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1 Introduction 

Text mining. Document classification (text categorization) in Python using the scikit-

learn package. 

The aim of text categorization is to assign documents to predefined categories as 

accurately as possible. We are within the supervised learning framework, with a categorical 

target attribute, often binary. The originality lies in the nature of the input attribute, which 

is a textual document. It is not possible to implement predictive methods directly, it is 

necessary to go through a data preparation phase. 

Bag of words representation is often used to describe the corpus of texts in a document-

term matrix format. It is joined to the target variable to form the dataset. The problem 

seems to be resolved at this stage as we find the usual structure of the data for predictive 

analysis. It is only just the beginning in reality because the matrix has the singularity of 

having a high dimensionality (several thousand of descriptors) and being sparse (many 

values are zero). Some machine learning techniques are more suitable than others. The 

reduction of dimensionality in particular is of considerable importance, on the one hand to 

improve performance and on the other hand to make the results interpretable, because in 

the end, beyond pure prediction, it is also a question of understanding the nature of the 

relationship between the documents and the predefined groups. 

In this tutorial, we will describe a text categorization process in Python using mainly the text 

mining capabilities of the scikit-learn package, which will also provide data mining methods 

(logistics regression). We want to classify SMS as "spam" (spam, malicious) or "ham" 

(legitimate). We use the “SMS Spam Collection v.1” dataset1 [CORPUS]. 

2 Document classification process 

It is important not to use the same data for the learning and testing of classifiers in a 

predictive analysis approach. The holdout scheme is often used: a first part of the 

observations is extracted randomly, this is the learning sample, it is used for the 

construction of the model; the remaining part, called test sample, is devoted to 

performance measurement. We often use respectively 2/3 vs.1/3 of the instances for these 

samples, but there are no fixed rules in this domain. 

                                                             

1 http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/ 

http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
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In the text categorization context, it means that we must subdivide the corpus BEFORE 

constructing the document-term matrix. The instances of the test corpus must not be 

allowed to be used in the construction of the dictionary (the list of terms) and in the 

calculation of the weights (e.g. TF-IDF weighting) of the matrix used for the learning phase. 

The approach can be summarized as follows: 

 

Figure 1 – Document categorization process 

This constraint - partitioning of corpus before constructing the document-term matrices - 

takes on its full meaning when we use the final classifier in deployment i.e. when classifying 

an unseen document that is not available during the modeling phase. It is obvious that it 

must not interfere in any way with the construction of the model: if it introduces unknown 

terms during the modelling phase, they must be ignored; likewise, we do not know the 

number of documents to be classified during the model's life cycle, the calculation of the 

IDF of terms (inverse document frequency) must be based only on the information from the 

learning sample. 

We must place ourselves in the same conditions in the learning and testing phases. The 

document term matrix used for modeling must come only from the learning corpus; the 

dictionary, and the resulting indicators (e. g. IDF), will then be used to construct the 

document term matrix for the test phase. 
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We comply with this roadmap (Figure 1) for the processing of the SMS Spam Collection 

dataset in this tutorial. 

3 Spam detection in Python 

3.1 Importation of the corpus 

The “SMSSPamCollection.txt” corpus contains n = 5572 messages, classified into 2 classes 

“spam” and “ham”. Here are the first rows of the data file: 

classe message 

ham Go until jurong point, crazy.. Available only in bugis n great world  

ham Ok lar... Joking wif u oni... 

spam Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005 

ham U dun say so early hor... U c already then say... 

The first row corresponds to the names of the variables. The documents are then listed with 

in first column the class membership, in the second column the SMS message. The 

tabulation character “\t” is the column separator. 

We use the Pandas package for importing the data file into a Data Frame structure <class 

'pandas.core.frame.DataFrame'>, we have 2 columns and 5572 rows. 

#numpy 

import numpy as np 

 

#change the current directory 

import os 

os.chdir("... your directory ...") 

 

#importation of the corpus 

import pandas 

spams = pandas.read_table("SMSSpamCollection.txt",sep="\t",header=0) 

 

#type of the object 

print(type(spams)) 

 

#size of the dataset 

print(spams.shape) 

3.2 Description of the dataset 

A quick inspection is always useful when we deal with a data set. We list the columns, their 

types and we calculate some descriptive statistics' indicators. 

#list of columns 
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print(spams.columns) 

 

#type of columns 

print(spams.dtypes) 

 

#description 

print(spams.describe()) 

The columns have the generic type “object”. 

#list of columns 

Index(['classe', 'message'], dtype='object') 

#type of columns 

classe     object 

message    object 

dtype: object 

#description 

       classe                 message 

count    5572                    5572 

unique      2                    5169 

top       ham  Sorry, I'll call later 

freq     4825                      30 

The most frequent class is ‘’ham’’ with 4825 instances (among 5572 instances); we observe 

that the document “Sorry, I'll call later” is observed 30 times. 

We calculate explicitly the classes distribution: 

#frequency distribution of the class attribute 

print(pandas.crosstab(index=spams["classe"],columns="count")) 

We observe 4825 “ham” messages, and therefore 747 “spam”. 

#frequency distribution of the class attribute 

col_0   count 

classe        

ham      4825 

spam      747 

3.3 Partitioning the corpus into training and testing sets 

We create the training and testing corpora with, respectively, ntrain = 3572 and ntest = (5572 

– 3572) = 2000 documents. We prefer a stratified draw to obtain the same classes 

proportions in both samples. We use the train_test_split function of the 

sklearn.model_selection module. 

#subdivision into train and test sets 

from sklearn.model_selection import train_test_split 
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spamsTrain, spamsTest = train_test_split(spams,train_size=3572,random_state=1,stratify=spams['classe']) 

 

#frequency distribution of the class attribute 

#train set 

freqTrain = pandas.crosstab(index=spamsTrain["classe"],columns="count") 

print(freqTrain/freqTrain.sum()) 

#test set 

freqTest = pandas.crosstab(index=spamsTest["classe"],columns="count") 

print(freqTest/freqTest.sum()) 

The proportions are well respected, the accuracy of the evaluation will be better. 

#train set 

col_0      count classe           

ham     0.865901 

spam    0.134099 

#test set 

col_0   count classe        

ham     0.866 

spam    0.134 

3.4 Building the document-term matrix for the learning phase 

We can now construct the document-term matrix for the learning corpus. We choose the 

binary weighting. The operation is carried out in two steps. (1) We instantiate the 

CountVectorizer tool. (2) We call the fit_transform() function by passing the learning corpus 

spamsTrain as parameter. 

#import the CountVectorizer tool 

from sklearn.feature_extraction.text import CountVectorizer 

 

#instantiation of the objet – binary weighting 

parseur = CountVectorizer(binary=True) 

 

#create the document term matrix 

XTrain = parseur.fit_transform(spamsTrain['message']) 

The method creates the dictionary and document-term matrix that we assign to the 

variable XTrain. We can display the number and list of terms that make up the dictionary. 

#number of tokens 

print(len(parseur.get_feature_names())) 

 

#list of tokens 

print(parseur.get_feature_names()) 
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We observe 6789 terms. Listing them would be too tedious. We just notice that the all 

characters are transformed in lowercase. To calculate the frequency of terms, we use 

XTrain. It is in the “sparse matrix” format, we transform it into a “numpy” matrix that we 

store in the variable mdtTrain. 

#transform the sparse matrix into a numpy matrix 

mdtTrain = XTrain.toarray() 

 

#type of the matrix 

print(type(mdtTrain)) 

 

#size of the matrix 

print(mdtTrain.shape) 

The dimension of the document term matrix is (3572, 6789). We calculate the number of 

documents in which each term appears, we can use the sum since we have chosen the 

binary weighting. Then we sort the frequency vector to highlight the most frequent terms. 

#frequency of the terms 

freq_mots = np.sum(mdtTrain,axis=0) 

print(freq_mots) 

 

#arg sort 

index = np.argsort(freq_mots) 

print(index) 

 

#print the terms and their frequency 

imp = {'terme':np.asarray(parseur.get_feature_names())[index],'freq':freq_mots[index]} 

print(pandas.DataFrame(imp)) 

The 5 most frequent terms are: 

#5 most frequent terms 

522              and 

528               in 

647              the 

1042              you 

1091               to 

The term ‘’to’’ appears into 1091 documents, ‘’you’’ into 1042, etc. 

3.5 Modelling with logistic regression 

We can launch the modelling process. We use the logistic regression from the scikit-learn 

package. We import and instantiate LogisticRegression tool, we call the fit() function. 

#import the class LogistiRegression 

http://www.numpy.org/
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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from sklearn.linear_model import LogisticRegression 

 

#instatiate the object 

modelFirst = LogisticRegression() 

 

#perform the training process 

modelFirst.fit(mdtTrain,spamsTrain['classe']) 

We have a vector with 6789 values, we have also the intercept. 

#size of coefficients matrix 

print(modelFirst.coef_.shape) #(1, 6789) 

 

#intercept of the model 

print(modelFirst.intercept_) #-4.4777 

For the binary logistic regression, we have only one classification function: 

𝐷 = 𝑎0 + 𝑎1 × 𝑇1 + 𝑎2 × 𝑇2 +⋯+ 𝑎𝑝 × 𝑇𝑝 

p is the number of terms, aj is the coefficient for the term Tj, a0 is the intercept. The decision 

rule is: 

IF D(document) > 0 THEN Prediction = ‘’spam’’ ELSE Prediction = ‘’ham’’ 

3.6 Evaluation on the test set 

To apply the classifier to the test corpus, we must build the corresponding document-term 

matrix, by using the dictionary resulting from the learning process. We apply the 

transform() function of the parseur objet instantiated during the learning phase (section 

Erreur ! Source du renvoi introuvable.) on the test corpus spamsTest (section 3.3). 

#create the document term matrix 

mdtTest = parseur.transform(spamsTest['message']) 

#size of the matrix 

print(mdtTest.shape) 

We have a matrix of dimension (2000, 6789): 2000 rows because we have 2000 documents 

into the test corpus, 6789 columns because we have 6789 terms into the dictionary created 

during the learning process (page Erreur ! Signet non défini.). 

We calculate the prediction of the classifier on the test set… 

#prediction for the test set 

predTest = modelFirst.predict(mdtTest) 

… and we calculate the various performance indicators. We use the metrics tool form the 

scikit-learn library. 

http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
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#import the metrics class for the performance measurement 

from sklearn import metrics 

 

#confusion matrix 

mcTest = metrics.confusion_matrix(spamsTest['classe'],predTest) 

print(mcTest) 

 

#recall 

print(metrics.recall_score(spamsTest['classe'],predTest,pos_label='spam')) 

 

#precision 

print(metrics.precision_score(spamsTest['classe'],predTest,pos_label='spam')) 

 

#F1-Score 

print(metrics.f1_score(spamsTest['classe'],predTest,pos_label='spam')) 

 

#accuracy rate 

print(metrics.accuracy_score(spamsTest['classe'],predTest)) 

We obtain respectively: 

Indicator Value 

Confusion matrix  Prediction 

 Ham Spam 

Ham 1732 0 

Spam 38 230 
 

Recall 0.858 

Precision 1.0 

F1-Score 0.924 

Accuracy rate 0.981 

The classifier seems not too bad. There are no false positive instances i.e. when we predict a 

spam, this is always correct. On the other hand, we observe that the recall is less good: 

14.2% of the spams are not detected. 

3.7 Dimensionality reduction 1 – Stop words and terms’ frequencies 

A brief study of the dictionary shows that some terms are very frequent (page 6), these 

common terms have no really meaning: « to », « you », « the », … These are the stop words. 

They do not enable to discriminate the documents. It seems better to remove them from 

the dictionary. 
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On the other hand, we can also consider that too rare terms are not relevant because they 

are anecdotal. We also remove them from the dictionary. 

In this section, we repeat the previous analysis by introducing these two options when 

instantiating the CountVectorizer tool: stop_words = ‘english’ for the removing of stop 

words, min_df = 10 for the removing of the terms which occur in less than 10 documents. 

#rebuild the parser with new options : stop_words='english' and min_df = 10 

parseurBis = CountVectorizer(stop_words='english',binary=True, min_df = 10) 

XTrainBis = parseurBis.fit_transform(spamsTrain['message']) 

#number of tokens 

print(len(parseurBis.get_feature_names())) 

#document term matrix 

mdtTrainBis = XTrainBis.toarray() 

#instatiate the object 

modelBis = LogisticRegression() 

#perform the training process 

modelBis.fit(mdtTrainBis,spamsTrain['classe']) 

#create the document term matrix for the test set 

mdtTestBis = parseurBis.transform(spamsTest['message']) 

#prediction for the test set 

predTestBis = modelBis.predict(mdtTestBis) 

#confusion matrix 

mcTestBis = metrics.confusion_matrix(spamsTest['classe'],predTestBis) 

print(mcTestBis) 

#recall 

print(metrics.recall_score(spamsTest['classe'],predTestBis,pos_label='spam')) 

#precision 

print(metrics.precision_score(spamsTest['classe'],predTestBis,pos_label='spam')) 

#F1-Score 

print(metrics.f1_score(spamsTest['classe'],predTestBis,pos_label='spam')) 

#accuracy rate 

print(metrics.accuracy_score(spamsTest['classe'],predTestBis)) 

With more than 12 times less terms (541 vs. 6789), we preserve the quality of prediction: 

Indicator Value 

Confusion matrix  Prediction 

 Ham Spam 

Ham 1731 1 

Spam 37 231 
 

Recall 0.862 
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Precision 0.996 

F1-Score 0.924 

Accuracy rate 0.981 

We have a simpler classifier with the same performance. 

3.8 Dimensionality reduction 2 – Post processing of the classifier 

3.8.1 Variable selection strategy 

Is it possible to further reduce dimensionality? We can consider the properties of the 

predictive model. Some coefficients of the classification function are almost zero, they 

influence negligibly the decision rule. A simple strategy (very rough I would say) consists in 

(1) removing the corresponding terms from the dictionary, (2) re-estimating the parameters 

of the model composed of the remaining terms. 

I know this is really an unsophisticated approach. Conventionally, we use a sequential 

approach by adding or removing one attribute at each step, especially to handle 

appropriately the collinearity problem (many of the descriptors are redundant). Based on 

computation consideration, we simplify the variable selection approach to handle the high 

number of candidate descriptors. The test error rate becomes our main reference. 

3.8.2 Implementation and predictive performance 

We try to implement this idea in this section. We characterize the coefficients of the 

learning classifier. We transform them in absolute value, then we calculate the quantiles. 

#absolute  value of the coefficients 

coef_abs = np.abs(modelBis.coef_[0,:]) 

 

#percentiles of the coefficients (absolute value) 

thresholds = np.percentile(coef_abs,[0,25,50,75,90,100]) 

print(thresholds) 

We obtain… 

#percentiles of the coefficients (absolute value) 

[ 0.01367356  0.17817203  0.30258512  0.60639769  1.03953052  2.70949586] 

The lowest value of the coefficients in absolute value is 0.01367356, the highest value 

2.70949586. We choose the 1st quartile 0.17817203 as threshold value. We identify the 

terms corresponding to the coefficients higher than this threshold in absolute value. 

#identify the coefficients "significantly" higher than zero 
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#use 1st quartile as threshold 

indices = np.where(coef_abs > thresholds[1]) 

print(len(indices[0])) 

405 descriptors are selected (against 541 in the previous step, section 3.7). We create the 

corresponding learning and testing document-term matrices. 

#train and test sets 

mdtTrainTer = mdtTrainBis[:,indices[0]] 

mdtTestTer = mdtTestBis[:,indices[0]] 

 

#checking 

print(mdtTrainTer.shape) 

print(mdtTestTer.shape) 

The dimensions of the datasets are respectively (3572, 405) et (2000, 405). 

Note: We can proceed directly from the document-term matrix of the preceding analysis 

because we use a simple weighting (presence/absence of terms). If then weighting takes 

into account the length of documents (e. g. relative frequency of terms), rather than 

performing complicated calculations, it would have been better to filter the dictionary and 

then repeat the construction of document-term matrix. 

We launch again the learning (modelTer) and test processes. 

#instatiate the object 

modelTer = LogisticRegression() 

#train a new classifier with selected terms 

modelTer.fit(mdtTrainTer,spamsTrain['classe']) 

#prediction on the test set 

predTestTer = modelTer.predict(mdtTestTer) 

#confusion matrix 

mcTestTer = metrics.confusion_matrix(spamsTest['classe'],predTestTer) 

print(mcTestTer) 

#recall 

print(metrics.recall_score(spamsTest['classe'],predTestTer,pos_label='spam')) 

#precision 

print(metrics.precision_score(spamsTest['classe'],predTestTer,pos_label='spam')) 

#F1-Score 

print(metrics.f1_score(spamsTest['classe'],predTestTer,pos_label='spam')) 

#accuracy rate 

print(metrics.accuracy_score(spamsTest['classe'],predTestTer)) 

The F1-Score is 0.926. We note that the quality of modelling is not deteriorated by the 

dimensionality reduction. Here are the details of the results: 
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Indicator Value 

Confusion matrix  Prediction 

 Ham Spam 

Ham 1731 1 

Spam 36 232 
 

Recall 0.866 

Precision 0.996 

F1-Score 0.926 

Accuracy rate 0.981 

The number of terms has been reduced from 6789 to 405 terms, while preserving the 

predictive performance of the classifier. The result is rather positive. 

3.8.3 Interpretation – Influence of the terms in the classifier 

Let us try to identify the most discriminating terms. To do this, we sort the dictionary 

according to the absolute value of the model coefficients: 

#selected terms 

sel_terms = np.array(parseurBis.get_feature_names())[indices[0]] 

 

#sorted indices of the absolute value coefficients 

sorted_indices = np.argsort(np.abs(modelTer.coef_[0,:])) 

 

#print the terms and theirs coefficients 

imp = {'term':np.asarray(sel_terms)[sorted_indices],'coef':modelTer.coef_[0,:][sorted_indices]} 

print(pandas.DataFrame(imp)) 

The 10 most important terms in the model are (with the value of the coefficients): 

1.760636      text 

1.798298      http 

1.823208      free 

1.884867        50 

1.948201       txt 

1.999089       new 

2.058226      150p 

2.201104   service 

2.249400     claim 

2.715046        uk 

Since the coefficients of these terms are positive, they all contribute to the designation of 

"spam" i.e. when they are present in documents, the chances of dealing with "spam" 
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increase. The detailed analysis of the results begins at this stage. It is likely to be expected 

that the dictionary will need to be refined to improve its relevance... 

3.8.4 Reservations concerning the variable selection 

Again, the approach described in the previous section to eliminate irrelevant terms is 

particularly questionable. Simultaneous removal of descriptors of which estimated 

coefficients are "close to" zero - apart from any other consideration - is only valid if they (the 

descriptors) are statistically independent. In practice, we should take their covariances into 

account when performing the tests for significance of the coefficients. We can also use a 

likelihood-ratio tests. In both cases, the amount of calculations makes the approach 

impracticable on datasets containing several hundred or even thousands of descriptors. 

The choice of the threshold is also questionable. But I am not as uncomfortable, actually. 

Machine learning algorithms are by nature parameterized. Choosing the first quartile as 

threshold value is not more uncertain than choosing the significance level for a variable 

selection process based on a succession of tests for significance. We can consider them as 

control parameters than enable to guide learning algorithms. 

3.9 Deployment 

One of the purposes of text categorization is to produce a function that automatically 

classify a new document as "spam" or "ham". It can be implemented in the SMS message 

reception software of your smartphone for example. In this section, we detail the different 

steps of operations. 

We want to classify the phrase “this is a new free service for you only” from our third model 

modelTer (page 11).  

Description compatible with the document-term matrix. We transform the document 

into a vector of presence absence of terms observed in the dictionary: 

#document to classify 

doc = ['this is a new free service for you only'] 

 

#get its description 

desc = parseurBis.transform(doc) 

print(desc) 

Python says that it identifies the terms n° 166, 315 et 405. We have a “sparse” description of 

the data i.e. only the non-zero values are detected. 
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  (0, 166)      1 

  (0, 315)      1 

  (0, 405)      1 

Which are these terms? 

#which terms 

print(np.asarray(parseurBis.get_feature_names())[desc.indices]) 

We have: ‘free’, ‘new’ et ‘service’. 

#print(np.asarray(parseurBis.get_feature_names())[desc.indices]) 

['free' 'new' 'service'] 

Therefore, the other terms (‘this’, ‘is’, ‘a’, ‘for’, ‘you’, ‘only’) are ignored because they are not 

listed in the dictionary. They have no influence on the classification of the message. 

Note: Maybe wrongly, by the way. The sequence of the 3 terms "for you only" is an n-gram 

of words that can be very relevant.... But, to take account this kind of information would 

lead us to redo the analysis from the beginning. A work is never definitive in text mining 

process. 

Application of the variable selection. A term may be present into the dictionary, but 

absent from the model because we performed an additional variable selection in our 

analysis. We must apply this processing - remove the terms which are not present into the 

model - before applying the classifier on the data vector. 

#dense representation 

dense_desc = desc.toarray() 

#apply var. selection 

dense_sel = dense_desc[:,indices[0]] 

Prediction of the class membership. We can now call the predict() procedure from the 

modelTer object. 

#prediction of the class membership 

pred_doc = modelTer.predict(dense_sel) 

print(pred_doc) 

The predicted class is “spam”. 

Reliability of prediction. Obtaining a prediction is good. But, having an indication of the 

reliability of the prediction is better. We can obtain the class membership probabilities using 

the function predict_proba(). 

#prediction of the class membership probabilities 

pred_proba = modelTer.predict_proba(dense_sel) 

print(pred_proba) 
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The belonging to the class “spam” seems obvious with the probability 0.9215. 

#print(pred_proba) 

[[ 0.07846502  0.92153498]] 

Verification of the calculations. Since we have the coefficients of the model (page 12), we 

can reproduce the calculations: 

#checking - logit 

logit = 1.823208 + 1.999089 + 2.201104 + modelTer.intercept_ 

 

#probability – logistic function 

import math 

p_spam = 1/(1+math.exp(-logit)) 

print(p_spam) 

Of course, the intercept (modelTer.intercept_) must be used in the calculation. 

We obtain the same value as with the function predict_proba() (we are slightly less accurate 

because we handle manually the coefficients with a restricted number of digits). 

#print(p_spam) 

0.9215349... 

4 Conclusion 

Statistical analysis of textual data is an exciting application of data mining. It requires both 

our statistical and computer skills. This tutorial outlines the document categorization 

process. We deal with the SPAMS detection problem in SMS messages. The problem is 

realistic enough, it allows to identify the main difficulties of the task. 

Yet, we made it simple. There are many opportunities of improvement: reducing 

dimensionality through techniques based on the characteristics of terms (e. g. stemming, 

lemmatization,...), through more aggressive or more sophisticated statistical selection 

approaches (e. g. ranking methods based on correlation), through methods for 

transformation of the representation space (e. g. topic modeling); exploiting another 

weighting system; using other machine learning algorithms (e. g. SVM, random forest, 

gradient boosting, etc.)... There are many challenges. 
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