1 Subject

Implementing the Kohonen's SOM (Self Organizing Map) algorithm with Tanagra.

A self-organizing map (SOM) or self-organizing feature map (SOFM) is a kind of artificial neural network that is trained using unsupervised learning to produce a low-dimensional (typically two-dimensional), discretized representation of the input space of the training samples, called a map. Self-organizing maps are different than other artificial neural networks in the sense that they use a neighborhood function to preserve the topological properties of the input space (http://en.wikipedia.org/wiki/Self-organizing_map).

SOM is a clustering method. Indeed, it organizes the data in clusters (cells of map) such as the instances in the same cell are similar, and the instances in different cells are different. In this point of view, SOM gives comparable results to state-of-the-art clustering algorithm such as K-Means (Forgy, 1965; McQueen, 1967).

SOM can be viewed also as a visualization technique. It allows us to visualize in a low dimensional representation space (2D) the original dataset. Indeed, the individuals located in adjacent cells are more similar than individuals located in distant cells. In this point of view, it is comparable to visualization techniques such as Multidimensional scaling (Kruskal, 1978) or PCA (Principal Component Analysis, http://en.wikipedia.org/wiki/Principal_component_analysis).

In this tutorial, we show how to implement the Kohonen's SOM algorithm with Tanagra. We try to assess the properties of this approach by comparing the results with those of the PCA algorithm. Then, we compare the results to those of K-Means, which is a clustering algorithm. Finally, we implement the Two-step Clustering process by combining the SOM algorithm with the HAC process (Hierarchical Agglomerative Clustering). It is a variant of the Two-Step Clustering where we combine K-Means and HAC (http://data-mining-tutorials.blogspot.com/2009/06/two-step-clustering-for-handling-large.html). We observe that the HAC primarily merges the adjacent cells.

2 Dataset

We analyze the WAVEFORM dataset (Breiman and al., 1984)¹. This is an artificial dataset².

There are 21 descriptors. We have 5000 instances. We do not use the CLASS attribute which classify the instances into 3 pre-defined classes in this tutorial.

¹ <u>http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/waveform_unsupervised.xls</u>

² <u>http://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+%28Version+1%29</u>

3 Kohonen's SOM approach with Tanagra

3.1 Importing the data file

The easiest way to import a XLS file is to open the data file into Excel spreadsheet. Then, using the add-in TANAGRA.XLA³, we can send the dataset to Tanagra which is launched automatically. We can check the range of selected cells in the worksheet.

N 1	Microsoft Excel - waveform_unsupervised.xls										
8	Eichier Editior	n <u>A</u> ffichage	Insertion Forr	na <u>t O</u> utils <u>E</u>	onnées Fe <u>n</u> êt	re <u>?</u> Tanag	ra Sipina		_ 8	×	
	🔲 10 - 2	Arial	- 10	• G Z	s 🔳 🗐	E	xecute Tanagra		- <u>ð</u> - <u>A</u> -	• _	
-	U5001 -	fx 0.0	5		-		×			•	
	A	B	С	D	E	F	G			F	
1	V01	V02	V03	V04	V05	- 706	V07	√08	V09	Ê	
2	-1.23	-1.56	-1.75	-0.28	0.6	2.22	0.85	0.21	-0.2		
3	-0.69	2.43	0.61	2.08 🖊	2.3	3.25	5.52	4.55	2.97		
4	-0.12	-0.94	1.29	2. 5 9	2.42	3.55	4.94	3.25	1.9		
5	0.86	0.29	2.19	-9.02	1.13	2.51	2.37	5.45	5.45		
6	1.16	0.3				·		1.06	5.34		
7	0	0.7 Exec	ute Tanagra					.55	2.93		
8	0.87	1.0			e			2.94	3.81		
9	-0.22	-0.9	Dataset range (including the na	me of the attribu	tes first row):		0.75	1.72		
10	-1.11	-1.1	\$A\$1:\$U\$50	01			_	2.15	1.64		
11	-0.75	1.1				1	1	8.51	2.62		
12	0.14	-1.1			ОК		ancel	1.54	1.4		
13	1.32	-0.						8.88	2.17		
14	-0.93	2.4						1.19	3.22		
15	-1.06	0.59	1.01	3.33	2.05	3.2	4.7	4.21	4.73		
16	1.86	0.37	-0.35	0.74	0.84	0.21	1.97	1.52	1.85		
17	-0.51	-0.48	0.35	-1.67	0.26	2.45	-0.09	2.03	0.79		
18	1.16	-1.19	-2.26	0.63	0.32	1.51	2.11	2.58	1.03		
19	-0.09	2.3	-0.43	0.36	0.11	-1.2	1.47	2.25	3.5		
20	-1.43	-0.46	-0.52	1.45	U 1.00	1.35	1.39	0.81	0.03		
21	-1.09	-0.22	0.11	-1.03	1.09	1.72	1.91	3.61	2.22		
22	-0.95	-1.20	0.60	-0.31	-1.04	1.00	-0.13	0.10	-1.05		
20	0.97	0.72	-0.64	-0.07	1 10	0.0	-0.47	0.00	0.57		
24	-1.57	1.03	2.03	2.07	3.88	-0.02	-1.0	3.76	5.29		
23		form ductori	2.00	2.07	3.00	4.71	4.44	3.70		-	
-	• • \wave	ionii.ciusterii	iy/		-				•	1	
Des	sin 🔻 🗟 🛛 Form	es automatiques	• \ 🔌 🗆			<u>∧</u> - <u>⊿</u> - <u>A</u>	• = = = =	• • -			
Prêt	rêt Somme=179784.53 NUM /										

Tanagra is launched, a new diagram is created and the dataset is loaded. We have 5000 instances and 21 attributes.

³ See <u>http://data-mining-tutorials.blogspot.com/2008/10/excel-file-handling-using-add-in.html</u>; Tanagra can handle also the XLS file even if Excel is not installed on our computer <u>http://data-mining-tutorials.blogspot.com/2008/10/excel-file-format-direct-importation.html</u>

In addition, Tanagra can be incorporated also in Open Office Calc spreadsheet, under Windows <u>http://data-mining-tutorials.blogspot.com/2008/10/000calc-file-handling-using-add-in.html</u> or under Linux <u>http://data-mining-tutorials.blogspot.com/2009/04/launching-tanagra-from-oocalc-under.html</u>.

3.2 Descriptive statistics and outliers detection

First step, we check the integrity of the dataset by computing some descriptive statistics indicators. We insert the DEFINE STATUS component into the diagram using the shortcut into the toolbar. Then we set all the variables as INPUT. **Caution: the variables must be continuous if we want to perform a Kohonen'SOM processing below**.

We add the UNIVARIATE CONTINUOUS STAT component (STATISTICS tab). We click on the VIEW menu. We obtain the following report.

💯 TANAGRA 1.4.26 - [Ui	nivariate continuous stat	1]							
Tile Diagram Component	t Window Help								- 8 ×
D 📽 🔲 🙀									
Analys	sis	Attribute	Min	Max	Average	Std-dev	Std-dev/avg		~
😑 🏢 Dataset (tan85.txt)		V01	-3.34	3.94	0.0051	1.0101	196.3706		
🖃 🎦 Define status 1		V02	-3.25	3.88	0.3387	1.0537	3.1105		
🔤 🕂 Univariate c	ontinuous stat 1 💶 🔤	V03	-4.2	4.72	0.6724	1.1880	1.7667		
		V04	-3.84	5.75	0.9916	1.4152	1.4272		
		V05	-3.48	6.5	1.3109	1.6783	1.2803		=
		V06	-2.76	7.62	1.9973	1.8142	0.9083		
		V07	-3.32	8.76	2.6618	2.0158	0.7573		
		V08	-3.52	7.84	2.6592	1.7461	0.6566		
		V09	-3.38	7.9	2.6721	1.6633	0.6225		
		V10	-1.79	7.63	2.9887	1.5315	0.5124		
		V11	-1.48	9.06	3.3366	1.6886	0.5061		
		V12	-1.69	7.4	3.0136	1.5124	0.5019		
		V13	-2.61	7.5	2.6789	1.6516	0.6165		~
			Compone	ents					
Data visualization	Statistics	Nonpara	ametric statist	ics.	Instance se	lection	Feature	construction	
Feature selection	Feature selection Regression		orial analysis:		PLS		Clu	stering	
Spv learning	Spv lear	ming assessme	ent	Scorir	lg	Ass	ociation		
🕂 Normality Test		💒 Semi-	partial Co	rrelation	relation 🛛 🖾 Univariate continuous stat				
📶 One-way ANOVA	🛄 T-Test				📶 Un	variate discrete stat			
🔄 One-way MANOVA	on	on 🤐 T-Test Unequal Variance 🔐 Univariate Outlie				r Detection			
<									>

We note that there is no constant in our dataset i.e. standard deviation = 0. We note also that all the variables seem defined in the same scale.

We can complete this dataset checkout by detecting eventual outliers. We add the UNIVARIATE OUTLIER DETECTION (STATISTICS tab) component⁴.

TANAGRA 1.4.26 - [Univariate Outlier Detection 1]													
The Diagram Component Window Hep													
Analysis Detailed regults for each variable													
🖃 🎹 Dataset (tan85.txt)		Detaile	uresu	15 101	each	variable	-						
🖃 🎦 Define status 1		∀ariable	Grubbs Stat		Sigma r	ule	Inn	er Fenc	e rule	Out	er Fence	e Rule	
— 述 Univariate d — <u>• •</u> Univariate d	.	Cut : 70.6965	L.B	U.B	Detected	L.B	U.B	Detected	L.B	U.B	Detected		
		¥01	3.8954	-3.0252	3.0355	8	-2.7350	2.7450	29	-4.7900	4.8000	0	
		¥02	3,4060	-2.8222	3.4997	12	-2.5125	3.1875	34	-4.6500	5.3250	0	
		¥03	4.1015	-2.8915	4.2363	16	-2.5650	3.8750	33	-4.9800	6.2900	0	
		¥04	3.4140	-3.2541	5.2373	4	-3.0050	4.9550	9	-5.9900	7.9400	0	
		¥05	3.0919	-3.7240	6.3458	2	-3.7225	6.2975	3	-7.4800	10.0550	0	
		¥06	3.0993	-3.4453	7.4399	1	-3.5350	7.4650	1	-7.6600	11.5900	0	
		¥07	3.0252	-3.3855	8.7091	1	-3.5400	8.8600	0	-8.1900	13.5100	0	
		¥08	3.5389	-2.5790	7.8974	2	-2.4350	7.7650	3	-6.2600	11.5900	0	
		¥09	3.6387	-2.3177	7.6619	5	-2.2350	7.6450	5	-5.9400	11.3500	0	•
			Co	ompone	nts								
Data visualization	Statistics	Nonpa	rometric	statistic	s	Instance	selectio	n	Featur	e constr	uction		
Feature selection Regression		Fa	ctorial an	alysis		PI	LS		C	Clustering			
Spv learning	Spv le	arning ass	sessment		Sco	ring		A:	ssociatio	in			
A Normality Test	tion	協会 Semi-partial Correlation 体Univariate continuo し、T-Test 加Univariate discrete				tinuous rete sta lier Dete	stat t	📶 Welch	AN				
<													>

⁴ See <u>http://data-mining-tutorials.blogspot.com/2009/06/univariate-outlier-detection-methods.html</u>

Whatever the variable, there is no unusual value. It is not surprising. We know that this dataset is generated artificially.

3.3 The KOHONEN-SOM component

We want to launch the analysis now. We create a grid with 2 rows and 3 columns i.e. a classification of the instances into 6 groups $(2 \times 3 = 6 \text{ clusters})$.

We add the KOHONEN-SOM component (CLUSTERING tab) into the diagram. We click on the PARAMETERS menu. We set the following settings.

The number of rows of the map is 2 (Row Size), the number of columns is 3 (Col Size). We standardize the data i.e. we divide each variable by their standard deviation. It is recommended when the variables are not in the same scale. It is not necessary if they are defined in the same scale or when we want to take into consideration explicitly the differences in scale.

We do not modify the other settings (see <u>http://en.wikipedia.org/wiki/Self-organizing_map</u> about SOM approach and its settings). We validate and we click on the VIEW menu. We obtain the following report.

💇 TANAGRA 1.4.26 - [H	(ohonen-SOM 1]						
Tile Diagram Compone	ent Window Help						_ 8 ×
D 📽 🖪 🙀							
Ana	lusis	Learning rate	0.2	0			~
🖃 📖 Dataset (tan85.tx)	H)	Seed random ger	nerator Standar	d			
🖃 🔂 Define status	1	C					
🚽 🖾 Univariate	continuous stat 1				Results		
	Outlier Detection 1	МАР Торо	logy				
	Parameters	1	2	3			
· ('	Execute	1 99	687	988			
	View 💻 🗖	2 68	6 925	755			
		MAP Qual Ratio explained	ity 0.4516 e : 171 ms. 7/2008 06:03:36				
			Components				
Data visualization	Statistics	Nonparamet	ric statistics	Insta	ance selection	Feature construction	
Feature selection	Regression	Factorial	analysis		PLS	Clustering	
Spv learning	Meta-spv learning	Spv learning	assessment		Scoring	Association	
슈.CT 슈.CTP ④EM-Clustering	愛EM-Selection 桁HAC 色 K-Means 管	Kohonen-SOM LVQ Neighborhood (図 VAR 桁VAR Graph Ⅰ•• VAR	CLUS HCA KMeans			

The number of instances into each cell is displayed. We see that **45.16** % of the TSS (Total Sum of Squares) is explained by the partitioning into 6 classes. We can compare this result to those of the other methods below.

3.4 Classification of the instances

The KOHONEN-SOM component adds a new column to the current dataset. It states the group membership of each instance. This new attribute is available in the subsequent part of the

diagram. We can visualize the current dataset with the VIEW DATASET component. We see for instance that the first example belongs to the cell (1, 3) i.e. first row and third column.

Note: we can classify an additional instance with the same framework i.e. an example which is not involved in the learning process. This deployment phase is one of the most important steps of the Data Mining process⁵.

4 Proximity of nodes into the grid

Individuals who are in adjacent cells are also close in the original representation space. This is one of the main interests of this method. Let us check this assertion on the WAVEFORM dataset.

We cannot visualize the dataset into the original space. So we use a PCA in order to obtain a 2D representation. We try to visualize the relative positions of groups (clusters) in the scatter plot.

We add the PRINCIPAL COMPONENT ANALYSIS component (FACTORIAL ANALYSIS tab) after the KOHONEN-SOM 1 component. We click on the VIEW menu.

The first two factors representation space accounts for the 53.17% of the total variability. It seems weak, but on this dataset, it is enough to represent properly the instances.

We add the SCATTERPLOT component (DATA VISUALIZATION tab) into the diagram. We set the first factor as the horizontal axis, the second one as vertical axis.

⁵ See <u>http://data-mining-tutorials.blogspot.com/2008/12/k-means-classification-of-new-instance.html</u> for the unsupervised learning framework; <u>http://data-mining-tutorials.blogspot.com/2008/11/apply-classifier-on-new-dataset.html</u> for the supervised learning framework.

A crucial step of this tutorial, we colorize the points with the cluster membership supplied by the SOM algorithm (CLUSTER_SOM_1).

We note the correspondence between the proximities into the SOM map and the proximities into the 2 first factors of PCA. It means also that the instances into adjacent cells are close into the original representation space (with 21 attributes).

5 A comparison with K-MEANS

5.1 Clustering process with K-Means

K-Means is a state-of-the-art approach for clustering process (<u>http://en.wikipedia.org/wiki/K-means_clustering</u>). We add the component into the diagram and we ask 6 clusters. There is no constraint about the relative position of the clusters here.

We click on the VIEW menu in order to launch the calculations.

The relative part of the total sum of squares explained by the partitioning is **46.31%**. It is rather comparable to the one obtained with SOM (45.16%). But we remind that there is no constraint about the relative position of the clusters for the K-Means algorithm.

5.2 Agreement between the clusters

If the performances of these approaches seem similar, are the clusters comparable?

To check the correspondence, we create a cross-tabulation between the column memberships supplied by the two approaches.

We insert a new DEFINE STATUS component into the diagram. We set CLUSTER_SOM_1, the cluster membership column supplied by the SOM algorithm, as TARGET; we set CLUSTER_KMEANS_1, supplied by the K-MEANS algorithm, as INPUT.

💯 TANAGRA 1.4.26 - [K-	Means 1]	De	fine attribute statuses	1	
📅 File Diagram Componen	t Window Help		Proventer		_ = ×
Analysis Analysis Analysis Control of the status 1 Con			Parameters Attributes : Target		
Contractions of the second sec	xxx 1 taset 1 I Component Analysis 1 terplot 1 :1 ne status 2	° ° ° ° R	C V20 C V21 C V21 C Uster SOM 1 C Clear selection Define attribute statuses Parameters Attributes : C V12 C Uster KMeans 1 C Clear selection C Uster KMeans 1 C Uster KMeans 1		
][_	=	C V13 C V14		
Data visualization Regression Spv learning assessment Ar CT tr CTP tr CEP tr CDP tr	Statistics Factorial analysis Scoring EM-Selection THAC K-Means Statistics St	No Dho (Q eigt	C v16 C v16 C v17 C v18 C v19 C v20 C v21 D Cluster SOM_1 D Cluster KMeans 1 C cluster KMeans 1 C cluster SOM_1		uction Feature selection ng Meta-spv learning
		_	OK Cancel Help		

Then we add the cross-tabulation component (CONTINGENCY CHI-SQUARE, NONPARAMETRIC STATISTICS tab). We click on the VIEW menu.

💯 TANAGRA 1.4.26 - [Contingency Chi-Square 1]												
Tile Diagram Component Window Help												- 8 ×
Analysis						Results						^
🖃 🥅 Dataset (tan85.txt)	Row (Y)	Column (X)	Statistical in	dicator	Cross-tab							
the status 1 the status 1			Stat	Value		c_kmeans_1	c_kmeans_2	c_kmeans_3	c_kmeans_4	c_kmeans_5	c_kmeans_6	Sum
			Tschuprow's t	0.897419	c_som_1_1	0	0		959	0	0	959
🖃 🙀 Kohonen-SOM 1			Cramer's v	0.897419	c_som_1_2	0	615	9	58	5	0	687
- 🔣 View dataset 1			Phi ^z	4.026804	c_som_1_3	8	21	0	0	959	0	988
🖃 🔀 Principal Component Analysis 1		1 Cluster_KWeans_1	Chi² (n-value)	20134.02	c_som_2_1	0	0	570	116	0	0	686
Scatterplot 1	Cluster_SOM_1		on (prodob)	(0.0000)	c_som_2_2	24	0	89	0	0	812	925
E-log K-Means 1	7		Lambda	0.891077	c_som_2_3	648	3	0	0	87	17	755
E Contingency Chi-Square 1			Tau (p-value)	0.8105 (0.0000)	Sum	680	639	668	1133	1051	829	5000
1			U(R/C)	0.8227								
			(p-value)	(0.0000)								
	Computation time : 0 ms. Created at 21/07/2008 06:46:20									~		
				Component	5							<u></u>
Data visualization Statistics	Nonparametr	c statistics	Instance selecti	on F	eature const	ruction	Feature	election	Re	egression		
Factorial analysis PLS	Cluste	ring	Spv learning		Meta-spv lea	arning	Spv learning	assessment		Scoring		
Association												
Categorical r 🛛 Goodman Kruskal Gam	nma 🖸 Ke	ndall Tau-b	Kend	dall's tau		🖦 Mood Rur	ns Test	🗖 Som	mers d		🖦 Wald-Wolfo	witz Runs Test
] Contingency Chi-Square 🖉 Goodman-Kruskal Lambda 🖸 Kendall Tau-c 📊 Kruskal-Wallis 1-way ANOVA 🛱 Partial Theil U 🗵 Spearman's rho 💠 🖽 Wilcoxon Signed Ranks Tes												
📰 Friedman's ANOVA by Ranks 🛛 🗉 Goodman-Kruskal Tau	即Friedman's ANOVA by Ranks 🔟 Goodman-Krusskal Tau 🐘 Kendall's Concordance W 🕍 Mann-Whitney Comparison \min Sign Test 🛛 🎒 Theil U											
<												

We note that these approaches build a very similar partitioning of the instances. The correspondence is almost exact: each cluster of K-Means corresponds to one cluster of SOM.

In the table below, we show the correspondence between clusters.

Cluster	Cluster SOM	Cluster K-MEANS				
А	(1;1)	4				
В	(1;2)	2				
С	(1;3)	5				
D	(2;1)	3				
E	(2;2)	6				
F	(2;3)	1				

6 Two-step clustering

Two-step clustering creates pre-clusters, and then it clusters the pre-clusters using hierarchical methods (HCA). Two step clustering handles very large datasets⁶. The K-Means is usually used in the first phase where the pre-clusters are created. In this tutorial, instead of K-Means, we use the SOM results for this first phase. This variant involves a very interesting property: the adjacent pre-clusters correspond to nearby areas in the original representation space. This strengthens the interpretation of the dendrogram created with the subsequent HCA algorithm.

We add the DEFINE STATUS component into the diagram. We set CLUSTER_SOM_1 as TARGET, the descriptive variables (V1...V21) as INPUT.

We add the HAC component (CLUSTERING tab).

⁶ <u>http://faculty.chass.ncsu.edu/garson/PA765/cluster.htm</u>; the implementation of this approach with Tanagra is described in various tutorials e.g. <u>http://data-mining-tutorials.blogspot.com/2009/06/two-step-clustering-for-handling-large.html</u>

The component automatically detects 3 groups. This choice relies on the height between each merging. There is no theoretical justification here.

The DENDROGRAM tab of the visualization window is very important. By clicking on each node of the tree, we obtain the ID of the pre-clusters supplied by the SOM algorithm.

The white nodes of the tree states the groups computed with the HAC algorithm. If we select the white node at right, we obtain the SOM's pre-clusters ID i.e. the individuals in this group come from the pre-clusters (1; 1), (1; 2) et (2; 1).

In the table, we see the correspondence between SOM pre-clusters ID and the HAC clusters ID.

Cluster CAH	Cluster SOM
1	(1;3) + (2;3)
2	(2 ; 2)
3	(1;1) + (1;2) + (2;1)

The results are strikingly consistent with the theoretical consideration underlying the SOM approach: the HAC above all merges the adjacent cells of the Kohonen's map.