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1 Introduction 

Implementation of the “Gradient Boosting” approach under R and Python. 

This tutorial follows the course material devoted to the “Gradient Boosting” (GBM, 2016) to 

which we are referring constantly in this document. It also comes in addition to the supports 

and tutorials for Bagging, Random Forest and Boosting approaches (BRBC & BRBT, 2015). 

The thread will be basic: after importing the data which are split into two data files (learning 

and testing) in advance, we build predictive models and evaluate them. The test error rate 

criterion is used to compare performance of various classifiers.  

The question of parameters, particularly sensitive in the context of the gradient boosting, is 

studied. Indeed, there are many parameters, and their influence on the behavior of the 

classifier is considerable. Unfortunately, if we guess about the paths to explore to improve 

the quality of the models (more or less regularization), accurately identifying the parameters 

to modify and set the right values are difficult, especially because they (the various 

parameters) can interact with each other. Here, more than for other machine learning 

methods, the trial and error strategy takes a lot of importance. 

We use R and Python with their appropriate packages. 

2 Dataset and evaluation approach 

2.1 Dataset 

We use the “Optical Recognition of Handwritten Digits”1 dataset from the UCI Repository. 

The aim is to recognize (K = 10) handwritten digits (number from 0 to 9) from (8 x 8) bitmaps 

(pixels numbered from 1 to 64). We have 5260 instances. 

2.2 Evaluation process of the classifiers 

We use only 200 instances for the training set (5420 for the test set). Thus, we have 

approximately 20 instances per class. A small number of training instances for 64-

dimensional dataset make difficult the learning process. Overfitting may easily occur in this 

context. Set the right values of the parameters to combat this curse will be hard. 

                                                      

1 http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits 

http://data-mining-tutorials.blogspot.fr/2016/06/gradient-boosting-slides.html
http://data-mining-tutorials.blogspot.fr/2015/12/bagging-random-forest-boosting-slides.html
http://data-mining-tutorials.blogspot.fr/2015/12/random-forest-boosting-with-r-and-python.html
http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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3 Gradient boosting with R 

3.1 Data importation and preparation 

We import the train and test sets into two distinct data frames. We display the types of the 

variables. This information is crucial for some packages used in this tutorial. 

#set the default directory 

setwd("... votre répertoire ...") 

 

#import the train and test sets 

#into two distinct data frames 

dtrain <- read.table("opt_digits_train.txt",header=T,sep="\t") 

dtest <- read.table("opt_digits_test.txt",header=T,sep="\t") 

 

#display the class of each variable 

print(sapply(dtrain,class)) 

The class attribute CHIFFRE is recognized as a R “factor”. The other columns are “integer” 

(http://www.statmethods.net/input/datatypes.html).  

  chiffre      pix1      pix2      pix3      pix4      pix5      pix6      pix7  

 "factor" "integer" "integer" "integer" "integer" "integer" "integer" "integer"  

     pix8      pix9     pix10     pix11     pix12     pix13     pix14     pix15  

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"  

    pix16     pix17     pix18     pix19     pix20     pix21     pix22     pix23  

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"  

    pix24     pix25     pix26     pix27     pix28     pix29     pix30     pix31  

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"  

    pix32     pix33     pix34     pix35     pix36     pix37     pix38     pix39  

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"  

    pix40     pix41     pix42     pix43     pix44     pix45     pix46     pix47  

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"  

    pix48     pix49     pix50     pix51     pix52     pix53     pix54     pix55  

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"  

    pix56     pix57     pix58     pix59     pix60     pix61     pix62     pix63  

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"  

    pix64  

"integer" 

3.2 Function for the calculation of the error rate 

We create a function for the calculation of the test error rate. It takes as input the observed 

class values and the prediction of the classifier. It computes the confusion matrix and returns 

the error rate expressed in percentage. 

#function for the calculation of the error rate 

http://www.statmethods.net/input/datatypes.html
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err_rate <- function(D,prediction){ 

  #confusion matrix 

  mc <- table(D$chiffre,prediction) 

  #error rate 

  #1 - sum(well classified instances) / total number of instances 

  err <- 1 - sum(diag(mc))/sum(mc) 

  print(paste("Error rate :",round(100*err,2),"%")) 

} 

3.3 Decision tree with the “rpart” package 

We evaluate the behavior of the simple decision tree algorithm as a first step. Because most 

of the ensemble methods use this approach as underlying classifier, in principle, the 

ensemble methods should be more accurate. 

3.3.1 Decision tree with the default settings of “rpart” 

Learning process. We load the “rpart” package and launch the learning process with the 

default settings. 

#rpart library 

library(rpart) 

m.tree <- rpart(chiffre ~ ., data = dtrain) 

print(m.tree) 

The tree has 13 leaves. Displaying the tree is not interesting in our context. We note 

however that we have approximately 200/13 ≈ 15 instances per leaf. 

When we show the importance of the variables... 

#variable importance 

print(m.tree$variable.importance) 

… we observe that the pix34 is the most important for the classification process, then come 

pix43, pix47, etc. 

    pix34     pix43     pix47     pix42     pix27     pix37     pix31     pix29  

27.858532 21.311758 19.180948 17.730346 14.640914 14.361170 13.867778 13.447534  

    pix44     pix63     pix30     pix36     pix20     pix55     pix28     pix21  

11.959184 11.402576 11.182230 11.172173 10.630079 10.548857 10.476497 10.305098  

    pix61     pix39     pix26     pix22      pix7     pix62     pix18     pix46  

 8.305127  7.075785  6.807937  6.607682  6.589464  6.413949  6.308128  5.857559  

    pix19     pix35     pix56     pix11     pix51      pix6     pix54     pix12  

 5.835374  5.701288  5.295399  5.171776  5.082832  4.858586  4.808232  4.507306  

    pix14     pix64     pix53     pix13      pix4     pix45     pix52      pix3  

 4.275966  4.275966  3.934008  3.878055  3.778900  3.660975  3.660975  3.576715  

    pix38     pix59     pix10     pix60  

 3.059784  2.699214  1.733579  1.417344  
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Some variables do not appear in the list, especially because they have only a unique value. 

They are not relevant in statistical analysis process. We can detect them easily when we 

calculate the standard deviation of the variables (comparing the min and the max values 

allows also to detect the variables with a unique value). 

> sapply(dtrain[,2:65],sd) 

      pix1       pix2       pix3       pix4       pix5       pix6       pix7  

0.00000000 0.88760306 4.66708511 3.93641676 4.51992796 5.46428330 3.04637110  

      pix8       pix9      pix10      pix11      pix12      pix13      pix14  

0.75020935 0.00000000 2.98065792 5.22200360 3.89148019 5.00452057 5.60339990  

     pix15      pix16      pix17      pix18      pix19      pix20      pix21  

3.76300091 0.23247629 0.07071068 3.51363461 5.72045611 5.91182913 6.31093611  

     pix22      pix23      pix24      pix25      pix26      pix27      pix28  

6.00551673 3.13414892 0.07071068 0.00000000 3.17556231 6.16905676 5.83534328  

     pix29      pix30      pix31      pix32      pix33      pix34      pix35  

6.32026135 5.78697203 3.76093381 0.00000000 0.00000000 3.51933282 6.22215203  

     pix36      pix37      pix38      pix39      pix40      pix41      pix42  

6.51658880 6.15805025 6.01503769 3.53530649 0.00000000 0.14142136 2.92103358  

     pix43      pix44      pix45      pix46      pix47      pix48      pix49  

6.55076619 6.49037749 6.33289053 5.77194523 4.58353784 0.14035132 0.45165803  

     pix50      pix51      pix52      pix53      pix54      pix55      pix56  

2.21560818 5.63367477 4.67362965 5.06511371 6.12393771 5.31117150 0.86651848  

     pix57      pix58      pix59      pix60      pix61      pix62      pix63  

0.07071068 0.87969844 5.01805534 3.92796634 4.72222373 5.77232176 4.10929820  

     pix64  

1.76919480  

Evaluation of the classifier. We apply the classifier on the test set. We compare the 

predictions with the observed values of the class attribute. We use the err_rate() function 

defined above (section 3.2). 

#prediction 

y.tree <- predict(m.tree, newdata = dtest, type = "class") 

 

#error rate 

err_rate(dtest,y.tree) 

The test error rate is 36.59 %. This is our baseline error rate. We should always do better 

with the methods that follow. We observe that the error rate of the default classifier is (1 - 

1/K = 1 - 1/10 = 90%) because we have a balanced dataset. Even if the tree is not great on 

our dataset, it performs a relevant classification process, significantly better than the default 

classifier. 
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3.3.2 Modifying the settings of “rpart” 

To check if the overfitting phenomenon can occur on our dataset, we create a tree 

deliberately oversized. If the error rate deteriorates, it means that we must select more 

regularized approach because, for instance, we have a noisy data. Otherwise, if the error 

rate is improved, we may think that we have non-noisy data. Complex classifiers with low 

bias should be more accurate. 

We modify the settings of the tree algorithm, we decrease the minsplit and minbucket 

parameters. And we deactivate the cp parameter (cp = 0). 

#new settings for the tree algorithm 

param.tree.2 <- rpart.control(minsplit=5,minbucket=2,cp=0) 

 

#learning process with the new settings 

m.tree.2 <- rpart(chiffre ~ ., data = dtrain, control = param.tree.2) 

print(m.tree.2) 

 

#prediction 

y.tree.2 <- predict(m.tree.2, newdata = dtest, type = "class") 

 

#test error rate 

err_rate(dtest,y.tree.2) 

The tree has 23 leaves (8.7 instances per leaf in average). The error rate is 32.8 %. 

Apparently, overfitting is not the first concern here. We can create classifier variants that fit 

closely the learning data. We will think about it when we have to set the parameters of the 

other methods that we will examine in the following sections. 

3.4 Boosting with the “adabag” package 

Boosting is the second baseline learning approach (BRBC). Indeed, "Gradient boosting" is a 

kind of generalization of the standard boosting. In the first place, I thought that gradient 

boosting was difficult to handle because of the high number of parameters, and that it is not 

usable in practice. I admit I was quite astonished when I read in recent publications that the 

"gradient boosting" have an excellent behavior in the data science challenges. This is a bit of 

what brought me to study the method closely (GBM). 

To study the behavior of the boosting approach, we use the “adabag” package for R (BRBC). 

We reiterate the train and test steps. 

#load the “adabag” library (must be installed first) 

library(adabag) 
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#boosting - learning process 

m.boosting <- boosting(chiffre ~ ., data = dtrain, boos = FALSE, mfinal = 100, coeflearn = 'Zhu') 

 

#prediction 

y.boosting <- predict(m.boosting, newdata = dtest) 

 

#test error rate 

err_rate(dtest,y.boosting$class) 

We create ‘’mfinal = 100’’ decision trees2. The approach is based on the SAMME algorithm 

‘’coeflearn = Zhu’’ (BRBC). 

The test error rate is 10.83 %. Compared with the standard decision tree learning algorithm, 

the improvement is dramatic. The test error rate is divided by a factor of 3. This shows, if 

necessary, that the ensemble methods are often very effective in most situations. The only 

criticism that can be addressed to them is the lack of an explicit model for the interpretation. 

An open issue is the number of tree to create in the ensemble model (we use the default 

setting mfinal = 100 here). We study this issue when we analyze the behavior of the gradient 

boosting below. 

3.5 Gradient boosting with the “gbm” package 

We examine the “gbm” package in this section. The description of the approach is available 

online (Ridgeway, 2007). 

3.5.1 Default settings 

Learning process. As a first step, we launch the algorithm with the default settings. We 

specify nevertheless the "multinomial" distribution which correspond to the loss function 

"multinomial deviance" (GBM, page 13), so that the procedure interprets properly the target 

attribute with K = 10 classes. 

#package "gbm" 

library(gbm) 

 

#learning process 

#default settings 

#loss function: multinomial deviance 

                                                      

2 We use systematically 100 trees for ensemble methods in this tutorial. 

https://cran.r-project.org/web/packages/gbm/index.html
http://www.saedsayad.com/docs/gbm2.pdf
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m.gbm.default <- gbm(chiffre ~ ., data = dtrain, distribution="multinomial") 

 

#print the results 

print(m.gbm.default) 

R displays the following results. 

gbm(formula = chiffre ~ ., distribution = "multinomial", data = dtrain) 

A gradient boosted model with multinomial loss function. 

100 iterations were performed. 

There were 64 predictors of which 29 had non-zero influence. 

29 descriptors among the 64 available variables are relevant for the classification process. It 

means that 35 variables have no influence! It is more restrictive than the 6 irrelevant 

variables detected for the decision tree (page 4). These 35 variables do not appear in any 

internal trees of the ensemble classifier. 

We obtain the importance of the variables with the summary() command. 

#summary -> variable importance 

print(head(summary(m.gbm.default),10)) 

Among the 10 best ones, the influence of the variable pix37 is emphasized, unlike for the 

decision tree algorithm (see page 3). 

var   rel.inf 

pix37 pix37 13.075552 

pix61 pix61 10.739860 

pix30 pix30  7.997531 

pix20 pix20  7.383096 

pix52 pix52  6.835593 

pix34 pix34  6.167558 

pix47 pix47  5.612913 

pix38 pix38  5.414612 

pix19 pix19  5.005820 

pix29 pix29  4.895419 

The importance of the variables can be shown with a bar graph. But we cannot distinguish 

the names of the variables when we have many ones. 
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Prediction. We launch the predict() procedure for the prediction on the test set. 

#predict ==> score for each class 

p.gbm.default <- predict(m.gbm.default,newdata=dtest,n.trees=m.gbm.default$n.trees) 

print(head(p.gbm.default[,,1],6)) 

We must specify the number of trees to use for the prediction. We use the number returned 

by the learning process ($n.trees).  predict() returns a table with, in row the instances to 

classify, in columns, the score for each class. We have the following values for the first 6 

individuals of the test set. 

             C0          C1          C2          C3          C4          C5 

[1,] 0.49304415 -0.09812562  0.03519917 -0.06352704 -0.05290850 -0.07557961 

[2,] 0.49304415 -0.09812562 -0.09573301 -0.06352704  0.15421028 -0.07243963 

[3,] 0.05945927 -0.09812562 -0.09573301 -0.05673755  0.18897575 -0.07313190 

[4,] 0.49304415 -0.09812562 -0.09573301 -0.05786361  0.18897575  0.01457892 

[5,] 0.49304415 -0.09812562 -0.07952674 -0.05475276  0.20477354 -0.04971930 

[6,] 0.05945927  0.03398715 -0.09573301 -0.08488862  0.08093326 -0.05908508 

              C6         C7          C8           C9 

[1,] -0.09706824 -0.1033490 -0.02731614 -0.072639129 

[2,] -0.09706824 -0.1033490 -0.08116849 -0.072639129 

[3,] -0.09706824  0.1226494 -0.08427735 -0.072639129 

[4,] -0.09706824 -0.1033490 -0.07925893 -0.024321297 

[5,]  0.14387216 -0.1004051 -0.07428739 -0.006123564 

[6,] -0.09706824 -0.1033490 -0.07104859  0.303982942 

For each row (instance to classify), the prediction corresponds to the column with the 

highest value. We use the following command to identify the prediction for each instance: 

#transform the score in a prediction for each instance 

y.gbm.default <- factor(levels(dtrain$chiffre)[apply(p.gbm.default[,,1],1,which.max)]) 

Here are the details of the command: 



Tanagra Data Mining  Ricco Rakotomalala 

11 août 2017 Page 9/20 

 

• apply() is applied to each row of the matrix provided by the predict() command. It 

searches the number of the column with the highest score. 

• levels(dtrain$chiffre) returns the list of the values of the target attribute CHIFFRE i.e. {C0, 

C1, C2, …, C9}. 

• By means of the R's replication mechanism, apply() returns a vector of strings containing 

the values {‘C0’…’C9’}. 

• factor() enables to transform the vector of strings into a factor data type. 

Finally, we call the error rate function defined previously. 

#test error rate 

err_rate(dtest,y.gbm.default) 

Unfortunately, the test error rate is 35.9%. At the same level than the simple decision tree 

algorithm. This is a disappointing result. Before to point out the inefficiency of the “gbm” 

package, it would be time to take a close look at the parameters used by the procedure. 

3.5.2 Modifying the parameters 

We obtain the properties of a R object with the attributes() command. 

#displaying the properties of the object provided by the learning process 

print(attributes(m.gbm.default)) 

We have: 

$names 

 [1] "initF"             "fit"               "train.error"       

 [4] "valid.error"       "oobag.improve"     "trees"             

 [7] "c.splits"          "bag.fraction"      "distribution"      

[10] "interaction.depth" "n.minobsinnode"    "num.classes"       

[13] "n.trees"           "nTrain"            "train.fraction"    

[16] "response.name"     "shrinkage"         "var.levels"        

[19] "var.monotone"      "var.names"         "var.type"          

[22] "verbose"           "classes"           "estimator"         

[25] "data"              "Terms"             "cv.folds"          

[28] "call"              "m"                 

 

$class 

[1] "gbm" 

Some of them seem interesting regarding what we know about the parameters of the 

gradient boosting methods (GBM, page 23). We display them. 

#number of trees = 100 

print(m.gbm.default$n.trees) 
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#depth of the trees = 1. By default, decision stump are used!!! 

print(m.gbm.default$interaction.depth) 

 

#shrinkage parameter = 0.001, very small correction applied 

#for each tree learned (GBM, page 16) 

print(m.gbm.default$shrinkage) 

 

#proportion of instances selected randomly = 0.5 

#for the learning of the trees at each step (GBM, page 16) 

print(m.gbm.default$bag.fraction) 

The key information that we observe that the procedure uses by default decision stumps as 

underlying classifier. For a multiclass problem, with K = 10, it is not appropriate. Each single 

tree is very bad. We are in an underfitting situation i.e. the learning set is under-exploited. 

We modify the settings in order to build deeper individual trees (interaction.depth = 6). We 

improve also the speed of the convergence by emphasizing the correction for each individual 

tree (shrinkage = 0.1) because we do not worry about overfitting here (see section 3.3.2). 

#modifying the settings of the learning algorithm 

m.gbm.2 <- gbm(chiffre ~ ., data = dtrain, distribution="multinomial",interaction.depth=6,shrinkage=0.1) 

 

#displaying the results 

print(m.gbm.2) 

 

#prediction 

p.gbm.2 <- predict(m.gbm.2,newdata=dtest,n.trees=m.gbm.2$n.trees) 

y.gbm.2 <- factor(levels(dtrain$chiffre)[apply(p.gbm.2[,,1],1,which.max)]) 

 

#test error rate 

err_rate(dtest,y.gbm.2) 

We were well advised since the test error rate is now 12.47 %3. We observe two essential 

facts: 

• If we let 'shrinkage' option at 0.0001, the test error rate would have been to 24.21%. It 

would have been necessary to increase the number of trees to achieve satisfactory 

results again (Ridgeway, 2007 ; section 3.2). 

                                                      

3 Because there is a random part in the algorithm because of the ' bag.fraction < 1 ', we do not have 

exactly the same results at each execution of the procedure. With the option '' bag.fraction = 1 '', the algorithm 

becomes deterministic and the error rate is (therefore systematically) 14.26%. 

http://www.saedsayad.com/docs/gbm2.pdf
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• “Standard” boosting algorithm achieve error rate of 10.83% (the difference is significant 

on 5420 instances). But we do not need to manipulate finely the parameters. This 

relativizes the results. 

Of course, by finely adjusting the gradient boosting parameters, we should achieve the same 

level of performance as the "standard" boosting here. But we need to be able to identify the 

right values for the right parameters. This is not obvious. 

3.6 Gradient boosting with the “xgboost” package 

We examine the “xgboost” package for R in this section. Some tutorials (ex. 1, 2) allow you 

to learn how to use it. A technical documentation is also available. 

3.6.1 Learning process with default settings 

A data preparation is needed before we can use the learning function of the package. We 

must transform the data frame into matrix type, and the vectors must be of the type 

numeric (“xgboost” does not take integer vectors). 

#convert the descriptors in numeric data type (page 2) 

#’-1’ because the 1st column is the target attribute 

#the list of vectors is transformed into a data frame 

XTrain <- data.frame(lapply(dtrain[,-1],as.numeric)) 

 

#the data frame is transformed into a matrix 

XTrain <- as.matrix(XTrain) 

 

#recode the target attribute (“factor” type) into a numeric vector 

#the values (1, 2, …, 10) are transformed into (0, 1, 2, …, 9) 

yTrain <- unclass(dtrain$chiffre)-1 

We can launch the learning process by asking 100 trees. We must specify the number of 

distinct values for the class attribute (num_class = 10). The softmax function is the loss 

function (GBM, page 13). 

The test set must be transformed also to ensure that the predict function operates properly. 

We add the value 1 to the predicted values, defined on the range (0, ..., 9), so that the 

comparison with the observed values of the test set is possible. 

#package xgboost 

library(xgboost) 

 

#learning process with the default settings (eta=0.3, max.depth=6) 

m.xg.def <- xgboost(data=XTrain,label=yTrain,objective="multi:softmax",num_class=10,nrounds=100) 

https://cran.r-project.org/web/packages/xgboost/index.html
https://cran.r-project.org/web/packages/xgboost/vignettes/xgboostPresentation.html
http://www.r-bloggers.com/an-introduction-to-xgboost-r-package/
http://xgboost.readthedocs.io/en/latest/model.html
https://en.wikipedia.org/wiki/Softmax_function
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#preparation of the descriptors of the test set 

XTest <- data.frame(lapply(dtest[,-1],as.numeric)) 

XTest <- as.matrix(XTest) 

 

#prediction 

y.xg.def <- predict(m.xg.def,newdata=XTest)+1 

 

#test error rate 

err_rate(dtest,y.xg.def) 

The test error rate is 15.5 %. Here also the results are disappointing compared with the 

standard boosting (10.83 %, section 3.4). They are even more because, by reading carefully 

the documentation, the default settings seem appropriate (shrinkage, eta = 0.3; depth of the 

trees, max_depth = 6).  

3.6.2 Modifying the settings 

We are bewildered. A first solution would be to reduce the shrinkage setting to avoid 

excessive corrections (eta = 0.1). But this change is not enough. A second solution explores 

an original feature that brings the “xgboost” closer to the implementation of the Random 

forest method (BRB, page 22). The idea is to make a random sampling of the variables used 

for the construction of individual trees. This increases the diversity of trees (they are 

decorrelated according to the terminology of Random Forest). Their combination will be 

more effective4. 

We launch again the learning process with the new version of the settings. 

# learning with the new settings 

# 0.125 = SQRT(64)/64, suggested by the settings of the “random forest” 

m.xg.2 <- xgboost(data=XTrain,label=yTrain,objective="multi:softmax",num_class=10,nrounds=100,eta=0.1,colsample_bytree=0.125) 

 

#prediction 

y.xg.2 <- predict(m.xg.2,newdata=XTest)+1 

 

#test error rate 

err_rate(dtest,y.xg.2) 

The test error rate is 10.44%. The improvement is substantial but I confess that I am mixed. 

Modifying the parameters without knowing exactly why is not a satisfactory approach. 

                                                      

4 With the exception that the Random forest makes the sampling at each node of the tree, while “xgboost” 

makes the sampling before the construction of each tree. 

https://cran.r-project.org/web/packages/xgboost/xgboost.pdf


Tanagra Data Mining  Ricco Rakotomalala 

11 août 2017 Page 13/20 

 

3.6.3 Variable importance 

“xgboost” provides a tool which enables to obtain the variable importance. For our part, we 

compare the diversification of the trees when we introduce the variable sampling 

(colsample_bytree = 0.125) during the learning process. 

#learning process 

m.xg.def <- xgboost (data=XTrain, 

label=yTrain, objective="multi:softmax", 

num_class=10,nrounds=100) 

#variable importance (15 first) 

print(head (xgb.importance 

(colnames(XTrain), model=m.xg.def),15)) 

#learning process 

m.xg.2 <- xgboost (data=XTrain, 

label=yTrain, objective="multi:softmax",  

num_class=10, nrounds=100, eta=0.1, 

colsample_bytree=0.125) 

# variable importance (15 first) 

print(head (xgb.importance 

(colnames(XTrain), model=m.xg.2),15)) 

Feature Gain 

pix37 0.08741986 

pix44 0.06783863 

pix20 0.05909602 

pix22 0.05765523 

pix30 0.05586736 

pix61 0.04987202 

pix29 0.04899898 

pix52 0.04585716 

pix34 0.04168518 

pix47 0.04167961 

pix27 0.03714287 

pix38 0.03642339 

pix3 0.03033923 

pix6 0.03012236 

pix11 0.02646798 

Feature Gain 

pix28 0.05056194 

pix31 0.03659583 

pix21 0.03599328 

pix22 0.03565025 

pix20 0.03510729 

pix44 0.03322517 

pix37 0.03265284 

pix59 0.03157483 

pix45 0.03011384 

pix3 0.03010671 

pix47 0.02917668 

pix36 0.02911094 

pix29 0.02891033 

pix38 0.02856075 

pix19 0.02647185 

The influence of the variables is better distributed (less concentration of “gain” on the first 

variables) with the introduction of the variable sampling. This is not surprising. In this case, it 

allows to improve the performance of the ensemble classifier. This is the main result. 

3.7 Gradient boosting with the “mboost” package 

“mboost”  is the third package presented in our course material (GBM, page 21). 

https://cran.r-project.org/web/packages/mboost/index.html
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It operates properly on our illustrative example, which handles a binary problem (in the 

course material). But for our dataset (K = 10 classes) in this tutorial, an error occurs when we 

launch the learning process. 

Here are the commands used. 

#package mboost 

library(mboost) 

 

#learning process  ERREUR SESSION R 

m.mb.def <- blackboost(chiffre ~ ., data = dtrain, family=Multinomial()) 

I reiterate the experiments on the IRIS dataset [data(iris) from the ‘’dataset’’ package]. The 

same error occurred. Yet, by reading the documentation, it seems that the processing of 

multiple-class problems is possible [option family = Multinomial()]. I stopped here my 

investigations. 

4 Gradient boosting with Python 

In this section, we process our dataset with “scikit-learn” (version 0.17.1) package for 

Python. The thread is the same that the one for the various packages for R software. In 

addition, we examine the grid search tool which enables to detect “automatically” the best 

settings for machine learning algorithms. We will see if it is efficient for our dataset. 

The documentation for the "gradient boosting" procedure provided by the “scikit-learn” 

package is available online. I think that studying carefully the parameters is of interest to 

understand the nature of the algorithm implemented. 

4.1 Data importation and preparation 

As under R, we must import the two data files (learning and test sets). Then, we perform the 

data preparation required by the “scikit-learn” package. 

#modifying the default directory 

import os 

os.chdir("... le dossier de vos données ...") 

 

#data importation with the “pandas” package 

import pandas 

dtrain = pandas.read_table("opt_digits_train.txt",sep="\t",header=0,decimal=".") 

 

#checking the dimension : 200 obs., 65 variables 

print(dtrain.shape) 

 

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://pandas.pydata.org/
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#target variable – learning sample 

y_app = dtrain.as_matrix()[:,0] 

 

#input variables – learning sample 

X_app = dtrain.as_matrix()[:,1:64] 

 

#importing the test set 

dtest = pandas.read_table("opt_digits_test.txt",sep="\t",header=0,decimal=".") 

 

#5420 obs. and 65 variables 

print(dtest.shape) 

 

#transformation into a matrix data type 

y_test = dtest.as_matrix()[:,0] 

X_test = dtest.as_matrix()[:,1:64] 

4.2 Function for the calculation of the error rate 

“Scikit-learn” provides efficient tools from the “metrics” module. We use them by 

transforming the success (accuracy) rate into error rate. 

#function for the calculation of the error rate 

#confronting observed values and prediction on the test set 

from sklearn import metrics 

err = 1.0 - metrics.accuracy_score(y.obs.test,y.pred.test) 

print(err) 

Note: In a previous tutorial (BRBT, section 4.2), taking advantage of the fact that the 

signatures of the functions of scikit-Learn are homogeneous, we defined a function that 

takes as input the test set and the classifier. So, the function incorporates the prediction and 

calculation of the error rate. This is a pretty elegant solution. But, in order to be consistent 

with the presentation for the R software in this tutorial, I prefer to make explicitly the 

prediction in the main program before to calculate the error rate. 

4.3 Gradient boosting with “scikit-learn” package for Python 

We are ready to start the modeling process. Several steps are needed. 

Instantiation of the class. We must initialize an object of the class “Gradient boosting”. We 

display its default settings. 

#gb is an object of the gradient boosting type 

#no settings are specified  the object uses the default settings 

from sklearn.ensemble import GradientBoostingClassifier 

gb = GradientBoostingClassifier() 
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#displaying the settings of the object  

print(gb) 

We obtain the following results. 

GradientBoostingClassifier(init=None, learning_rate=0.1, loss='deviance', 

              max_depth=3, max_features=None, max_leaf_nodes=None, 

              min_samples_leaf=1, min_samples_split=2, 

              min_weight_fraction_leaf=0.0, n_estimators=100, 

              presort='auto', random_state=None, subsample=1.0, verbose=0, 

              warm_start=False) 

We note among other, by referring to the documentation. 

• The loss function used (loss = ‘deviance’) (GBM, page 13); 

• 100 trees are created (n_estimators = 100); 

• The learning rate (learning rate)  = 0.1 (GBM, page 16); 

• The maximal depth of the individual trees is ‘max_depth = 3’. The trees are rather small. 

This will protect us against overfitting (GBM, page 23), but this can result in an 

underfitting; 

• The minimum number of instances required to split and required to be at leaf is small 

(min_samples_split = 2, min_samples_leaf = 1) (GBM, page 23); 

• There is not a sampling mechanism of instances for the creation of each individual trees 

(no “stochastic gradient boosting”, [GBM, page 16]) i.e. all the instances are used 

(subsample = 1.0). 

• There is not a sampling mechanism of variables (based on the Random Forest idea) for 

the creation of individual trees (max_features = None). 

Learning process. We launch the learning process with the fit() procedure 

#learning process 

gb.fit(X_app,y_app) 

Prediction and evaluation. We perform the prediction on the test set, then we calculate the 

error rate. 

#prediction on the test set 

y_pred = gb.predict(X_test) 

#evaluation: calculation of the error rate 

#error rate = 1 – accuracy rate 

from sklearn import metrics 

err = 1.0 - metrics.accuracy_score(y_test,y_pred) 

print(err) 

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
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The test error rate is 19.85 %. Again, it is disappointing. We must refine the settings to get 

better results. 

4.4 Grille search for “optimal” parameters 

Scikit-learn provides an interesting tool to detect the "optimal" values of the parameters. To 

the GridSearchCV tool is passed a list of parameters with the values to test. It tries to find 

the best combination in cross-validation. It uses a measure of performance evaluation for 

that (e.g. error rate, F-Score, etc.). The positive aspect is that the test sample is never used in 

this process. It keeps its status of arbitrator to evaluate the performance of the resulting 

classifier in generalization. The negative aspect is the risk of overfitting on the learning 

sample (200 instances for our problem). 

Let us examine the use of the tool. 

#GridSearchCV class 

#3-fold cross validation – default parameter 

from sklearn.grid_search import GridSearchCV 

 

#List of parameter-value pairs to try 

parametres = 

 {"learning_rate":[0.3,0.2,0.1,0.05,0.01],"max_depth":[2,3,4,5,6],"subsample":[1.0

 ,0.8,0.5],"max_features":[None,'sqrt','log2']} 

 

#learning algorithm 

gbc = GradientBoostingClassifier() 

 

#object (instance of the class) for the grid search 

grille = GridSearchCV(estimator=gbc,param_grid=parametres,scoring="accuracy")  

 

#launch the search on the learning set 

resultats = grille.fit(X_app,y_app) 

 

#displaying the performance results (scores) 

print(resultats.grid_scores_) 

 

#best performances (scores) 

print(resultats.best_score_) 

 

#parameters-values pair for the best performances 

print(resultats.best_params_) 

For max_features, ‘sqrt’ and ‘log2’ correspond to square root and the binary logarithm of the 

number of descriptors. None corresponds to “no selection”. 

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
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The tool evaluates the combination i.e. 5 x 5 x 3 x 3 = 225 configurations. By default, it uses a 

3-folds cross-validation for the performance evaluation. Thus, there are 675 pairs of 

learning-test processes. It is better to have a good machine! 

The ‘grid_scores_’ properties returns all the results. For each combination of parameters, we 

have the parameters used, the mean and the standard deviation of the success rate in 3-

folds cross-validation. Here are for instance the 3 first results of the table: 

[mean: 0.78500, std: 0.01654, params: {'max_features': None, 'max_depth': 2, 

'subsample': 1.0, 'learning_rate': 0.3}, mean: 0.81000, std: 0.01305, params: 

{'max_features': None, 'max_depth': 2, 'subsample': 0.8, 'learning_rate': 0.3}, 

mean: 0.77500, std: 0.01770, params: {'max_features': None, 'max_depth': 2, 

'subsample': 0.5, 'learning_rate': 0.3}, 

For {'max_features': None, 'max_depth': 2, 'subsample': 1.0, 'learning_rate': 0.3}, the 

average of the success rate is 78.5 %; etc. 

The best result is not easy to perceive in these outputs. Fortunately, scikit-learn provides 

automatically the best scores (‘best_score_’ = 89,5 %) and the corresponding combination of 

parameters (‘best_params_’): 

{'max_features': 'log2', 'max_depth': 6, 'subsample': 1.0, 'learning_rate': 0.05} 

Is this success rate of 89.5% (error rate = 1 – 89.5% = 10.5%) credible? We apply the best 

model detected by the GridSearchCV tool on the test set. 

#prediction on the test set 

#with the best classifier 

ypredc = resultats.predict(X_test) 

 

#test error rate 

err_best = 1.0 - metrics.accuracy_score(y_test,ypredc) 

print(err_best) 

The test error rate is 9.0 %. Clearly, the method is efficient. This is the best result that we 

obtain until now. Despite the reticence about this kind of "crude" strategies, we can consider 

that it is a useful alternative approach when we do not master the characteristics of the 

learning algorithm to use. 

4.5 Random Forest 

In preparing this tutorial, I had tested different approaches to identify the best solutions 

(settings) for the gradient boosting. I realized that the Random Forest method was the most 

efficient. This result has led me on the introduction of the variables sampling during the 
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construction of individual decision trees with “xgboost” under R (section 3.6.2) and “scikit-

learn” under Python (section 4.4). This process (variables sampling) plays clearly an 

important role in our data. 

Indeed, when we perform the Random Forest algorithm on our dataset… 

#random forest class 

from sklearn.ensemble import RandomForestClassifier 

 

#RandomForest object 

rf = RandomForestClassifier(n_estimators = 100) 

 

#learning process on the learning sample 

rf.fit(X_app,y_app) 

 

#prediction on the test set 

y_pred_rf = rf.predict(X_test) 

 

#test error rate 

err = 1.0 - metrics.accuracy_score(y_test,y_pred_rf) 

print(err) 

… we obtain a test error rate of 8.24 %. This is the best result during our experiments! 

5 Conclusion 

The initial goal of this tutorial is to show the implementation of the gradient boosting using R 

and Python with easy to use packages. The process is rather easy if we consider a standard 

analysis with the default parameters. "Gradient boosting" is a predictive method as any the 

others. 

Problems begin when we want to detect the parameters-values pairs which fit with the 

processed data. We realize that there are many parameters, that they do not always 

correspond to those described in the state-of-the-art books (e.g. Hastie and al., 2009). To 

unambiguously identify what is implemented in the packages and the potential for tuning, 

the only solution is to read carefully the documentation and carry out experiments. In the 

case of the gradient boosting, the work on the parameters is essential. We have found that 

they influence heavily the performance of the subsequent classifiers. 

The automatic search tools for the best settings such as the scikit-learn's GridSearchCV can 

be of great help. The trick is to not use them wrongly and through by blindly relying on the 

indications they provide. Explicitly identifying the mechanisms of success of a data mining 
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method on our data remains the best way to ensure the reproducibility of our results. But 

this is not always obvious, I concede. 

Finally, we note that all the ensemble methods do better than the standard decision tree 

learning algorithm that have served as a baseline (section Erreur ! Source du renvoi 

introuvable.). 
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