
Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 1/15

1 Introduction

Text mining. Document classification (text categorization) in Python using the scikit-

learn package.

The aim of text categorization is to assign documents to predefined categories as

accurately as possible. We are within the supervised learning framework, with a categorical

target attribute, often binary. The originality lies in the nature of the input attribute, which

is a textual document. It is not possible to implement predictive methods directly, it is

necessary to go through a data preparation phase.

Bag of words representation is often used to describe the corpus of texts in a document-

term matrix format. It is joined to the target variable to form the dataset. The problem

seems to be resolved at this stage as we find the usual structure of the data for predictive

analysis. It is only just the beginning in reality because the matrix has the singularity of

having a high dimensionality (several thousand of descriptors) and being sparse (many

values are zero). Some machine learning techniques are more suitable than others. The

reduction of dimensionality in particular is of considerable importance, on the one hand to

improve performance and on the other hand to make the results interpretable, because in

the end, beyond pure prediction, it is also a question of understanding the nature of the

relationship between the documents and the predefined groups.

In this tutorial, we will describe a text categorization process in Python using mainly the text

mining capabilities of the scikit-learn package, which will also provide data mining methods

(logistics regression). We want to classify SMS as "spam" (spam, malicious) or "ham"

(legitimate). We use the “SMS Spam Collection v.1” dataset1 [CORPUS].

2 Document classification process

It is important not to use the same data for the learning and testing of classifiers in a

predictive analysis approach. The holdout scheme is often used: a first part of the

observations is extracted randomly, this is the learning sample, it is used for the

construction of the model; the remaining part, called test sample, is devoted to

performance measurement. We often use respectively 2/3 vs.1/3 of the instances for these

samples, but there are no fixed rules in this domain.

1 http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 2/15

In the text categorization context, it means that we must subdivide the corpus BEFORE

constructing the document-term matrix. The instances of the test corpus must not be

allowed to be used in the construction of the dictionary (the list of terms) and in the

calculation of the weights (e.g. TF-IDF weighting) of the matrix used for the learning phase.

The approach can be summarized as follows:

Figure 1 – Document categorization process

This constraint - partitioning of corpus before constructing the document-term matrices -

takes on its full meaning when we use the final classifier in deployment i.e. when classifying

an unseen document that is not available during the modeling phase. It is obvious that it

must not interfere in any way with the construction of the model: if it introduces unknown

terms during the modelling phase, they must be ignored; likewise, we do not know the

number of documents to be classified during the model's life cycle, the calculation of the

IDF of terms (inverse document frequency) must be based only on the information from the

learning sample.

We must place ourselves in the same conditions in the learning and testing phases. The

document term matrix used for modeling must come only from the learning corpus; the

dictionary, and the resulting indicators (e. g. IDF), will then be used to construct the

document term matrix for the test phase.

Collection of

labeledD

Corpus

Learning corpus

Test corpus

Extracting the dictionary + construction

of the document-term matrix

We use the dictionary produced in the learning phase to

form the document-term matrix. If TF-IDF weighting, we

use the IDF computed on the learning corpus.

 Learning

phase

Y X1 X2 X3 X4

Y X1 X2 X3 X4
Y Y^

Apply the classifier
on the test set

Performance
evaluation:
confusion matrix,
error rate, recall,
precision, etc.

unseen D to

classify

X1 X2 X3 X4

We use the dictionary produced in the learning

phase to form the vector of input values.

Y^

The performance
indicators calculated
on the test corpus are
used to anticipate the
reliability of the
prediction.

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 3/15

We comply with this roadmap (Figure 1) for the processing of the SMS Spam Collection

dataset in this tutorial.

3 Spam detection in Python

3.1 Importation of the corpus

The “SMSSPamCollection.txt” corpus contains n = 5572 messages, classified into 2 classes

“spam” and “ham”. Here are the first rows of the data file:

classe message

ham Go until jurong point, crazy.. Available only in bugis n great world

ham Ok lar... Joking wif u oni...

spam Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005

ham U dun say so early hor... U c already then say...

The first row corresponds to the names of the variables. The documents are then listed with

in first column the class membership, in the second column the SMS message. The

tabulation character “\t” is the column separator.

We use the Pandas package for importing the data file into a Data Frame structure <class

'pandas.core.frame.DataFrame'>, we have 2 columns and 5572 rows.

#numpy

import numpy as np

#change the current directory

import os

os.chdir("... your directory ...")

#importation of the corpus

import pandas

spams = pandas.read_table("SMSSpamCollection.txt",sep="\t",header=0)

#type of the object

print(type(spams))

#size of the dataset

print(spams.shape)

3.2 Description of the dataset

A quick inspection is always useful when we deal with a data set. We list the columns, their

types and we calculate some descriptive statistics' indicators.

#list of columns

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 4/15

print(spams.columns)

#type of columns

print(spams.dtypes)

#description

print(spams.describe())

The columns have the generic type “object”.

#list of columns

Index(['classe', 'message'], dtype='object')

#type of columns

classe object

message object

dtype: object

#description

 classe message

count 5572 5572

unique 2 5169

top ham Sorry, I'll call later

freq 4825 30

The most frequent class is ‘’ham’’ with 4825 instances (among 5572 instances); we observe

that the document “Sorry, I'll call later” is observed 30 times.

We calculate explicitly the classes distribution:

#frequency distribution of the class attribute

print(pandas.crosstab(index=spams["classe"],columns="count"))

We observe 4825 “ham” messages, and therefore 747 “spam”.

#frequency distribution of the class attribute

col_0 count

classe

ham 4825

spam 747

3.3 Partitioning the corpus into training and testing sets

We create the training and testing corpora with, respectively, ntrain = 3572 and ntest = (5572

– 3572) = 2000 documents. We prefer a stratified draw to obtain the same classes

proportions in both samples. We use the train_test_split function of the

sklearn.model_selection module.

#subdivision into train and test sets

from sklearn.model_selection import train_test_split

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 5/15

spamsTrain, spamsTest = train_test_split(spams,train_size=3572,random_state=1,stratify=spams['classe'])

#frequency distribution of the class attribute

#train set

freqTrain = pandas.crosstab(index=spamsTrain["classe"],columns="count")

print(freqTrain/freqTrain.sum())

#test set

freqTest = pandas.crosstab(index=spamsTest["classe"],columns="count")

print(freqTest/freqTest.sum())

The proportions are well respected, the accuracy of the evaluation will be better.

#train set

col_0 count classe

ham 0.865901

spam 0.134099

#test set

col_0 count classe

ham 0.866

spam 0.134

3.4 Building the document-term matrix for the learning phase

We can now construct the document-term matrix for the learning corpus. We choose the

binary weighting. The operation is carried out in two steps. (1) We instantiate the

CountVectorizer tool. (2) We call the fit_transform() function by passing the learning corpus

spamsTrain as parameter.

#import the CountVectorizer tool

from sklearn.feature_extraction.text import CountVectorizer

#instantiation of the objet – binary weighting

parseur = CountVectorizer(binary=True)

#create the document term matrix

XTrain = parseur.fit_transform(spamsTrain['message'])

The method creates the dictionary and document-term matrix that we assign to the

variable XTrain. We can display the number and list of terms that make up the dictionary.

#number of tokens

print(len(parseur.get_feature_names()))

#list of tokens

print(parseur.get_feature_names())

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 6/15

We observe 6789 terms. Listing them would be too tedious. We just notice that the all

characters are transformed in lowercase. To calculate the frequency of terms, we use

XTrain. It is in the “sparse matrix” format, we transform it into a “numpy” matrix that we

store in the variable mdtTrain.

#transform the sparse matrix into a numpy matrix

mdtTrain = XTrain.toarray()

#type of the matrix

print(type(mdtTrain))

#size of the matrix

print(mdtTrain.shape)

The dimension of the document term matrix is (3572, 6789). We calculate the number of

documents in which each term appears, we can use the sum since we have chosen the

binary weighting. Then we sort the frequency vector to highlight the most frequent terms.

#frequency of the terms

freq_mots = np.sum(mdtTrain,axis=0)

print(freq_mots)

#arg sort

index = np.argsort(freq_mots)

print(index)

#print the terms and their frequency

imp = {'terme':np.asarray(parseur.get_feature_names())[index],'freq':freq_mots[index]}

print(pandas.DataFrame(imp))

The 5 most frequent terms are:

#5 most frequent terms

522 and

528 in

647 the

1042 you

1091 to

The term ‘’to’’ appears into 1091 documents, ‘’you’’ into 1042, etc.

3.5 Modelling with logistic regression

We can launch the modelling process. We use the logistic regression from the scikit-learn

package. We import and instantiate LogisticRegression tool, we call the fit() function.

#import the class LogistiRegression

http://www.numpy.org/
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 7/15

from sklearn.linear_model import LogisticRegression

#instatiate the object

modelFirst = LogisticRegression()

#perform the training process

modelFirst.fit(mdtTrain,spamsTrain['classe'])

We have a vector with 6789 values, we have also the intercept.

#size of coefficients matrix

print(modelFirst.coef_.shape) #(1, 6789)

#intercept of the model

print(modelFirst.intercept_) #-4.4777

For the binary logistic regression, we have only one classification function:

𝐷 = 𝑎0 + 𝑎1 × 𝑇1 + 𝑎2 × 𝑇2 +⋯+ 𝑎𝑝 × 𝑇𝑝

p is the number of terms, aj is the coefficient for the term Tj, a0 is the intercept. The decision

rule is:

IF D(document) > 0 THEN Prediction = ‘’spam’’ ELSE Prediction = ‘’ham’’

3.6 Evaluation on the test set

To apply the classifier to the test corpus, we must build the corresponding document-term

matrix, by using the dictionary resulting from the learning process. We apply the

transform() function of the parseur objet instantiated during the learning phase (section

Erreur ! Source du renvoi introuvable.) on the test corpus spamsTest (section 3.3).

#create the document term matrix

mdtTest = parseur.transform(spamsTest['message'])

#size of the matrix

print(mdtTest.shape)

We have a matrix of dimension (2000, 6789): 2000 rows because we have 2000 documents

into the test corpus, 6789 columns because we have 6789 terms into the dictionary created

during the learning process (page Erreur ! Signet non défini.).

We calculate the prediction of the classifier on the test set…

#prediction for the test set

predTest = modelFirst.predict(mdtTest)

… and we calculate the various performance indicators. We use the metrics tool form the

scikit-learn library.

http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 8/15

#import the metrics class for the performance measurement

from sklearn import metrics

#confusion matrix

mcTest = metrics.confusion_matrix(spamsTest['classe'],predTest)

print(mcTest)

#recall

print(metrics.recall_score(spamsTest['classe'],predTest,pos_label='spam'))

#precision

print(metrics.precision_score(spamsTest['classe'],predTest,pos_label='spam'))

#F1-Score

print(metrics.f1_score(spamsTest['classe'],predTest,pos_label='spam'))

#accuracy rate

print(metrics.accuracy_score(spamsTest['classe'],predTest))

We obtain respectively:

Indicator Value

Confusion matrix Prediction

 Ham Spam

Ham 1732 0

Spam 38 230

Recall 0.858

Precision 1.0

F1-Score 0.924

Accuracy rate 0.981

The classifier seems not too bad. There are no false positive instances i.e. when we predict a

spam, this is always correct. On the other hand, we observe that the recall is less good:

14.2% of the spams are not detected.

3.7 Dimensionality reduction 1 – Stop words and terms’ frequencies

A brief study of the dictionary shows that some terms are very frequent (page 6), these

common terms have no really meaning: « to », « you », « the », … These are the stop words.

They do not enable to discriminate the documents. It seems better to remove them from

the dictionary.

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 9/15

On the other hand, we can also consider that too rare terms are not relevant because they

are anecdotal. We also remove them from the dictionary.

In this section, we repeat the previous analysis by introducing these two options when

instantiating the CountVectorizer tool: stop_words = ‘english’ for the removing of stop

words, min_df = 10 for the removing of the terms which occur in less than 10 documents.

#rebuild the parser with new options : stop_words='english' and min_df = 10

parseurBis = CountVectorizer(stop_words='english',binary=True, min_df = 10)

XTrainBis = parseurBis.fit_transform(spamsTrain['message'])

#number of tokens

print(len(parseurBis.get_feature_names()))

#document term matrix

mdtTrainBis = XTrainBis.toarray()

#instatiate the object

modelBis = LogisticRegression()

#perform the training process

modelBis.fit(mdtTrainBis,spamsTrain['classe'])

#create the document term matrix for the test set

mdtTestBis = parseurBis.transform(spamsTest['message'])

#prediction for the test set

predTestBis = modelBis.predict(mdtTestBis)

#confusion matrix

mcTestBis = metrics.confusion_matrix(spamsTest['classe'],predTestBis)

print(mcTestBis)

#recall

print(metrics.recall_score(spamsTest['classe'],predTestBis,pos_label='spam'))

#precision

print(metrics.precision_score(spamsTest['classe'],predTestBis,pos_label='spam'))

#F1-Score

print(metrics.f1_score(spamsTest['classe'],predTestBis,pos_label='spam'))

#accuracy rate

print(metrics.accuracy_score(spamsTest['classe'],predTestBis))

With more than 12 times less terms (541 vs. 6789), we preserve the quality of prediction:

Indicator Value

Confusion matrix Prediction

 Ham Spam

Ham 1731 1

Spam 37 231

Recall 0.862

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 10/15

Precision 0.996

F1-Score 0.924

Accuracy rate 0.981

We have a simpler classifier with the same performance.

3.8 Dimensionality reduction 2 – Post processing of the classifier

3.8.1 Variable selection strategy

Is it possible to further reduce dimensionality? We can consider the properties of the

predictive model. Some coefficients of the classification function are almost zero, they

influence negligibly the decision rule. A simple strategy (very rough I would say) consists in

(1) removing the corresponding terms from the dictionary, (2) re-estimating the parameters

of the model composed of the remaining terms.

I know this is really an unsophisticated approach. Conventionally, we use a sequential

approach by adding or removing one attribute at each step, especially to handle

appropriately the collinearity problem (many of the descriptors are redundant). Based on

computation consideration, we simplify the variable selection approach to handle the high

number of candidate descriptors. The test error rate becomes our main reference.

3.8.2 Implementation and predictive performance

We try to implement this idea in this section. We characterize the coefficients of the

learning classifier. We transform them in absolute value, then we calculate the quantiles.

#absolute value of the coefficients

coef_abs = np.abs(modelBis.coef_[0,:])

#percentiles of the coefficients (absolute value)

thresholds = np.percentile(coef_abs,[0,25,50,75,90,100])

print(thresholds)

We obtain…

#percentiles of the coefficients (absolute value)

[0.01367356 0.17817203 0.30258512 0.60639769 1.03953052 2.70949586]

The lowest value of the coefficients in absolute value is 0.01367356, the highest value

2.70949586. We choose the 1st quartile 0.17817203 as threshold value. We identify the

terms corresponding to the coefficients higher than this threshold in absolute value.

#identify the coefficients "significantly" higher than zero

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 11/15

#use 1st quartile as threshold

indices = np.where(coef_abs > thresholds[1])

print(len(indices[0]))

405 descriptors are selected (against 541 in the previous step, section 3.7). We create the

corresponding learning and testing document-term matrices.

#train and test sets

mdtTrainTer = mdtTrainBis[:,indices[0]]

mdtTestTer = mdtTestBis[:,indices[0]]

#checking

print(mdtTrainTer.shape)

print(mdtTestTer.shape)

The dimensions of the datasets are respectively (3572, 405) et (2000, 405).

Note: We can proceed directly from the document-term matrix of the preceding analysis

because we use a simple weighting (presence/absence of terms). If then weighting takes

into account the length of documents (e. g. relative frequency of terms), rather than

performing complicated calculations, it would have been better to filter the dictionary and

then repeat the construction of document-term matrix.

We launch again the learning (modelTer) and test processes.

#instatiate the object

modelTer = LogisticRegression()

#train a new classifier with selected terms

modelTer.fit(mdtTrainTer,spamsTrain['classe'])

#prediction on the test set

predTestTer = modelTer.predict(mdtTestTer)

#confusion matrix

mcTestTer = metrics.confusion_matrix(spamsTest['classe'],predTestTer)

print(mcTestTer)

#recall

print(metrics.recall_score(spamsTest['classe'],predTestTer,pos_label='spam'))

#precision

print(metrics.precision_score(spamsTest['classe'],predTestTer,pos_label='spam'))

#F1-Score

print(metrics.f1_score(spamsTest['classe'],predTestTer,pos_label='spam'))

#accuracy rate

print(metrics.accuracy_score(spamsTest['classe'],predTestTer))

The F1-Score is 0.926. We note that the quality of modelling is not deteriorated by the

dimensionality reduction. Here are the details of the results:

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 12/15

Indicator Value

Confusion matrix Prediction

 Ham Spam

Ham 1731 1

Spam 36 232

Recall 0.866

Precision 0.996

F1-Score 0.926

Accuracy rate 0.981

The number of terms has been reduced from 6789 to 405 terms, while preserving the

predictive performance of the classifier. The result is rather positive.

3.8.3 Interpretation – Influence of the terms in the classifier

Let us try to identify the most discriminating terms. To do this, we sort the dictionary

according to the absolute value of the model coefficients:

#selected terms

sel_terms = np.array(parseurBis.get_feature_names())[indices[0]]

#sorted indices of the absolute value coefficients

sorted_indices = np.argsort(np.abs(modelTer.coef_[0,:]))

#print the terms and theirs coefficients

imp = {'term':np.asarray(sel_terms)[sorted_indices],'coef':modelTer.coef_[0,:][sorted_indices]}

print(pandas.DataFrame(imp))

The 10 most important terms in the model are (with the value of the coefficients):

1.760636 text

1.798298 http

1.823208 free

1.884867 50

1.948201 txt

1.999089 new

2.058226 150p

2.201104 service

2.249400 claim

2.715046 uk

Since the coefficients of these terms are positive, they all contribute to the designation of

"spam" i.e. when they are present in documents, the chances of dealing with "spam"

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 13/15

increase. The detailed analysis of the results begins at this stage. It is likely to be expected

that the dictionary will need to be refined to improve its relevance...

3.8.4 Reservations concerning the variable selection

Again, the approach described in the previous section to eliminate irrelevant terms is

particularly questionable. Simultaneous removal of descriptors of which estimated

coefficients are "close to" zero - apart from any other consideration - is only valid if they (the

descriptors) are statistically independent. In practice, we should take their covariances into

account when performing the tests for significance of the coefficients. We can also use a

likelihood-ratio tests. In both cases, the amount of calculations makes the approach

impracticable on datasets containing several hundred or even thousands of descriptors.

The choice of the threshold is also questionable. But I am not as uncomfortable, actually.

Machine learning algorithms are by nature parameterized. Choosing the first quartile as

threshold value is not more uncertain than choosing the significance level for a variable

selection process based on a succession of tests for significance. We can consider them as

control parameters than enable to guide learning algorithms.

3.9 Deployment

One of the purposes of text categorization is to produce a function that automatically

classify a new document as "spam" or "ham". It can be implemented in the SMS message

reception software of your smartphone for example. In this section, we detail the different

steps of operations.

We want to classify the phrase “this is a new free service for you only” from our third model

modelTer (page 11).

Description compatible with the document-term matrix. We transform the document

into a vector of presence absence of terms observed in the dictionary:

#document to classify

doc = ['this is a new free service for you only']

#get its description

desc = parseurBis.transform(doc)

print(desc)

Python says that it identifies the terms n° 166, 315 et 405. We have a “sparse” description of

the data i.e. only the non-zero values are detected.

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 14/15

 (0, 166) 1

 (0, 315) 1

 (0, 405) 1

Which are these terms?

#which terms

print(np.asarray(parseurBis.get_feature_names())[desc.indices])

We have: ‘free’, ‘new’ et ‘service’.

#print(np.asarray(parseurBis.get_feature_names())[desc.indices])

['free' 'new' 'service']

Therefore, the other terms (‘this’, ‘is’, ‘a’, ‘for’, ‘you’, ‘only’) are ignored because they are not

listed in the dictionary. They have no influence on the classification of the message.

Note: Maybe wrongly, by the way. The sequence of the 3 terms "for you only" is an n-gram

of words that can be very relevant.... But, to take account this kind of information would

lead us to redo the analysis from the beginning. A work is never definitive in text mining

process.

Application of the variable selection. A term may be present into the dictionary, but

absent from the model because we performed an additional variable selection in our

analysis. We must apply this processing - remove the terms which are not present into the

model - before applying the classifier on the data vector.

#dense representation

dense_desc = desc.toarray()

#apply var. selection

dense_sel = dense_desc[:,indices[0]]

Prediction of the class membership. We can now call the predict() procedure from the

modelTer object.

#prediction of the class membership

pred_doc = modelTer.predict(dense_sel)

print(pred_doc)

The predicted class is “spam”.

Reliability of prediction. Obtaining a prediction is good. But, having an indication of the

reliability of the prediction is better. We can obtain the class membership probabilities using

the function predict_proba().

#prediction of the class membership probabilities

pred_proba = modelTer.predict_proba(dense_sel)

print(pred_proba)

Tanagra Data Mining Ricco Rakotomalala

5 octobre 2017 Page 15/15

The belonging to the class “spam” seems obvious with the probability 0.9215.

#print(pred_proba)

[[0.07846502 0.92153498]]

Verification of the calculations. Since we have the coefficients of the model (page 12), we

can reproduce the calculations:

#checking - logit

logit = 1.823208 + 1.999089 + 2.201104 + modelTer.intercept_

#probability – logistic function

import math

p_spam = 1/(1+math.exp(-logit))

print(p_spam)

Of course, the intercept (modelTer.intercept_) must be used in the calculation.

We obtain the same value as with the function predict_proba() (we are slightly less accurate

because we handle manually the coefficients with a restricted number of digits).

#print(p_spam)

0.9215349...

4 Conclusion

Statistical analysis of textual data is an exciting application of data mining. It requires both

our statistical and computer skills. This tutorial outlines the document categorization

process. We deal with the SPAMS detection problem in SMS messages. The problem is

realistic enough, it allows to identify the main difficulties of the task.

Yet, we made it simple. There are many opportunities of improvement: reducing

dimensionality through techniques based on the characteristics of terms (e. g. stemming,

lemmatization,...), through more aggressive or more sophisticated statistical selection

approaches (e. g. ranking methods based on correlation), through methods for

transformation of the representation space (e. g. topic modeling); exploiting another

weighting system; using other machine learning algorithms (e. g. SVM, random forest,

gradient boosting, etc.)... There are many challenges.

5 References

[CORPUS] Almeida, T.A., Gómez Hidalgo, J.M., Yamakami, “A. Contributions to the Study

of SMS Spam Filtering: New Collection and Results”, in Proceedings of the 2011 ACM

Symposium on Document Engineering (DOCENG'11), Mountain View, CA, USA, 2011.

