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1 Topic 

Bartlett’s sphericity test and the KMO index (Kaiser-Mayer-Olkin). 

Principal Component Analysis (PCA)1 is a dimension reduction technique. We obtain a set of factors 

which summarize, as well as possible, the information available in the data. The factors are linear 

combinations of the original variables. The approach can handle only quantitative variables. 

We have presented the PCA in previous tutorials2. In this paper, we describe in details two indicators 

used for the checking of the interest of the implementation of the PCA on a dataset: the Bartlett's 

sphericity test and the KMO index. They are directly available in some commercial tools (e.g. SAS or 

SPSS). Here, we describe the formulas and we show how to program them under R. We compare the 

obtained results with those of SAS on a dataset. 

2 Dataset – Principal Component Analysis 

Comparing our results on the same dataset with state-of-the-art tools is a good way to validate our 

program. In this tutorial, we use the formulas available on the SAS and SPSS website. In principle, we 

should get the same numerical results. We will check it in what follows. 

The “socioeconomics.xls” data file contains n = 12 instances and p = 5 variables (POPULATION, 

SCHOOL, EMPLOYMENT, SERVICES, HOUSEVALUE). We use the following R code to load the dataset 

and perform the principal component analysis. 

#importing the data file using the xlsx package 

library(xlsx) 

socio.data <- read.xlsx(file="socioeconomics.xls", header=T, sheetIndex=1) 

#performing the PCA using the princomp command 

socio.pca <- princomp(socio.data, cor=T) 

#proportion of explained variance of the factors 

part.pca <- socio.pca$sdev^2/sum(socio.pca$sdev^2)*100 

print(part.pca) 

print(cumsum(part.pca)) 

#graphical representation 

biplot(socio.pca) 

We obtain: 

 
                                                           
1 http://en.wikipedia.org/wiki/Principal_component_analysis 

2 http://data-mining-tutorials.blogspot.fr/2009/04/principal-component-analysis-pca.html 

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_factor_sect029.htm
http://publib.boulder.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Falg_factors_optionalstats.htm
http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/socioeconomics.zip
http://en.wikipedia.org/wiki/Principal_component_analysis
http://data-mining-tutorials.blogspot.fr/2009/04/principal-component-analysis-pca.html
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And the following PCA “biplot”: 

 

The two first factors represent 93.4% of the available variance. We can consider that we have an 

accurate picture of the information available in data from these factors. 

Using the SAS' FACTOR procedure, we obtain identical results. Here is the eigenvalues table. 

 

3 Bartlett’s sphericity test 

3.1 Calculation of the correlations between the variables 

The Bartlett’s test compares the observed correlation matrix to the identity matrix. In other words, it 

checks if there is a certain redundancy between the variables that we can summarize with a few 
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number of factors. If the variables are perfectly correlated, only one factor is sufficient. If they are 

orthogonal, we need as many factors as variables. In this last case, the correlation matrix is the same 

as the identity matrix. A simple strategy is to visualize the correlation matrix. If the values outside the 

main diagonal are often high (in absolute value), some variables are correlated; if most these values 

are near to zero, the PCA is not really useful. 

We calculate the correlation matrix under R: 

#correlation matrix 

R <- cor(socio.data) 

print(R) 

We obtain. 

 

Figure 1 – Correlation matrix 

Some variables are correlated (e.g. Population and Employment: 0.97; School and House Value: 

0.86). Here, the goal is only to get an overall impression about the redundancy between the 

variables. We must confirm this with a rigorous statistical procedure. 

3.2 Bartlett’s sphericity test 

The Bartlett’s test checks if the observed correlation matrix R=(rij)(p x p)  diverges significantly from the 

identity matrix (theoretical matrix under H0: the variables are orthogonal). The PCA can perform a 

compression of the available information only if we reject the null hypothesis. 

In order to measure the overall relation between the variables, we compute the determinant of the 

correlation matrix |R|. Under H0, |R| = 1; if the variables are highly correlated, we have |R|  0.  

The Bartlett's test statistic indicates to what extent we deviate from the reference situation |R| = 1. 

It uses the following formula. 
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Under H0, it follows a ² distribution with a [p x (p-1) / 2] degree of freedom. 

We submit the following program to R: 

n <- nrow(socio.data) 

p <- ncol(socio.data) 

chi2 <- -(n-1-(2*p+5)/6)*log(det(R)) 

ddl <- p*(p-1)/2 

print(chi2) 

print(ddl) 

print(pchisq(chi2,ddl,lower.tail=F)) 
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We obtain: 

 

We reject the null hypothesis at the 5% level (p-value = 4.35 x 10-8 < 0.05). We can perform efficiently 

a PCA on our dataset. 

Note: The Bartlett's test has a strong drawback. It tends to be always statistically significant when the 

number of instances ‘n’ increases. Some references advise to use this test only if the ratio ‘n:p’ 

(number of instances divided by the number of variables) is lower than 5. 

By searching on the web, I found the PSYCH3 package which proposes the Bartlett's test. 

 

4 KMO Measure of Sampling Adequacy (MSA) 

The KMO index has the same goal. It checks if we can factorize efficiently the original variables. But it 

is based on another idea. 

The correlation matrix is always the starting point. We know that the variables are more or less 

correlated, but the correlation between two variables can be influenced by the others. So, we use 

the partial correlation in order to measure the relation between two variables by removing the effect 

of the remaining variables4. The KMO index compares the values of correlations between variables 

and those of the partial correlations. If the KMO index is high ( 1), the PCA can act efficiently; if KMO 

is low ( 0), the PCA is not relevant. Some references give a table for the interpretation of the value 

of the KMO index obtained on a dataset5. 

4.1 Partial correlation matrix 

The partial correlation matrix can be obtained from the correlation matrix. We calculate the inverse 

of this last one R-1 = (vij), and we compute the partial correlation A = (aij) as follows: 

                                                           
3 http://cran.r-project.org/web/packages/psych/index.html 

4 http://en.wikipedia.org/wiki/Partial_correlation 

5 http://peoplelearn.homestead.com/Topic20-FACTORanalysis3a.html 

http://cran.r-project.org/web/packages/psych/index.html
http://en.wikipedia.org/wiki/Partial_correlation
http://peoplelearn.homestead.com/Topic20-FACTORanalysis3a.html
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Here is a very simplistic program for these calculations under R 

#inverse of the correlation matrix 

invR <- solve(R) 

#partial correlation matrix (-1 * spss anti-image matrix, unless the diagonal) 

A <- matrix(1,nrow(invR),ncol(invR)) 

for (i in 1:nrow(invR)){ 

  for (j in (i+1):ncol(invR)){ 

    #above the diagonal 

    A[i,j] <- -invR[i,j]/sqrt(invR[i,i]*invR[j,j]) 

    #below the diagonal 

    A[j,i] <- A[i,j] 

  } 

} 

colnames(A) <- colnames(socio.data) 

rownames(A) <- colnames(socio.data) 

print(A) 

We obtain: 

 

Figure 2 – Partial correlation matrix 

For instance, the correlation between Population and Employment is not influenced by other 

variables: the partial correlation is very similar to the correlation. SAS provided the same matrix.  

 

SPSS provides the anti-image correlation matrix. This is the partial correlation matrix, but the values 

on the main diagonal are replaced by the KMO index per variable that we present later. 
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4.2 Overall KMO index 

The overall KMO index is computed as follows. 
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If the partial correlation is near to zero, the PCA can perform efficiently the factorization because the 

variables are highly related: KMO  1.  

We set the following program under R: 

kmo.num <- sum(R^2) - sum(diag(R^2)) 

kmo.denom <- kmo.num + (sum(A^2) - sum(diag(A^2))) 

kmo <- kmo.num/kmo.denom 

print(kmo) 

Like SAS, we obtain KMO = 0.5753676: 

 
Figure 3 – KMO (MSA) index under SAS 

With the value ‘KMO = 0.575’, the degree of common variance in our dataset is rather “mediocre”. 

Into the SAS documentation, one recommends to add variables in the analysis to obtain more 

reliable results. A commonly used rule is that there should be at least three variables per factor. For 

our dataset, we have only p = 5 variables for k = 2 factors. 

4.3 KMO index per variable 

We can compute a KMO index per variable in order to detect those which are not related to the 

others:  
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We use the following R program: 

#KMO per variable (diagonal of the spss anti-image matrix) 

for (j in 1:ncol(socio.data)){ 

 kmo_j.num <- sum(R[,j]^2) - R[j,j]^2 

 kmo_j.denom <- kmo_j.num + (sum(A[,j]^2) - A[j,j]^2) 

 kmo_j <- kmo_j.num/kmo_j.denom 

 print(paste(colnames(socio.data)[j],"=",kmo_j)) 

} 

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_factor_sect029.htm
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We obtain (see also Figure 3 for SAS): 

 

Population (0.472) and Employment (0.488) seems problematic. This is because they are highly 

correlated (r = 0.94), but not correlated to the other variables (the partial correlation is high also, v = 

0.97). It is not really a problem in fact. These variables are not related to the others (which determine 

the first factor), they define the second factor of the PCA. The output of Tanagra which highlights the 

high loadings enables to observe this result. 

 

In a different way, by using a variable clustering process (VARHCA under Tanagra), we observe also 

these two groups of variables ([School, House Value, Services] vs. [Population, Employment]). 
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5 Conclusion 

The Bartlett's sphericity test and the KMO index enable to detect if we can or cannot summarize the 

information provided by the initial variables in a few number of factors. But they do not give 

indication about the appropriate number of factors. In this tutorial, we show how to compute them 

with a program written for R. The calculations are feasible only if the correlation matrix is invertible. 

 


