals according to the target variable, although we have no guarantee on that. About the supervised approaches, we use the default settings. The algorithm detects automatically the appropriate number of intervals and the cut points.

The data file is in the Weka file format (ARFF⁵), it is available on line⁶.

3 Discretization in Tanagra

Importing the data file. We launch TANAGRA. We create a new diagram by clicking on the FILE / NEW menu. We import the data file "**data-discretization.arff**".

⁴ http://robotics.stanford.edu/users/sahami/papers-dir/disc.pdf

⁵ http://tutoriels-data-mining.blogspot.com/2008/03/importer-un-fichier-weka-dans-tanagra.html

⁶ http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/data-discretization.arff

Cho	ose ver contaset and start lownload					S 94	_N==
e Diagram Win	Dose very caused and state invoload						
New	Diagram title :						
	Default title						
Open							
Save	Data mining diagram file name :						
Save as	D:\DataMining\Databases_for_mining\data	set_tor_soft_dev_	nd_compa 🔚				
SOPE USIN	Dataset (*.txt,*.arff,*.xls) :		×~				
Close	aset_for_soft_dev_and_comparison\discret	ization\data-discre	tization.aff 😅				
12223			\sim				
Exit		👘 Tanagra			_		
		Regarder dans	: 🔒 discretization		- G 🕯	+ 🖽 😏 🐧	
		(The second seco	Nom Da	te de m Type	Taille		
					unic		
		and the	data-discretiza	ation arff			
		Emplacements	data-discretiza	ation.arff			
		Emplacements récents	data-discretiza	ation.arff			
			data-discretiza	ation.arff			
	_, _,	récents	ata-discretiza	stion.arff			
Data visualization	Statistics		data-discretiza	ation.arff			
		récents	data-discretiza	ation.arff			
eature construction	Feature selection	récents	data-discretiza	ation.arff			
Data visualization Feature construction PLS		récents	data-discretiza	ation.arff			
eature construction PLS	Feature selection	récents	data-discretiza	ation.arff			
Feature construction PLS ov learning assessmen	Feature selection Clustering ht Scoring	récents	data-discretiza	ation.arff			
Feature construction PLS ov learning assessmen	Feature selection Clustering ht Scoring	récents Bureau Maison	data-discretizz	tion.aff			
Feature construction	Feature selection Clustering ht Scoring	récents	data-discretizz	tion.aff			
Feature construction PLS ov learning assessmen Correlation scatter;	Feature selection Clustering It Scoring plot Catterplot	récents Bureau Maison	data-discretizz	data-discretization	aff	- Ouvi	ir

Unsupervised discretization. To discretize with the "equal width intervals" approach, we must specify the variables to analyze with the DEFINE STATUS component.

TANAGRA 1.4.35 - [Datase	et (data-discretization nent Window He	internet for			- 8 ×
Dataset (data-discre	Default title etization.arff)	efine attribute statuses	Dataset (data-	discretization.arff)	
Define status 1		Parameters Attributes : C x1 C x2 C x3 C x4 D y	Target x1 x2 x3 x4	Input Illustrative	mparis
Data visualization Feature construction PLS Spv learning assessment Correlation scatterplot	Statistic Feature sele Clusterir Scoring	<u>Ę</u> , <u>Ę</u> ,	Clear a	all Clear selected	
Export dataset	Scatterplo1		ОК	Cancel Help	

Then, we insert the **EqWidthDisc** tool (FEATURE CONSTRUCTION)⁷. With the default settings, the variables are discretized into 5 intervals. We can modify this parameter. We click on the VIEW menu to obtain the computed cut points.

⁷ The other available tool is **EqFreqDisc**, equal frequency intervals discretization.

Of course, if we consider the data characteristics (Figure 2), the discretization into 5 intervals is not appropriated in the majority of cases. We note however than some cut points are, a little by chance, suitable in some situations. For instance, the cut point 6.47 is not too bad for the variable X1. But, on the other hand, the others cut points are irrelevant. This is the main drawback of this approach. If we set a large number of intervals, some cut points are maybe interesting, but we increase also the risk of data fragmentation, increasing at the same time the variance of the induced classifier.

Conversely, it is clear that there is no discretization possible for X2. The procedure provides us four cut points that are totally irrelevant.

Supervised learning process from the transformed variables. To use the transformed variables, we insert the DEFINE STATUS tool, we set them as INPUT. The target attribute is Y.

Then we add the decision list algorithm which induces ordered rules (SPV LEARNING – see <u>http://data-mining-tutorials.blogspot.com/2010/02/supervised-rule-induction-software.html</u>). It cannot handle directly continuous descriptors. The discretization preprocessing step is needed here.

The classifier is rather good according to the resubstitution error rate. It is not surprising because we see before that in some situations, the discretization can find by chance some good cut points if we set a large number of intervals. But, when we consider carefully the ruleset, we note that we obtain unnecessary rules in the classifier. For instance, we observe that we need two rules (n°2 and n°3) to assign an instance to the negative class value, whereas one rule would have been enough e.g. « ELSE IF X1 \ge 6.47 THEN Y = NEGATIVE ». The cut point "X1 = 7.748" is irrelevant.

Supervised discretization. To perform a supervised discretization, we set X1...X4 as INPUT, and Y as TARGET with the DEFINE STATUS tool.

We specify the target attribute here because the descriptors will be discretized with respect to Y.

We add the MDLPC component (FEATURE CONSTRUCTION) which implements a very popular approach (*U. Fayyad et K. Irani, « Multi-interval discretization of continuous-valued attributes for classification learning », in Proc. of IJCAI, pp.1022-1027, 1993*). We click on the VIEW menu.

The approach detects the good number of intervals according the variables. Sometimes, the discretization is not performed if the processing is not relevant. The method is singularly efficient on our artificial dataset. Among others, it detects rightly that the discretization is not feasible for X2.

Supervised learning process from the transformed variables. Here again, we perform the induction of decision list on the transformed descriptors.

The obtained classifier is as good as (resubstitution error rate) the preceding one, but it is simpler with fewer rules. In our dataset, the descriptor X1 is enough to build an efficient classifier.

Geometrical interpretation. If we plot the points in a scatter diagram defined by (X1, X2), we observe indeed that X1 is enough to separate perfectly the individuals from different groups.

4 Discretization in SIPINA

Importing the data file. We launch SIPINA (<u>http://eric.univ-lyon2.fr/~ricco/sipina.html</u>). We import the data file by clicking on the FILE / OPEN menu. We select **data-discretization.arff**.

Discretization of the variables. The discretization tools are available from the STATISTICS / TRANSFORM / CONTINUOUS ATTRIBUTES menu. Into the dialog box, we select the continuous attributes. We ask a discretization. The new variables are created and displayed into the DataGrid.

🕺 File Edit Data	Statistics	Induction	method Ana	alysis Viev	v Window	Help		-
) 🖪 🛤 🗛	Desc	riptive stati	tics 🕨	1				
Attribute selection		sform	٠		te attributes		positive	
	Miss	ing data	•	Conti	nuous attrib	utes	politive	
		3	5.92	4.89	6.42	4.33	positive	
	-	11	ntinuous varia	5.50	5 56	1.00	positive	X
_earning method		C Norm	we mean alize we mean - No	rmalize			x1 x2 x3 x4	

X Annuler
Annuel

We click on the OK button. A second dialog box appears. We can choose the method to use. If we want a supervised approach (MDLPC), we select the SUPERVISED option and we specify the target attribute Y into the drop down list.

We confirm our settings by clicking on the OK button.

💦 File Edit Data Statistics I	Induction I	method Ana	lysis View	Window	Help			- 8 :
🖞 🗕 📲 📭						<u> </u>		
<u>×</u> 1	1	x4	у	T_x1	T_x2	T_x3	T_x4	
Attribute selection	1	4.95	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27[
	2	5.02	positive	[2.65;6.42]	[1.63;+00[[1.60;3.48[[4.15;6.27[
	3	4.33	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27[
Learning method	4	4.45	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27[
MethodName=Improved ChAID (Tsc 🔺 MethodClassName=TArbreDecisionI 🥅	5	5.23	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27]	
	6	4.32	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27]	
Merge=0.05	7	5.11	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27]	
Split=0.001 TvpeBonferroni=1	8	5.61	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27]	
ValueBonferroni=1	9	4.15	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27]	
Sampling=0 🔹	10	5.97	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27]	
Examples selection	11	6.15	positive	[2.65;6.42]	[1.63;+00[[3.48;8.15]	[4.15;6.27]	
·	12	5.79	positive	[2.65;6.42]	[1.63;+00]	[3.48;8.15]	[4.15;6.27]	-
	4							•
	Editing	NEW.FDM				Attribu	utes:9	Exampl

The transformed attributes are now displayed into the data grid. The results (number of intervals and cut points) are the same as those of Tanagra.

Note: We can manually discretize the variables in Sipina (MANUAL DISCRETIZATION). We enumerate the cut points by separating them with ";" in the dialog settings.

5 Discretization in R (« dprep » package)

The **dprep** package for R (<u>http://www.r-project.org/</u>) incorporates various approaches for the discretization process.

We set the following commands for the importation of the data file.

```
#load the dataset
library(RWeka)
donnees <- read.arff(file="data-discretization.arff")
summary(donnees)</pre>
```

Some descriptive statistics indicators allows to check the data integrity.

R Console summary(donnees) **x**2 **x**3 x4 x1 v Min. : 1.604 :2.654 :1.628 Min. Min. Min. : 4.147 negative:50 1st Qu.:4.982 1st Qu.:4.408 1st Qu.: 3.610 1st Qu.: 5.936 positive:50 Median :6.416 Median :4.965 Median : 5.164 Median : 8.866 :6.239 Mean :5.006 Mean : 6.030 : 8.858 Mean Mean 3rd Qu.: 7.827 3rd Qu.:5.746 3rd Qu.:7.448 3rd Qu.:11.380 Max. :9.022 Max. :7.407 :13.705 :13.924 Max. Max. Ξ >

Equal width discretization. For the equal width discretization process, we set the following commands.

```
#discretization
library(dprep)
#equal-width discretization
new.donnees <- disc.ew(donnees,1:4)
summary(new.donnees)</pre>
```

The number of intervals is automatically determined with the Scott's formula (see above).

```
R Console
                                                                    > new.donnees <- disc.ew(donnees,1:4)
> summary(new.donnees)
              x2 x3
Min. :1.00 Min. :1.00
      x1
                                                x4
      :1.00
                                           Min. :1.00
                                                         negative:50
 Min.
 1st Qu.:3.00 1st Qu.:4.00
                            1st Qu.:1.00
                                           1st Qu.:1.00
                                                         positive:50
 Median :4.00
              Median :5.00
                            Median :2.00
                                           Median :3.00
 Mean
      :3.93
              Mean :5.17
                             Mean :2.32
                                           Mean
                                                 :2.91
 3rd Qu.:5.00
              3rd Qu.:6.00
                             3rd Qu.:3.00
                                           3rd Qu.:4.25
       :6.00
                     :8.00
 Max.
              Max.
                            Max.
                                   :5.00
                                           Max.
                                                 :5.00
```

E.g. For X1, we have n = 100; b = 9.022; a = 2.654; $\sigma = 1.484$. We obtain

$$\frac{b-a}{3.5\times\sigma\times n^{(-1/3)}} = 5.69$$

The value is rounded to 6.

Supervised discretization with MDLPC. Even if the help file does not quote explicitly the Fayyad and Irani's paper, it seems that the supervised algorithm relies on a very similar approach.

```
#supervised discretization (mdl)
new.spv1.donnees <- disc.mentr(donnees,1:5)
summary(new.spv1.donnees)</pre>
```

A new data.frame is generated. The function displays the number of intervals and the cut points.

```
R Console
                                                                    > #supervised discretization (mdl)
> new.spv1.donnees <- disc.mentr(donnees,1:5)
The number of partitions for var 1 is : 2
The cut points are: [1] 6.359017
The number of partitions for var 2
                                   is : 1
The cut points are: [1] 0
The number of partitions for var 3
                                   is : 3
The cut points are: [1] 3.483351 8.154572
The number of partitions for var 4
                                   is : 4
The cut points are: [1] 6.273701 9.013927 11.653978
> summary(new.spv1.donnees)
      x1
                     x2
                                 x3
                                                x4
                                                               v
 Min. :1.00 Min. :1 Min. :1.00 Min. :1.00 negative:50
 1st Qu.:1.00 1st Qu.:1 1st Qu.:2.00 1st Qu.:1.00 positive:50 Median :2.00 Median :1 Median :2.00 Median :2.00
 Mean :1.51 Mean :1 Mean :2.01 Mean :2.47
 3rd Qu.:2.00 3rd Qu.:1 3rd Qu.:2.25 3rd Qu.:3.25
      :2.00 Max. :1 Max. :3.00 Max.
Max.
                                               :4.00
>
```

Supervised discretization with CHI-MERGE. The "dprep" package incorporates another supervised discretization technique. This is the CHI-MERGE method (Kerber, 1992). In comparison with MDLPC, it is a bottom-up approach. It starts with the purest discretization (in the worst case, we have an individual into each interval). It tries to merge the adjacent intervals if the distribution of the target attributes is not significantly different. The process is stopped when none merging is possible. Unfortunately, this approach relies heavily on the parameter alpha (the significance level of the test). To define the good value according the domain or the data characteristics is difficult.

We set the following commands.

```
#supervised discretization (chi-merge)
new.spv2.donnees <- chiMerge(donnees,1:4,alpha=0.1)
summary(new.spv2.donnees)</pre>
```

The variable X2, for which it is not possible to find an efficient solution, is discretized into 35 intervals (!); the variable X4 is discretized into 9 intervals.

R Console				
· · · · · ·	discretization nnees <- chiMerge .spv2.donnees)		-	*
x1	x2	x 3	x 4	y
Min. :1.0	Min. : 1.00	Min. :1.00	Min. :1.00	negative:50
1st Qu.:1.0	1st Qu.: 6.75	1st Qu.:3.00	1st Qu.:5.00	positive:50
Median :1.5	Median :16.00	Median :7.00	Median :7.00	
Mean :1.5	Mean :17.25	Mean :5.88	Mean :6.54	
3rd Qu.:2.0	3rd Qu.:26.25	3rd Qu.:7.25	3rd Qu.:8.25	
Max. :2.0	Max. :35.00	Max. :8.00	Max. :9.00	E T
•				

We try to decrease the significance level to favor the merging. The solution for X2 is improved. But the number of intervals remains too high for several variables.

R Console				
· · · · · ·	nnees <- chiMer	(chi-merge) - a ge(donnees,1:4,a	-	•
x1	x2	x 3	x 4	y
Min. :1.0	Min. :1.00	Min. :1.00	Min. :1.00	negative:50
1st Qu.:1.0	1st Qu.:1.00	1st Qu.:3.00	1st Qu.:3.00	positive:50
Median :1.5	Median :2.00	Median :4.00	Median :5.00	
Mean :1.5	Mean :1.86	Mean :3.70	Mean :4.63	
3rd Qu.:2.0	3rd Qu.:3.00	3rd Qu.:4.25	3rd Qu.:6.25	
Max. :2.0	Max. :3.00	Max. :5.00	Max. :7.00	-
•				

The contingency tables between the target variable and recoded descriptors (X3, X4) show that merging operations are still necessary.

6 Discretization in Weka

We use Weka (<u>http://www.cs.waikato.ac.nz/ml/weka/</u>) in EXPLORER mode. Into the PREPROCESS tab, we load the data file by clicking on the OPEN FILE button.

reprocess Classify Cluster Associate Select attributes Visualize			
Open file Open URL Open DB Gene	erate	Edit	Save
Filter			
Choose None			Apply
Current relation	Selected attribute		
Relation: R_data_frame Instances: 100 Attributes: 5	Name: x1 Missing: 0 (0%) Distinct:	Type: No 100 Unique: 10	
Attributes	Statistic	Value	
	Minimum	2.654	1.
All None Invert Pattern	Maximum	9.022	E
	Mean	6,239	
No. Name	StdDev	1.484	
1 ×1 2 x2	Class: y (Nom)	+	Visualize All
3 x3			
4 x4		32	
5 y	22		
	13	16	12
Remove	5		
	2.65	5.84	9.
tatus		1182	

Weka displays automatically the distributions of the variables conditionally to the target attribute (the last column of the data file).

To perform the discretization process, we click on the CHOOSE button (FILTER), we select the DISCRETIZE tool in the SUPERVISED branch.

eprocess Classify Cluster Associate Sel	ect attributes Visua	lize					
Open file Open URL	Open DB	Genera	ate) Und	lo]	Edit		Save
ter	101						
weka Juli filters							Apply
			Selected attribute				
MultiFilter			Name: x1	10000		Type: Num	
🖶 🍌 supervised			Missing: 0 (0%)	Distinct: 10	00 Ur	nique: 100	(100%)
😑 🎍 attribute	-		Statistic		Value		
AddClassification AttributeSelection			Minimum		2.654		
ClassOrder	Pati	tern	Maximum		9.022		
Discretize			Mean		6.239		
🔹 NominalToBinar			StdDev		1.484		
PLSFilter		-					
finitance finitance finitance finitance			-1			1	
			Class: y (Nom)			•	Visualize A
	-						
						32	10
				22			
				11	16		
			13		10		12
			5				
			2.65	5	.84		8

The tool implements the MDLPC approach (Fayyad and Irani, 1993). We click on the APPLY button. All the continuous variables (FIRST \rightarrow LAST) are discretized.

Preprocess Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Gene	erate Undo Edit Save
Filter	
Choose Discretize -R first-last	Apply
Current relation Relation: R_data_frame-weka.filters.supervised.attribute.Discretize	Selected attribute Name: x1 Type: Nominal
Instances: 100 Attributes: 5	Missing: 0 (0%) Distinct: 2 Unique: 0 (0%)
Attributes	No, Label Count
All None Invert Pattern	1 ('-inf-6.416414]' 50
	2 '(6.416414-inf)' 50 📙
No. Name	
1 ×1 2 x2	Class: y (Nom) Visualize All
3 x3	
4 x4	50 50
5 🕅 y	
Berry	
Remove	
Status	
OK	Log

The discretized variables are substituted to the previous ones. For each interval, we obtain both the number of intervals, the cut points, the number of instances, the classes distribution. E.g. for X1 \leq 6.416414, we have 50 instances, they are all positives.

7 Discretization in Knime

We create a new « Workflow » under Knime (http://www.knime.org/).

We import the data file with the ARFF READER component. The CONFIGURE contextual menu allows to select the file. We click on the EXECUTE menu to read the file.

Manual discretization. The NUMERIC BINNER tool allows to specify manually the cut points (and thus the number of intervals). We add the component into the workflow, we click on the CONFIGURE menu.

File Edit View Search Run Node	Help	
13、圆匾 🛷 - 约、约、	🌾 🤷 🗸 100% 👻 🖓 🖬 🗉	
Workflow Projects	0: Discretization - Comparison i	▲ Dialog - 0:2 - Numeric Binner File Intervals Memory Policy Select (X1 Data Bin1 :] -∞ 2.5 [D x3 D x4 Bin2 :] 4.5 ∞ [
🔁 Binning 📰 🗉	E Outline X Console X KNIME Console *** Welcom tog file is	Append new column x1_binned

For each variable, we can define the number of intervals and the cut points. The transformed variables are available behind the component into the workflow. We can use them with the other tools, especially with the machine learning algorithms. Here, we visualize the new columns using the INTERACTIVE TABLE component.

🔺 *0: Discretizatio	n - Comparison 🛛						- 6	Ξ
	Numeric Binner	interactive Table		1				
ARFF Reader					` \			
	Node 2	Node 3			ן ש			
		🛕 Table View	- 0:3 - Interac	tive Table				X
Node 1		File Hilite N	avigation Viev	v Output				
		Row ID	S x1	S x2	S x3	S x4	Sy	
		0	Bin2	Bin 1	Bin2	Bin 1	positive	
		1	Bin2	Bin 1	Bin 1	Bin 1	positive	
		2	Bin2	Bin 1	Bin2	Bin 1	positive	
		3	Bin2	Bin 1	Bin2	Bin 1	positive	
		4	Bin2	Bin 1	Bin2	Bin 1	positive	
		5	Bin2	Bin2	Bin 1	Bin 1	positive	
		6	Bin2	Bin2	Bin2	Bin 1	positive	
		7	Bin3	Bin 1	Bin2	Bin2	positive	
		8	Bin2	Bin2	Bin2	Bin 1	positive	
		9	Bin2	Bin 1	Bin 1	Bin2	positive	
		10	Bin2	Bin 1	Bin2	Bin2	positive	-

Supervised discretization. The CAIM BINNER supervised discretization tool of Knime is based on the CAIM algorithm (Kurgan et Cios, 2004; <u>http://citeseer.ist.psu.edu/kurgan04caim.html</u>). Let us analyze the behavior of this approach on our dataset.

	a 1	Binning Model	- 0:4 - CAIM Binner	and and a second		
	File					
🔺 *0: Discretization - Comparison 🔀	x1					
Numeric Binner	Interactive T	539		6.4	1	9,022
ARFF Reader	D					
Node 2	Node 3	277		4.3009	5.554	7.407
CAIM Binner Node 1	x3	i04 3.4	483	8.155		13,705
Node 4	x4 4.1			9.014	11.654	13.924
	Def	ault Settings C	olumn Selection			
		Mouse Mode	Zooming	▼ Fit to size	Background Color	Use anti-aliasing

Compared to MDLPC which found the good solutions for each variable, CAIM provides wrongly 3 intervals for the variable X2 (instead of 0) and 3 for X4 (instead of 4). But this is just one example among many others. It would require large-scale experiments to really assess the behavior of the algorithm.

8 Discretization in Orange

We import the data file with the FILE tool under Orange (http://www.ailab.si/orange/).

Orange Canvas	
ile Options Widget Help	
Image: Style: Tabs with labels Iconsize: 40 x Data Visualize Classify Regression Evaluate Unsupervise	
Naive Logistic Majority k Nearest Classification C4.5 Interactiv Regression Neighbours Tree Tree Build	
< !	Info 100 example(s), 4 attribute(s), 0 meta attribute(s). Classification; Discrete class with 2 value(s).
File Open	Advanced settings
Rename F2 Remove Del	Report

Note: Orange does not handle the ARFF file, I do not why. Thus we used the tab delimited file format.

Discretization. The DISCRETIZE tool (DATA tab) allows to perform a discretization process according various methods. The tool is rich with many options. We select the ENTROPY-MDL DISCRETIZATION which corresponds to the Fayyad and Irani's MDLPC approach according the user's guide (http://www.ailab.si/orange/doc/ofb/o_categorization.htm).

	🚡 Discretize	
	Default discretization	
	C Leave continuous	
	 Entropy-MDL discretization 	
	© Equal-frequency discretization	
	Equal-width discretization	
	Number of intervals (for equal width/frequency)	
Orange Canvas		
File Options Widget Help	Remove continuous attributes	
👪 💾 🚔 Style: Tabs with labels	Individual attribute treatment	
Data Visualize Classify Regression	Use default discretization for all attributes	
	Set discretization of all attributes to	
File Info Save Data Selec	t 🔘 Custom 1 🔘 Custom 2 🔘 Custom 3	Discretize Continuize Impute Outliers
Table (Itribu	te:	
4	Class discretization	•
	Equal-frequency discretization	
	 Equal-width discretization 	
	Number of intervals	
	· · · · · · · · · · · · · · · · · · ·	E
File Discretize	Custom	
DOMES		
	Current splits:	
	Output original dass	
	(Widget always uses discretized class internally.)	
	Commit	
	Commit	
	Commit automatically	
	Report	

We click on the REPORT button to obtain the results.

Report	
File Discretize	Settings
	Default method: entropy
	Attributes
	x1: 6.414735 x2: removed x3: 3.405202, 7.498989
Save	x4: 6.153722, 8.894463, 11.105419

The results are roughly the same than those of Tanagra or Weka. But the cut points are slightly different. This has no incidence on the learning method implemented subsequently.

le Options Widget Help							
😽 💾 🚍 Style: Tabs with labels 👻 Icon size	e: 40 x 40 🔻						
	supervised Associate F Data Table	rotot	vpes	-	1 Aug		3
	Info	(E)	kamples)				
File Info Save Data Select Rank Purg	100 examples, 0 (0.0%) with missing values.		D_x1	D_x3	D_x4	У	
Table Attributes Doma	0 (0.0%) with missing values.	1	<=6.414735	(3.405202, 7.498989]	<=6.153722	positive	
*	3 attributes, no meta attributes.	2	<=6.414735	<=3.405202	<=6.153722	positive	
		3	<=6.414735	(3.405202, 7.498989]	<=6.153722	positive	
	Discrete dass with 2 values.	4	<=6.414735	(3.405202, 7.498989]	<=6.153722	positive	
	Settings	5	<=6.414735	(3.405202, 7.498989]	<=6.153722	positive	
	 Show meta attributes Show attribute labels (if any) 	6	<=6.414735	(3.405202, 7.498989]	<=6.153722	positive	Ĺ
File Discretize Data Table	Visualize continuous values	7	<=6.414735	(3.405202, 7.498989]	<=6.153722	positive	
	Color:	8	<=6.414735	(3.405202, 7.498989]	<=6.153722	positive	
	Resize columns: +					in a second second	
	Restore Order of Examples	9	<=6.414735	(3.405202, 7.498989]	<=6.153722	positive	1

Of course, the transformed variables are available behind the component.

9 Discretization in RapidMiner

We create a new diagram (FILE / NEW) with RapidMiner (<u>http://rapid-i.com/content/view/181/196/</u>). We insert the ARFF EXAMPLES SOURCE tool.

RapidMiner@VGC (discretization.xml)	Cartan Barran	
<u>File E</u> dit <u>V</u> iew <u>P</u> rocess <u>T</u> ools <u>H</u> elp		
🞦 📁 🖩 🖶 😂 🕜 🖎 🖕 💋	🕨 🔳 💉 🚨	1
Coperator Tree	Parameters 🕞 XML	📄 Comment 📔 🐿 New Operator
E Root	data_file	ation\data-discretization.arff
Process	label_attribute	y 7
AffExampleSource	id_attribute	B
	weight_attribute	
	datamanagement	double_array 🔹
	decimal_point_character	
	sample_ratio	1.0
	sample_size	-1
	local_random_seed	-1
G.Feb 3, 2010 3:33:27.PM: [Error] Parameter 'data_file' is not set and has	no default value.	1.1.0B
Θ		3:37:17 PM

We specify the data file name data-discretization.arff and the target variable y.

We must search in the submenus to find the tools for discretization.

e <u>E</u> dit <u>V</u> iew <u>P</u> rocess <u>T</u> ools <u>H</u> elp					
) 📁 📕 🖶 🖕 🔗 🔌 👘	👏 👳 🍅	🕨 🔳 🖌	2		W 9
📲 Operator Tree		🛛 🔯 Parameters 🕅 🖭 X	ML Comment	😉 New Operator	
Root Prof		logverbosity		linit	
Pri ta New Operator		Core 🔸			
🗆 🤳 🍓 New Building Block	×	IO FLearner			
ave as Building Block		Meta 🕨		2001	
 Show Disabled Operators 		OLAP +		never	
🖏 Rename	F2	Postprocessing Preprocessing	Attributes	, SYSTEM	
pelete	Supprimer	Validation		Discretization	AbsoluteDiscretization
Сору	Ctrl+C	Visualization		► Filter	BinDiscretization
So Cut	Ctrl+X	Y ModelApplier	Other Series	Outlier Sampling	A FrequencyDiscretization
Paste Paste	Ctrl+V	KodelGrouper	🍖 IdTagging	Weighting +	An MinMaxBinDiscretization
Operator Info	F1	ModelUngrouper	An Normalization		MinimalEntropyPartitioning
Breakpoint Before		VodelUpdater			e UserBasedDiscretization
📕 Breakpoint <u>W</u> ithin		CoperatorChain			Coci Duocu Dioci cii Luiion
Bre <u>a</u> kpoint After					
Add Breakpoints (Debug Mode)					
💦 Remove Breakpoints (Debug Mo	de off)				
eb 3, 20 🔍 Expand Tree		no default value.			
Collapse Tree				Max Tot	1 08 al: 1.1 08
Lock Tree Structure					3:43:34

We select the MINIMAL ENTROPY PARTITIONNING. The documentation gives two references (Fayyad and Irani, 1993; Dougherty et al., 1995). But we have not the details of the used algorithm. We click on the RUN button into the toolbar to perform the discretization.

rie Eult y	/iew <u>P</u> rocess <u>T</u>	oois <u>H</u> eih		
2 💭	📕 🛃 🔌	S	🛏 🐖 🧐 🕨 📰 🛷 👗	2
Exampl ArtfExam	eSet ipleSource			
Meta Data	a View 🔿 Data V	liew 🔿 Plot View		-
		pecial attribute, 4 regu		
Туре	Name	Value Type	Statistics Range	
abel	У	nominal	mode = po: negative (50), positive (50)	
egular	x1	nominal	mode = rar range1 [-∞ - ∞] (100)	
egular	х2	nominal	mode = rar range1 [-∞ - ∞] (100)	
egular	х3	nominal	mode = rar range1 [-∞ - 3.405] (24), range2 [3.405 - 6.484] (50), range3 [6.484 - ∞] (26)	
egular	x4	nominal	mode = rar range1 [-∞ - 5.971] (26), range2 [5.971 - 8.560] (23), range3 [8.560 - 10.775] (25), range4 [0.775 - ∞] (26)
				Save.
	ffExampleSource) I 3:47:42 PM: [NOTI	E) Process finished st	ccessfully after 0 s	Sav

RapidMiner provides some indications about the process. Into the RANGE column, we obtain the number of intervals and the cut points. We note that the software has rejected the discretization of X1 (wrongly) and X2 (rightly). About X3 and X4, the number of intervals corresponds to those of Weka and Tanagra. But some cut points are quite different, however.

<u>R.R.</u>

10 Conclusion

The discretization of continuous variables is a usual task in the data mining process. If the unsupervised methods are fairly well known by practitioners, it is not the case for the supervised approaches. Yet, they exist and they provide relevant results in the vast majority of cases.

🤻 R Console		
#using decision tre	e for discretization	*
> for (j in 1:4) {		
	"y ~",names(donnees[j]))	14 M M
<pre>print(J48(as.form }</pre>	ula(formule),data = donnees	())
J48 pruned tree		
1 <= 6.414735: posit	ive (50.0)	
<1 > 6.414735: negat:		
Number of Leaves :	2	
Size of the tree :	3	
J48 pruned tree		
negative (100.0/50	0)	
Number of Leaves :	1	
Size of the tree :		
J48 pruned tree		
x3 <= 7.498989		
	egative (24.0/1.0)	
	sitive (51.0/2.0)	
x3 > 7.498989: negat:	.ve (25.0)	2
Number of Leaves :	з 🚺	
Size of the tree :	5	
J48 pruned tree		
x4 <= 11.105419		
x4 <= 8.894463		
	2: positive (27.0/2.0)	=
<pre> x4 > 6.153722 x4 > 8.894463: pd</pre>	: negative (24.0/1.0)	Π
x4 > 11.105419: nega		
Number of Leaves :	4	
Size of the tree :	7	*

Finally, there is a very simple alternative for cutting a continuous variable classes into in а supervised framework: we build a decision tree by specifying a single predictive variable, the one you want to discretize. We note indeed that the popular MDLPC (Fayyad and Irani, 1993) approach which performs a top down partitioning of the range of the values operates like а decision tree algorithm.

To check this idea, we use the J48 algorithm of the RWeka package under R. We create a decision tree by using in turn each continuous attribute.

The results are very similar to those of the MDLPC algorithm. We obtain the same number of intervals. The cut points however are slightly different. This is because the decision tree algorithm uses another goodness of split criterion (Quinlan's Gain

ratio, 1993) during the process.

Whatever, we obtained valid solutions with the decision tree algorithm.

R.R.