
Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 1/20

1 Introduction

Implementation of the “Gradient Boosting” approach under R and Python.

This tutorial follows the course material devoted to the “Gradient Boosting” (GBM, 2016) to

which we are referring constantly in this document. It also comes in addition to the supports

and tutorials for Bagging, Random Forest and Boosting approaches (BRBC & BRBT, 2015).

The thread will be basic: after importing the data which are split into two data files (learning

and testing) in advance, we build predictive models and evaluate them. The test error rate

criterion is used to compare performance of various classifiers.

The question of parameters, particularly sensitive in the context of the gradient boosting, is

studied. Indeed, there are many parameters, and their influence on the behavior of the

classifier is considerable. Unfortunately, if we guess about the paths to explore to improve

the quality of the models (more or less regularization), accurately identifying the parameters

to modify and set the right values are difficult, especially because they (the various

parameters) can interact with each other. Here, more than for other machine learning

methods, the trial and error strategy takes a lot of importance.

We use R and Python with their appropriate packages.

2 Dataset and evaluation approach

2.1 Dataset

We use the “Optical Recognition of Handwritten Digits”1 dataset from the UCI Repository.

The aim is to recognize (K = 10) handwritten digits (number from 0 to 9) from (8 x 8) bitmaps

(pixels numbered from 1 to 64). We have 5260 instances.

2.2 Evaluation process of the classifiers

We use only 200 instances for the training set (5420 for the test set). Thus, we have

approximately 20 instances per class. A small number of training instances for 64-

dimensional dataset make difficult the learning process. Overfitting may easily occur in this

context. Set the right values of the parameters to combat this curse will be hard.

1 http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

http://data-mining-tutorials.blogspot.fr/2016/06/gradient-boosting-slides.html
http://data-mining-tutorials.blogspot.fr/2015/12/bagging-random-forest-boosting-slides.html
http://data-mining-tutorials.blogspot.fr/2015/12/random-forest-boosting-with-r-and-python.html
http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 2/20

3 Gradient boosting with R

3.1 Data importation and preparation

We import the train and test sets into two distinct data frames. We display the types of the

variables. This information is crucial for some packages used in this tutorial.

#set the default directory

setwd("... votre répertoire ...")

#import the train and test sets

#into two distinct data frames

dtrain <- read.table("opt_digits_train.txt",header=T,sep="\t")

dtest <- read.table("opt_digits_test.txt",header=T,sep="\t")

#display the class of each variable

print(sapply(dtrain,class))

The class attribute CHIFFRE is recognized as a R “factor”. The other columns are “integer”

(http://www.statmethods.net/input/datatypes.html).

 chiffre pix1 pix2 pix3 pix4 pix5 pix6 pix7

 "factor" "integer" "integer" "integer" "integer" "integer" "integer" "integer"

 pix8 pix9 pix10 pix11 pix12 pix13 pix14 pix15

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"

 pix16 pix17 pix18 pix19 pix20 pix21 pix22 pix23

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"

 pix24 pix25 pix26 pix27 pix28 pix29 pix30 pix31

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"

 pix32 pix33 pix34 pix35 pix36 pix37 pix38 pix39

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"

 pix40 pix41 pix42 pix43 pix44 pix45 pix46 pix47

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"

 pix48 pix49 pix50 pix51 pix52 pix53 pix54 pix55

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"

 pix56 pix57 pix58 pix59 pix60 pix61 pix62 pix63

"integer" "integer" "integer" "integer" "integer" "integer" "integer" "integer"

 pix64

"integer"

3.2 Function for the calculation of the error rate

We create a function for the calculation of the test error rate. It takes as input the observed

class values and the prediction of the classifier. It computes the confusion matrix and returns

the error rate expressed in percentage.

#function for the calculation of the error rate

http://www.statmethods.net/input/datatypes.html

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 3/20

err_rate <- function(D,prediction){

 #confusion matrix

 mc <- table(D$chiffre,prediction)

 #error rate

 #1 - sum(well classified instances) / total number of instances

 err <- 1 - sum(diag(mc))/sum(mc)

 print(paste("Error rate :",round(100*err,2),"%"))

}

3.3 Decision tree with the “rpart” package

We evaluate the behavior of the simple decision tree algorithm as a first step. Because most

of the ensemble methods use this approach as underlying classifier, in principle, the

ensemble methods should be more accurate.

3.3.1 Decision tree with the default settings of “rpart”

Learning process. We load the “rpart” package and launch the learning process with the

default settings.

#rpart library

library(rpart)

m.tree <- rpart(chiffre ~ ., data = dtrain)

print(m.tree)

The tree has 13 leaves. Displaying the tree is not interesting in our context. We note

however that we have approximately 200/13 ≈ 15 instances per leaf.

When we show the importance of the variables...

#variable importance

print(m.tree$variable.importance)

… we observe that the pix34 is the most important for the classification process, then come

pix43, pix47, etc.

 pix34 pix43 pix47 pix42 pix27 pix37 pix31 pix29

27.858532 21.311758 19.180948 17.730346 14.640914 14.361170 13.867778 13.447534

 pix44 pix63 pix30 pix36 pix20 pix55 pix28 pix21

11.959184 11.402576 11.182230 11.172173 10.630079 10.548857 10.476497 10.305098

 pix61 pix39 pix26 pix22 pix7 pix62 pix18 pix46

 8.305127 7.075785 6.807937 6.607682 6.589464 6.413949 6.308128 5.857559

 pix19 pix35 pix56 pix11 pix51 pix6 pix54 pix12

 5.835374 5.701288 5.295399 5.171776 5.082832 4.858586 4.808232 4.507306

 pix14 pix64 pix53 pix13 pix4 pix45 pix52 pix3

 4.275966 4.275966 3.934008 3.878055 3.778900 3.660975 3.660975 3.576715

 pix38 pix59 pix10 pix60

 3.059784 2.699214 1.733579 1.417344

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 4/20

Some variables do not appear in the list, especially because they have only a unique value.

They are not relevant in statistical analysis process. We can detect them easily when we

calculate the standard deviation of the variables (comparing the min and the max values

allows also to detect the variables with a unique value).

> sapply(dtrain[,2:65],sd)

 pix1 pix2 pix3 pix4 pix5 pix6 pix7

0.00000000 0.88760306 4.66708511 3.93641676 4.51992796 5.46428330 3.04637110

 pix8 pix9 pix10 pix11 pix12 pix13 pix14

0.75020935 0.00000000 2.98065792 5.22200360 3.89148019 5.00452057 5.60339990

 pix15 pix16 pix17 pix18 pix19 pix20 pix21

3.76300091 0.23247629 0.07071068 3.51363461 5.72045611 5.91182913 6.31093611

 pix22 pix23 pix24 pix25 pix26 pix27 pix28

6.00551673 3.13414892 0.07071068 0.00000000 3.17556231 6.16905676 5.83534328

 pix29 pix30 pix31 pix32 pix33 pix34 pix35

6.32026135 5.78697203 3.76093381 0.00000000 0.00000000 3.51933282 6.22215203

 pix36 pix37 pix38 pix39 pix40 pix41 pix42

6.51658880 6.15805025 6.01503769 3.53530649 0.00000000 0.14142136 2.92103358

 pix43 pix44 pix45 pix46 pix47 pix48 pix49

6.55076619 6.49037749 6.33289053 5.77194523 4.58353784 0.14035132 0.45165803

 pix50 pix51 pix52 pix53 pix54 pix55 pix56

2.21560818 5.63367477 4.67362965 5.06511371 6.12393771 5.31117150 0.86651848

 pix57 pix58 pix59 pix60 pix61 pix62 pix63

0.07071068 0.87969844 5.01805534 3.92796634 4.72222373 5.77232176 4.10929820

 pix64

1.76919480

Evaluation of the classifier. We apply the classifier on the test set. We compare the

predictions with the observed values of the class attribute. We use the err_rate() function

defined above (section 3.2).

#prediction

y.tree <- predict(m.tree, newdata = dtest, type = "class")

#error rate

err_rate(dtest,y.tree)

The test error rate is 36.59 %. This is our baseline error rate. We should always do better

with the methods that follow. We observe that the error rate of the default classifier is (1 -

1/K = 1 - 1/10 = 90%) because we have a balanced dataset. Even if the tree is not great on

our dataset, it performs a relevant classification process, significantly better than the default

classifier.

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 5/20

3.3.2 Modifying the settings of “rpart”

To check if the overfitting phenomenon can occur on our dataset, we create a tree

deliberately oversized. If the error rate deteriorates, it means that we must select more

regularized approach because, for instance, we have a noisy data. Otherwise, if the error

rate is improved, we may think that we have non-noisy data. Complex classifiers with low

bias should be more accurate.

We modify the settings of the tree algorithm, we decrease the minsplit and minbucket

parameters. And we deactivate the cp parameter (cp = 0).

#new settings for the tree algorithm

param.tree.2 <- rpart.control(minsplit=5,minbucket=2,cp=0)

#learning process with the new settings

m.tree.2 <- rpart(chiffre ~ ., data = dtrain, control = param.tree.2)

print(m.tree.2)

#prediction

y.tree.2 <- predict(m.tree.2, newdata = dtest, type = "class")

#test error rate

err_rate(dtest,y.tree.2)

The tree has 23 leaves (8.7 instances per leaf in average). The error rate is 32.8 %.

Apparently, overfitting is not the first concern here. We can create classifier variants that fit

closely the learning data. We will think about it when we have to set the parameters of the

other methods that we will examine in the following sections.

3.4 Boosting with the “adabag” package

Boosting is the second baseline learning approach (BRBC). Indeed, "Gradient boosting" is a

kind of generalization of the standard boosting. In the first place, I thought that gradient

boosting was difficult to handle because of the high number of parameters, and that it is not

usable in practice. I admit I was quite astonished when I read in recent publications that the

"gradient boosting" have an excellent behavior in the data science challenges. This is a bit of

what brought me to study the method closely (GBM).

To study the behavior of the boosting approach, we use the “adabag” package for R (BRBC).

We reiterate the train and test steps.

#load the “adabag” library (must be installed first)

library(adabag)

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 6/20

#boosting - learning process

m.boosting <- boosting(chiffre ~ ., data = dtrain, boos = FALSE, mfinal = 100, coeflearn = 'Zhu')

#prediction

y.boosting <- predict(m.boosting, newdata = dtest)

#test error rate

err_rate(dtest,y.boosting$class)

We create ‘’mfinal = 100’’ decision trees2. The approach is based on the SAMME algorithm

‘’coeflearn = Zhu’’ (BRBC).

The test error rate is 10.83 %. Compared with the standard decision tree learning algorithm,

the improvement is dramatic. The test error rate is divided by a factor of 3. This shows, if

necessary, that the ensemble methods are often very effective in most situations. The only

criticism that can be addressed to them is the lack of an explicit model for the interpretation.

An open issue is the number of tree to create in the ensemble model (we use the default

setting mfinal = 100 here). We study this issue when we analyze the behavior of the gradient

boosting below.

3.5 Gradient boosting with the “gbm” package

We examine the “gbm” package in this section. The description of the approach is available

online (Ridgeway, 2007).

3.5.1 Default settings

Learning process. As a first step, we launch the algorithm with the default settings. We

specify nevertheless the "multinomial" distribution which correspond to the loss function

"multinomial deviance" (GBM, page 13), so that the procedure interprets properly the target

attribute with K = 10 classes.

#package "gbm"

library(gbm)

#learning process

#default settings

#loss function: multinomial deviance

2 We use systematically 100 trees for ensemble methods in this tutorial.

https://cran.r-project.org/web/packages/gbm/index.html
http://www.saedsayad.com/docs/gbm2.pdf

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 7/20

m.gbm.default <- gbm(chiffre ~ ., data = dtrain, distribution="multinomial")

#print the results

print(m.gbm.default)

R displays the following results.

gbm(formula = chiffre ~ ., distribution = "multinomial", data = dtrain)

A gradient boosted model with multinomial loss function.

100 iterations were performed.

There were 64 predictors of which 29 had non-zero influence.

29 descriptors among the 64 available variables are relevant for the classification process. It

means that 35 variables have no influence! It is more restrictive than the 6 irrelevant

variables detected for the decision tree (page 4). These 35 variables do not appear in any

internal trees of the ensemble classifier.

We obtain the importance of the variables with the summary() command.

#summary -> variable importance

print(head(summary(m.gbm.default),10))

Among the 10 best ones, the influence of the variable pix37 is emphasized, unlike for the

decision tree algorithm (see page 3).

var rel.inf

pix37 pix37 13.075552

pix61 pix61 10.739860

pix30 pix30 7.997531

pix20 pix20 7.383096

pix52 pix52 6.835593

pix34 pix34 6.167558

pix47 pix47 5.612913

pix38 pix38 5.414612

pix19 pix19 5.005820

pix29 pix29 4.895419

The importance of the variables can be shown with a bar graph. But we cannot distinguish

the names of the variables when we have many ones.

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 8/20

Prediction. We launch the predict() procedure for the prediction on the test set.

#predict ==> score for each class

p.gbm.default <- predict(m.gbm.default,newdata=dtest,n.trees=m.gbm.default$n.trees)

print(head(p.gbm.default[,,1],6))

We must specify the number of trees to use for the prediction. We use the number returned

by the learning process ($n.trees). predict() returns a table with, in row the instances to

classify, in columns, the score for each class. We have the following values for the first 6

individuals of the test set.

 C0 C1 C2 C3 C4 C5

[1,] 0.49304415 -0.09812562 0.03519917 -0.06352704 -0.05290850 -0.07557961

[2,] 0.49304415 -0.09812562 -0.09573301 -0.06352704 0.15421028 -0.07243963

[3,] 0.05945927 -0.09812562 -0.09573301 -0.05673755 0.18897575 -0.07313190

[4,] 0.49304415 -0.09812562 -0.09573301 -0.05786361 0.18897575 0.01457892

[5,] 0.49304415 -0.09812562 -0.07952674 -0.05475276 0.20477354 -0.04971930

[6,] 0.05945927 0.03398715 -0.09573301 -0.08488862 0.08093326 -0.05908508

 C6 C7 C8 C9

[1,] -0.09706824 -0.1033490 -0.02731614 -0.072639129

[2,] -0.09706824 -0.1033490 -0.08116849 -0.072639129

[3,] -0.09706824 0.1226494 -0.08427735 -0.072639129

[4,] -0.09706824 -0.1033490 -0.07925893 -0.024321297

[5,] 0.14387216 -0.1004051 -0.07428739 -0.006123564

[6,] -0.09706824 -0.1033490 -0.07104859 0.303982942

For each row (instance to classify), the prediction corresponds to the column with the

highest value. We use the following command to identify the prediction for each instance:

#transform the score in a prediction for each instance

y.gbm.default <- factor(levels(dtrain$chiffre)[apply(p.gbm.default[,,1],1,which.max)])

Here are the details of the command:

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 9/20

• apply() is applied to each row of the matrix provided by the predict() command. It

searches the number of the column with the highest score.

• levels(dtrain$chiffre) returns the list of the values of the target attribute CHIFFRE i.e. {C0,

C1, C2, …, C9}.

• By means of the R's replication mechanism, apply() returns a vector of strings containing

the values {‘C0’…’C9’}.

• factor() enables to transform the vector of strings into a factor data type.

Finally, we call the error rate function defined previously.

#test error rate

err_rate(dtest,y.gbm.default)

Unfortunately, the test error rate is 35.9%. At the same level than the simple decision tree

algorithm. This is a disappointing result. Before to point out the inefficiency of the “gbm”

package, it would be time to take a close look at the parameters used by the procedure.

3.5.2 Modifying the parameters

We obtain the properties of a R object with the attributes() command.

#displaying the properties of the object provided by the learning process

print(attributes(m.gbm.default))

We have:

$names

 [1] "initF" "fit" "train.error"

 [4] "valid.error" "oobag.improve" "trees"

 [7] "c.splits" "bag.fraction" "distribution"

[10] "interaction.depth" "n.minobsinnode" "num.classes"

[13] "n.trees" "nTrain" "train.fraction"

[16] "response.name" "shrinkage" "var.levels"

[19] "var.monotone" "var.names" "var.type"

[22] "verbose" "classes" "estimator"

[25] "data" "Terms" "cv.folds"

[28] "call" "m"

$class

[1] "gbm"

Some of them seem interesting regarding what we know about the parameters of the

gradient boosting methods (GBM, page 23). We display them.

#number of trees = 100

print(m.gbm.default$n.trees)

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 10/20

#depth of the trees = 1. By default, decision stump are used!!!

print(m.gbm.default$interaction.depth)

#shrinkage parameter = 0.001, very small correction applied

#for each tree learned (GBM, page 16)

print(m.gbm.default$shrinkage)

#proportion of instances selected randomly = 0.5

#for the learning of the trees at each step (GBM, page 16)

print(m.gbm.default$bag.fraction)

The key information that we observe that the procedure uses by default decision stumps as

underlying classifier. For a multiclass problem, with K = 10, it is not appropriate. Each single

tree is very bad. We are in an underfitting situation i.e. the learning set is under-exploited.

We modify the settings in order to build deeper individual trees (interaction.depth = 6). We

improve also the speed of the convergence by emphasizing the correction for each individual

tree (shrinkage = 0.1) because we do not worry about overfitting here (see section 3.3.2).

#modifying the settings of the learning algorithm

m.gbm.2 <- gbm(chiffre ~ ., data = dtrain, distribution="multinomial",interaction.depth=6,shrinkage=0.1)

#displaying the results

print(m.gbm.2)

#prediction

p.gbm.2 <- predict(m.gbm.2,newdata=dtest,n.trees=m.gbm.2$n.trees)

y.gbm.2 <- factor(levels(dtrain$chiffre)[apply(p.gbm.2[,,1],1,which.max)])

#test error rate

err_rate(dtest,y.gbm.2)

We were well advised since the test error rate is now 12.47 %3. We observe two essential

facts:

• If we let 'shrinkage' option at 0.0001, the test error rate would have been to 24.21%. It

would have been necessary to increase the number of trees to achieve satisfactory

results again (Ridgeway, 2007 ; section 3.2).

3 Because there is a random part in the algorithm because of the ' bag.fraction < 1 ', we do not have

exactly the same results at each execution of the procedure. With the option '' bag.fraction = 1 '', the algorithm

becomes deterministic and the error rate is (therefore systematically) 14.26%.

http://www.saedsayad.com/docs/gbm2.pdf

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 11/20

• “Standard” boosting algorithm achieve error rate of 10.83% (the difference is significant

on 5420 instances). But we do not need to manipulate finely the parameters. This

relativizes the results.

Of course, by finely adjusting the gradient boosting parameters, we should achieve the same

level of performance as the "standard" boosting here. But we need to be able to identify the

right values for the right parameters. This is not obvious.

3.6 Gradient boosting with the “xgboost” package

We examine the “xgboost” package for R in this section. Some tutorials (ex. 1, 2) allow you

to learn how to use it. A technical documentation is also available.

3.6.1 Learning process with default settings

A data preparation is needed before we can use the learning function of the package. We

must transform the data frame into matrix type, and the vectors must be of the type

numeric (“xgboost” does not take integer vectors).

#convert the descriptors in numeric data type (page 2)

#’-1’ because the 1st column is the target attribute

#the list of vectors is transformed into a data frame

XTrain <- data.frame(lapply(dtrain[,-1],as.numeric))

#the data frame is transformed into a matrix

XTrain <- as.matrix(XTrain)

#recode the target attribute (“factor” type) into a numeric vector

#the values (1, 2, …, 10) are transformed into (0, 1, 2, …, 9)

yTrain <- unclass(dtrain$chiffre)-1

We can launch the learning process by asking 100 trees. We must specify the number of

distinct values for the class attribute (num_class = 10). The softmax function is the loss

function (GBM, page 13).

The test set must be transformed also to ensure that the predict function operates properly.

We add the value 1 to the predicted values, defined on the range (0, ..., 9), so that the

comparison with the observed values of the test set is possible.

#package xgboost

library(xgboost)

#learning process with the default settings (eta=0.3, max.depth=6)

m.xg.def <- xgboost(data=XTrain,label=yTrain,objective="multi:softmax",num_class=10,nrounds=100)

https://cran.r-project.org/web/packages/xgboost/index.html
https://cran.r-project.org/web/packages/xgboost/vignettes/xgboostPresentation.html
http://www.r-bloggers.com/an-introduction-to-xgboost-r-package/
http://xgboost.readthedocs.io/en/latest/model.html
https://en.wikipedia.org/wiki/Softmax_function

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 12/20

#preparation of the descriptors of the test set

XTest <- data.frame(lapply(dtest[,-1],as.numeric))

XTest <- as.matrix(XTest)

#prediction

y.xg.def <- predict(m.xg.def,newdata=XTest)+1

#test error rate

err_rate(dtest,y.xg.def)

The test error rate is 15.5 %. Here also the results are disappointing compared with the

standard boosting (10.83 %, section 3.4). They are even more because, by reading carefully

the documentation, the default settings seem appropriate (shrinkage, eta = 0.3; depth of the

trees, max_depth = 6).

3.6.2 Modifying the settings

We are bewildered. A first solution would be to reduce the shrinkage setting to avoid

excessive corrections (eta = 0.1). But this change is not enough. A second solution explores

an original feature that brings the “xgboost” closer to the implementation of the Random

forest method (BRB, page 22). The idea is to make a random sampling of the variables used

for the construction of individual trees. This increases the diversity of trees (they are

decorrelated according to the terminology of Random Forest). Their combination will be

more effective4.

We launch again the learning process with the new version of the settings.

learning with the new settings

0.125 = SQRT(64)/64, suggested by the settings of the “random forest”

m.xg.2 <- xgboost(data=XTrain,label=yTrain,objective="multi:softmax",num_class=10,nrounds=100,eta=0.1,colsample_bytree=0.125)

#prediction

y.xg.2 <- predict(m.xg.2,newdata=XTest)+1

#test error rate

err_rate(dtest,y.xg.2)

The test error rate is 10.44%. The improvement is substantial but I confess that I am mixed.

Modifying the parameters without knowing exactly why is not a satisfactory approach.

4 With the exception that the Random forest makes the sampling at each node of the tree, while “xgboost”

makes the sampling before the construction of each tree.

https://cran.r-project.org/web/packages/xgboost/xgboost.pdf

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 13/20

3.6.3 Variable importance

“xgboost” provides a tool which enables to obtain the variable importance. For our part, we

compare the diversification of the trees when we introduce the variable sampling

(colsample_bytree = 0.125) during the learning process.

#learning process

m.xg.def <- xgboost (data=XTrain,

label=yTrain, objective="multi:softmax",

num_class=10,nrounds=100)

#variable importance (15 first)

print(head (xgb.importance

(colnames(XTrain), model=m.xg.def),15))

#learning process

m.xg.2 <- xgboost (data=XTrain,

label=yTrain, objective="multi:softmax",

num_class=10, nrounds=100, eta=0.1,

colsample_bytree=0.125)

variable importance (15 first)

print(head (xgb.importance

(colnames(XTrain), model=m.xg.2),15))

Feature Gain

pix37 0.08741986

pix44 0.06783863

pix20 0.05909602

pix22 0.05765523

pix30 0.05586736

pix61 0.04987202

pix29 0.04899898

pix52 0.04585716

pix34 0.04168518

pix47 0.04167961

pix27 0.03714287

pix38 0.03642339

pix3 0.03033923

pix6 0.03012236

pix11 0.02646798

Feature Gain

pix28 0.05056194

pix31 0.03659583

pix21 0.03599328

pix22 0.03565025

pix20 0.03510729

pix44 0.03322517

pix37 0.03265284

pix59 0.03157483

pix45 0.03011384

pix3 0.03010671

pix47 0.02917668

pix36 0.02911094

pix29 0.02891033

pix38 0.02856075

pix19 0.02647185

The influence of the variables is better distributed (less concentration of “gain” on the first

variables) with the introduction of the variable sampling. This is not surprising. In this case, it

allows to improve the performance of the ensemble classifier. This is the main result.

3.7 Gradient boosting with the “mboost” package

“mboost” is the third package presented in our course material (GBM, page 21).

https://cran.r-project.org/web/packages/mboost/index.html

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 14/20

It operates properly on our illustrative example, which handles a binary problem (in the

course material). But for our dataset (K = 10 classes) in this tutorial, an error occurs when we

launch the learning process.

Here are the commands used.

#package mboost

library(mboost)

#learning process ERREUR SESSION R

m.mb.def <- blackboost(chiffre ~ ., data = dtrain, family=Multinomial())

I reiterate the experiments on the IRIS dataset [data(iris) from the ‘’dataset’’ package]. The

same error occurred. Yet, by reading the documentation, it seems that the processing of

multiple-class problems is possible [option family = Multinomial()]. I stopped here my

investigations.

4 Gradient boosting with Python

In this section, we process our dataset with “scikit-learn” (version 0.17.1) package for

Python. The thread is the same that the one for the various packages for R software. In

addition, we examine the grid search tool which enables to detect “automatically” the best

settings for machine learning algorithms. We will see if it is efficient for our dataset.

The documentation for the "gradient boosting" procedure provided by the “scikit-learn”

package is available online. I think that studying carefully the parameters is of interest to

understand the nature of the algorithm implemented.

4.1 Data importation and preparation

As under R, we must import the two data files (learning and test sets). Then, we perform the

data preparation required by the “scikit-learn” package.

#modifying the default directory

import os

os.chdir("... le dossier de vos données ...")

#data importation with the “pandas” package

import pandas

dtrain = pandas.read_table("opt_digits_train.txt",sep="\t",header=0,decimal=".")

#checking the dimension : 200 obs., 65 variables

print(dtrain.shape)

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://pandas.pydata.org/

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 15/20

#target variable – learning sample

y_app = dtrain.as_matrix()[:,0]

#input variables – learning sample

X_app = dtrain.as_matrix()[:,1:64]

#importing the test set

dtest = pandas.read_table("opt_digits_test.txt",sep="\t",header=0,decimal=".")

#5420 obs. and 65 variables

print(dtest.shape)

#transformation into a matrix data type

y_test = dtest.as_matrix()[:,0]

X_test = dtest.as_matrix()[:,1:64]

4.2 Function for the calculation of the error rate

“Scikit-learn” provides efficient tools from the “metrics” module. We use them by

transforming the success (accuracy) rate into error rate.

#function for the calculation of the error rate

#confronting observed values and prediction on the test set

from sklearn import metrics

err = 1.0 - metrics.accuracy_score(y.obs.test,y.pred.test)

print(err)

Note: In a previous tutorial (BRBT, section 4.2), taking advantage of the fact that the

signatures of the functions of scikit-Learn are homogeneous, we defined a function that

takes as input the test set and the classifier. So, the function incorporates the prediction and

calculation of the error rate. This is a pretty elegant solution. But, in order to be consistent

with the presentation for the R software in this tutorial, I prefer to make explicitly the

prediction in the main program before to calculate the error rate.

4.3 Gradient boosting with “scikit-learn” package for Python

We are ready to start the modeling process. Several steps are needed.

Instantiation of the class. We must initialize an object of the class “Gradient boosting”. We

display its default settings.

#gb is an object of the gradient boosting type

#no settings are specified the object uses the default settings

from sklearn.ensemble import GradientBoostingClassifier

gb = GradientBoostingClassifier()

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 16/20

#displaying the settings of the object

print(gb)

We obtain the following results.

GradientBoostingClassifier(init=None, learning_rate=0.1, loss='deviance',

 max_depth=3, max_features=None, max_leaf_nodes=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=100,

 presort='auto', random_state=None, subsample=1.0, verbose=0,

 warm_start=False)

We note among other, by referring to the documentation.

• The loss function used (loss = ‘deviance’) (GBM, page 13);

• 100 trees are created (n_estimators = 100);

• The learning rate (learning rate) = 0.1 (GBM, page 16);

• The maximal depth of the individual trees is ‘max_depth = 3’. The trees are rather small.

This will protect us against overfitting (GBM, page 23), but this can result in an

underfitting;

• The minimum number of instances required to split and required to be at leaf is small

(min_samples_split = 2, min_samples_leaf = 1) (GBM, page 23);

• There is not a sampling mechanism of instances for the creation of each individual trees

(no “stochastic gradient boosting”, [GBM, page 16]) i.e. all the instances are used

(subsample = 1.0).

• There is not a sampling mechanism of variables (based on the Random Forest idea) for

the creation of individual trees (max_features = None).

Learning process. We launch the learning process with the fit() procedure

#learning process

gb.fit(X_app,y_app)

Prediction and evaluation. We perform the prediction on the test set, then we calculate the

error rate.

#prediction on the test set

y_pred = gb.predict(X_test)

#evaluation: calculation of the error rate

#error rate = 1 – accuracy rate

from sklearn import metrics

err = 1.0 - metrics.accuracy_score(y_test,y_pred)

print(err)

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 17/20

The test error rate is 19.85 %. Again, it is disappointing. We must refine the settings to get

better results.

4.4 Grille search for “optimal” parameters

Scikit-learn provides an interesting tool to detect the "optimal" values of the parameters. To

the GridSearchCV tool is passed a list of parameters with the values to test. It tries to find

the best combination in cross-validation. It uses a measure of performance evaluation for

that (e.g. error rate, F-Score, etc.). The positive aspect is that the test sample is never used in

this process. It keeps its status of arbitrator to evaluate the performance of the resulting

classifier in generalization. The negative aspect is the risk of overfitting on the learning

sample (200 instances for our problem).

Let us examine the use of the tool.

#GridSearchCV class

#3-fold cross validation – default parameter

from sklearn.grid_search import GridSearchCV

#List of parameter-value pairs to try

parametres =

 {"learning_rate":[0.3,0.2,0.1,0.05,0.01],"max_depth":[2,3,4,5,6],"subsample":[1.0

 ,0.8,0.5],"max_features":[None,'sqrt','log2']}

#learning algorithm

gbc = GradientBoostingClassifier()

#object (instance of the class) for the grid search

grille = GridSearchCV(estimator=gbc,param_grid=parametres,scoring="accuracy")

#launch the search on the learning set

resultats = grille.fit(X_app,y_app)

#displaying the performance results (scores)

print(resultats.grid_scores_)

#best performances (scores)

print(resultats.best_score_)

#parameters-values pair for the best performances

print(resultats.best_params_)

For max_features, ‘sqrt’ and ‘log2’ correspond to square root and the binary logarithm of the

number of descriptors. None corresponds to “no selection”.

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 18/20

The tool evaluates the combination i.e. 5 x 5 x 3 x 3 = 225 configurations. By default, it uses a

3-folds cross-validation for the performance evaluation. Thus, there are 675 pairs of

learning-test processes. It is better to have a good machine!

The ‘grid_scores_’ properties returns all the results. For each combination of parameters, we

have the parameters used, the mean and the standard deviation of the success rate in 3-

folds cross-validation. Here are for instance the 3 first results of the table:

[mean: 0.78500, std: 0.01654, params: {'max_features': None, 'max_depth': 2,

'subsample': 1.0, 'learning_rate': 0.3}, mean: 0.81000, std: 0.01305, params:

{'max_features': None, 'max_depth': 2, 'subsample': 0.8, 'learning_rate': 0.3},

mean: 0.77500, std: 0.01770, params: {'max_features': None, 'max_depth': 2,

'subsample': 0.5, 'learning_rate': 0.3},

For {'max_features': None, 'max_depth': 2, 'subsample': 1.0, 'learning_rate': 0.3}, the

average of the success rate is 78.5 %; etc.

The best result is not easy to perceive in these outputs. Fortunately, scikit-learn provides

automatically the best scores (‘best_score_’ = 89,5 %) and the corresponding combination of

parameters (‘best_params_’):

{'max_features': 'log2', 'max_depth': 6, 'subsample': 1.0, 'learning_rate': 0.05}

Is this success rate of 89.5% (error rate = 1 – 89.5% = 10.5%) credible? We apply the best

model detected by the GridSearchCV tool on the test set.

#prediction on the test set

#with the best classifier

ypredc = resultats.predict(X_test)

#test error rate

err_best = 1.0 - metrics.accuracy_score(y_test,ypredc)

print(err_best)

The test error rate is 9.0 %. Clearly, the method is efficient. This is the best result that we

obtain until now. Despite the reticence about this kind of "crude" strategies, we can consider

that it is a useful alternative approach when we do not master the characteristics of the

learning algorithm to use.

4.5 Random Forest

In preparing this tutorial, I had tested different approaches to identify the best solutions

(settings) for the gradient boosting. I realized that the Random Forest method was the most

efficient. This result has led me on the introduction of the variables sampling during the

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 19/20

construction of individual decision trees with “xgboost” under R (section 3.6.2) and “scikit-

learn” under Python (section 4.4). This process (variables sampling) plays clearly an

important role in our data.

Indeed, when we perform the Random Forest algorithm on our dataset…

#random forest class

from sklearn.ensemble import RandomForestClassifier

#RandomForest object

rf = RandomForestClassifier(n_estimators = 100)

#learning process on the learning sample

rf.fit(X_app,y_app)

#prediction on the test set

y_pred_rf = rf.predict(X_test)

#test error rate

err = 1.0 - metrics.accuracy_score(y_test,y_pred_rf)

print(err)

… we obtain a test error rate of 8.24 %. This is the best result during our experiments!

5 Conclusion

The initial goal of this tutorial is to show the implementation of the gradient boosting using R

and Python with easy to use packages. The process is rather easy if we consider a standard

analysis with the default parameters. "Gradient boosting" is a predictive method as any the

others.

Problems begin when we want to detect the parameters-values pairs which fit with the

processed data. We realize that there are many parameters, that they do not always

correspond to those described in the state-of-the-art books (e.g. Hastie and al., 2009). To

unambiguously identify what is implemented in the packages and the potential for tuning,

the only solution is to read carefully the documentation and carry out experiments. In the

case of the gradient boosting, the work on the parameters is essential. We have found that

they influence heavily the performance of the subsequent classifiers.

The automatic search tools for the best settings such as the scikit-learn's GridSearchCV can

be of great help. The trick is to not use them wrongly and through by blindly relying on the

indications they provide. Explicitly identifying the mechanisms of success of a data mining

Tanagra Data Mining Ricco Rakotomalala

11 août 2017 Page 20/20

method on our data remains the best way to ensure the reproducibility of our results. But

this is not always obvious, I concede.

Finally, we note that all the ensemble methods do better than the standard decision tree

learning algorithm that have served as a baseline (section Erreur ! Source du renvoi

introuvable.).

6 References

[BRBC] “Bagging, Random Forest, Boosting (slides)”, December 2015.

[BRBT] “Random Forest & Boosting with R and Python”, December 2015.

[GBM] “Gradient boosting - Slides”, June 2016.

Hastie T., Tibshirani R., Friedman J., « The elements of Statistical Learning - Data Mining,

Inference and Prediction », Springer, 2009; chapter 10.

Natekin A., Knoll A., « Gradient boosting machines - A tutorial », in Frontiers in

NeuroRobotics, december 2013.

Wikipedia (EN), « Gradient boosting », visited at August 2017.

http://data-mining-tutorials.blogspot.fr/2015/12/bagging-random-forest-boosting-slides.html
http://data-mining-tutorials.blogspot.fr/2015/12/random-forest-boosting-with-r-and-python.html
http://data-mining-tutorials.blogspot.fr/2016/06/gradient-boosting-slides.html
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/
https://en.wikipedia.org/wiki/Gradient_boosting

	1 Introduction
	2 Dataset and evaluation approach
	2.1 Dataset
	2.2 Evaluation process of the classifiers

	3 Gradient boosting with R
	3.1 Data importation and preparation
	3.2 Function for the calculation of the error rate
	3.3 Decision tree with the “rpart” package
	3.3.1 Decision tree with the default settings of “rpart”
	3.3.2 Modifying the settings of “rpart”

	3.4 Boosting with the “adabag” package
	3.5 Gradient boosting with the “gbm” package
	3.5.1 Default settings
	3.5.2 Modifying the parameters

	3.6 Gradient boosting with the “xgboost” package
	3.6.1 Learning process with default settings
	3.6.2 Modifying the settings
	3.6.3 Variable importance

	3.7 Gradient boosting with the “mboost” package

	4 Gradient boosting with Python
	4.1 Data importation and preparation
	4.2 Function for the calculation of the error rate
	4.3 Gradient boosting with “scikit-learn” package for Python
	4.4 Grille search for “optimal” parameters
	4.5 Random Forest

	5 Conclusion
	6 References

