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1 Introduction 

Representation of data using a Kohonen map, followed by a cluster analysis. R software 

(Kohonen package) and Tanagra (Kohonen-Som composant). 

This tutorial complements the course material concerning the Kohonen map or Self-

organizing map ([SOM 1], June 2017). In a first time, we try to highlight two important 

aspects of the approach: its ability to summarize the available information in a two-

dimensional space; Its combination with a cluster analysis method for associating the 

topological representation (and the reading that one can do) to the interpretation of the 

groups obtained from the clustering algorithm. We use the R software and the “Kohonen” 

package (Wehrens et Buydens, 2007). In a second time, we carry out a comparative study of 

the quality of the partitioning with the one obtained with the K-means algorithm. We use an 

external evaluation i.e. we compare the clustering results with pre-established classes. This 

procedure is often used in research to evaluate the performance of clustering methods. It 

takes on its meaning when it is applied to artificial data where the true class membership is 

known. We use the K-Means and Kohonen-Som components of Tanagra. 

This tutorial is based on the Shane Lynn's article on the R-bloggers website (Lynn, 2014). I 

completed it by introducing the intermediate calculations to better understand the 

meaning of the charts, and by conducting the comparative study. 

2 Kohonen map with R (“Kohonen” package) 

2.1 Dataset 

We use the famous WAVEFORM dataset (Breiman and al., 1984), which is available on the 

UCI repository1. We have 21 descriptors. Two modifications are introduced in this part of the 

tutorial: because we are in an unsupervised learning task, we have remove the class 

attribute; we drawn a random sample of 1500 cases from the 5000 available instances. This 

dataset is especially interesting because (1) we know the true number of clusters, (2) we 

know also the relevant variables (the first and last variables do not play a role in the 

discrimination between the classes). 

                                                             

1 https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Version+1) 

http://data-mining-tutorials.blogspot.fr/2017/06/self-organizing-map-slides.html
https://cran.r-project.org/web/packages/kohonen/index.html
https://www.r-bloggers.com/self-organising-maps-for-customer-segmentation-using-r/
https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Version+1)
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2.2 Data importation and preparation 

First, we load and inspect the dataset. 

#modifying the default directory 

setwd("… votre dossier de travail…") 

 

#loading the data file, tab-delimited text file 

D <- read.table("waveform_som_1.txt",sep="\t",dec=".",header=T) 

 

#calculating and displaying the descriptive statistics 

print(summary(D)) 

We check above all that there are no anomalies in the dataset. 

       V1                  V2                V3                V4          

 Min.   :-2.930000   Min.   :-3.1000   Min.   :-4.0500   Min.   :-2.6100   

 1st Qu.:-0.670000   1st Qu.:-0.4300   1st Qu.:-0.1425   1st Qu.:-0.0925   

 Median : 0.020000   Median : 0.2800   Median : 0.6800   Median : 0.9100   

 Mean   : 0.004287   Mean   : 0.2921   Mean   : 0.6648   Mean   : 0.9548   

 3rd Qu.: 0.710000   3rd Qu.: 1.0100   3rd Qu.: 1.4400   3rd Qu.: 1.9600   

 Max.   : 3.310000   Max.   : 3.8800   Max.   : 4.7200   Max.   : 5.7500   

       V5               V6                V7               V8               V9         

 Min.   :-2.850   Min.   :-2.7600   Min.   :-2.200   Min.   :-1.910   Min.   :-2.370   

 1st Qu.: 0.020   1st Qu.: 0.4975   1st Qu.: 1.030   1st Qu.: 1.360   1st Qu.: 1.367   

 Median : 1.110   Median : 1.7800   Median : 2.470   Median : 2.735   Median : 2.810   

 Mean   : 1.309   Mean   : 1.9371   Mean   : 2.622   Mean   : 2.632   Mean   : 2.639   

 3rd Qu.: 2.560   3rd Qu.: 3.3025   3rd Qu.: 4.223   3rd Qu.: 3.920   3rd Qu.: 3.870   

 Max.   : 6.110   Max.   : 6.7500   Max.   : 8.420   Max.   : 6.870   Max.   : 6.550   

      V10              V11              V12             V13              V14         

 Min.   :-1.790   Min.   :-1.480   Min.   :-1.69   Min.   :-2.610   Min.   :-1.970   

 1st Qu.: 1.887   1st Qu.: 2.058   1st Qu.: 1.97   1st Qu.: 1.570   1st Qu.: 1.380   

 Median : 3.050   Median : 3.175   Median : 3.01   Median : 2.955   Median : 2.730   

 Mean   : 3.000   Mean   : 3.362   Mean   : 3.05   Mean   : 2.743   Mean   : 2.658   

 3rd Qu.: 4.082   3rd Qu.: 4.600   3rd Qu.: 4.21   3rd Qu.: 3.970   3rd Qu.: 3.953   

 Max.   : 6.840   Max.   : 9.060   Max.   : 7.32   Max.   : 7.040   Max.   : 7.750   

      V15              V16              V17              V18              V19          

 Min.   :-2.290   Min.   :-2.480   Min.   :-2.880   Min.   :-4.080   Min.   :-3.5000   

 1st Qu.: 1.100   1st Qu.: 0.610   1st Qu.: 0.020   1st Qu.: 0.000   1st Qu.:-0.1700   

 Median : 2.420   Median : 1.825   Median : 1.095   Median : 0.955   Median : 0.6150   

 Mean   : 2.659   Mean   : 2.002   Mean   : 1.308   Mean   : 1.001   Mean   : 0.6552   

 3rd Qu.: 4.250   3rd Qu.: 3.330   3rd Qu.: 2.553   3rd Qu.: 1.950   3rd Qu.: 1.4300   

 Max.   : 8.400   Max.   : 7.090   Max.   : 6.610   Max.   : 5.110   Max.   : 5.2800   

      V20              V21           

 Min.   :-3.570   Min.   :-3.45000   

 1st Qu.:-0.300   1st Qu.:-0.68250   

 Median : 0.345   Median :-0.06500   

 Mean   : 0.368   Mean   :-0.01835   

 3rd Qu.: 1.093   3rd Qu.: 0.67250   

 Max.   : 3.700   Max.   : 4.01000  

We standardize the variables with the scale() command. 

#Z value 

Z <- scale(D,center=T,scale=T) 
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Thus, we are ready to perform the analysis. 

2.3 Configuration and learning process 

Configuration and launching the learning process. We must first install and load the 

package “Kohonen” before starting the learning process with the som() function.  

#kohonen library 

library(kohonen) 

 

#SOM 

set.seed(100) 

carte <- som(Z,grid=somgrid(15,10,"hexagonal")) 

We asked a hexagonal grid of size 15 x 10. For this kind of grid, a circular neighborhood 

shape is used (Figure 1). 

 

Figure 1 – Hexagonal grid (15 x 10) and circular neighborhood shape 

The results are displayed with the summary() command... 

#summary 

print(summary(carte)) 

… they are rather short. 

som map of size 15x10 with a hexagonal topology. 

Training data included; dimension is 1500 by 21 

Mean distance to the closest unit in the map: 6.441387 

Structure of the grid. We must access to the properties of the object to obtain details about 

the structure of the grid. 

#structure of the grid 

print(carte$grid) 
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We have an object of class somgrid. It holds various properties. 

$pts 

          x         y 

  [1,]  1.5 0.8660254 

  [2,]  2.5 0.8660254 

  [3,]  3.5 0.8660254 

  [4,]  4.5 0.8660254 

  [5,]  5.5 0.8660254 

... 

[149,] 14.0 8.6602540 

[150,] 15.0 8.6602540 

 

$xdim 

[1] 15 

 

$ydim 

[1] 10 

 

$topo 

[1] "hexagonal" 

 

$n.hood 

[1] "circular" 

 

attr(,"class") 

[1] "somgrid" 

 

Figure 2 - Number (in red) and coordinates (in blue) of the cells into the grid 

The property “$pts” draws our attention. The cells are numbered from 1 to 150 (15 rows x 10 

columns). A row (x) and column (y) coordinates are associated to each cell (Figure 2). It is 

therefore possible to calculate descriptive statistics relating to the cells by positioning them 

into the representation space. Even if it is not very common, one could, for example, 

1 2 15

16 17

149 150

(1.5, 0.866)
(15.5, 0.866)

(1.0, 1.73)

(15.0, 1.73)

(15.0, 8.66)
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calculate a variable factor map to identify correlations in the topological map. We will see 

that below (page 10). 

2.4 Graphical representation 

Graphical representations are one of the attractive aspects of Kohonen maps. We detail 

some of them in this section. 

Progression of the learning process. This graph enables to appreciate the convergence of 

the algorithm. It shows the evolution of the average distance to the nearest cells in the map. 

For our dataset (Figure 3), after a strong decreasing, we have not a significant improvement 

from (nearly) 60 iterations. By default, the procedure requests RLEN = 100 iterations. We 

should increase RLEN if the curve continues to decrease. This is not required here. 

 

Figure 3 – Training progress 

Count plots. The number of instances into the cells are used to identify high-density areas. 

The "Kohonen" package for R allows you to specify the color function to use. We define the 

function degrade.bleu () [range of blue]. 

#color range for the cells of the map 

degrade.bleu <- function(n){ 

  return(rgb(0,0.4,1,alpha=seq(0,1,1/n))) 

} 

The function takes "n" as input, it corresponds to the number of colors to be produced. We 

generate a set of blue colors more or less opaque using rgb(). The higher is the number "n", 

the darker is the color. Then, we plot the map with the plot () command by specifying the 

right options (Figure 4). 
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#count plot 

plot(carte,type="count",palette.name=degrade.bleu) 

Ideally, the distribution should be homogeneous. The size of the map should be reduced if 

there are many empty cells. Conversely, we must increase it if areas of very high density 

appear (Lynn, 2014). 

 

Figure 4 – Counts plot 

Details of the results can be accessed with the properties of the object somgrid. The 

property « $unit_classif » points the order number of the cells to which is assigned the 

individuals. 

# cell membership for each individual 

print(carte$unit.classif) 

The first instance is assigned to the cell n° 83, the second one to the n° 6, …, the last one to 

the n°74. 

   [1]  83   6  26  53  20  86  99 120  52   3 146  82  81 120  68 145 112  21 109  

21 139 148  82  36 123  89 

  [27]  24  46  52  57   1 127  99 114 148  16 150  41  21 104 102 126  11  59  46 

102  64 130  64  77 118  25 

... 

[1457]  58  78 107  26   7 144  47  57 127  43  83 141  78  19 102  62   7  76 126   

7  58  69 125  76  43   6 

[1483]  12  27 144 102  13 144  98  36 103 101  93 106 137  24  42 146 138  74 

We can calculate the number of instance in each cell using the table() command. 

# number of instances assigned to each node 

nb <- table(carte$unit.classif) 

print(nb) 
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There are 11 instances into the cell n°1, 12 into n°2, …, 12 into n°150. 

 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  

 11  12   8  16  12  14  12   9   8  10  10  10   9   8   6  14  11   9  12  

 20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  

  7  13   9  10  12  12  12  11   9   6  11  14   7   8   8   9  14  12   9  

 39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  

  7   5  12   9  16   9  10  12  17   6   7  15  10   9   9   5  10  11  10  

 58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  

 11  10   9  16  11  12  14  11   8   8  12   8  13   6   9  10  13  13  13  

 77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  

  9   9   7  10   8  12  10   6  14  12   5  10   8   8   5  11  13  13  12  

 96  97  98  99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114  

  6   6   8  12  10  12  11  13   8  10  12  14  12   9   7   9   6  11  10  

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133  

 10   7   6  10   7  12   7  11   7   8   5  11  18  10  13  14   9   8   5  

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150  

  8  13   8   7   7  10   7  11   7  11  15   9   8  11  13   7  12 

We can also check if there are empty nodes by counting the number of values into the 

vector generated by the table() command. 

#check if there are empty nodes 

print(length(nb)) 

We have 150 values. All nodes contain at least one observation. 

Neighbour distance plot. Called “U-Matrix” (unified distance matrix), it represents a self-

organizing map (SOM) where the Euclidean distance between the codebook vectors of 

neighboring neurons is depicted in a range of colors. 

 

Figure 5 – Neighbour distance plot 

The chart is obtained using the following command: 

#plot distance to neighbours 

plot(carte,type="dist.neighbours") 
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According to the package documentation, the nodes that form the same group tend to be 

close. Border areas are bounded by nodes that are far from each other. In our chart (Figure 

5), the nodes which are close to the others are dark-colored. We observe that they are 

concentrated on the ends of the map. This leaves hope for a good separation of the groups 

in the typology. 

2.5 Graphical representation – Influence of the variables 

A section is devoted to this type of chart because it allows to establish the role of variables 

in the definition of the different areas that comprise the topological map. This is important 

for the interpretation of the results. This is especially true when we combine the new data 

representation system with a typology provided by a clustering algorithm (section 2.7). 

Codebook vectors. This chart represents the vector of weights in a pie chart for each cell of 

the map. 

#codebooks – nodes pattern 

plot(carte,type="codes",codeRendering = "segments") 

 

Figure 6 – Codebooks chart 

It enables to distinguish at a glance the nature of the different areas of the map regarding 

the variables (Figure 6). We note that the southwestern part is rather characterized by the 

high values of the first variables (in green); the north is rather associated with the 
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intermediate variables (in yellow), the southeastern part would be relative to the last 

variables (in pink). We detail the codebooks for the two first cells. 

#codebooks values for the two first cells 

print(carte$codes[1:2,]) 

The values of the variables are comparable from one node to another. But also, because we 

have standardized them, they are also comparable within each node. 

            V1        V2       V3       V4      V5       V6       V7 

[1,] -1.402508 0.7030893 1.028195 1.112326 1.69281 1.979410 1.201450 

[2,] -1.317920 0.2778695 1.100380 1.466021 1.23953 1.316825 1.205971 

            V8        V9         V10       V11        V12       V13 

[1,] 1.1301033 1.0421593 -0.04541570 -1.156651 -1.7364859 -1.899917 

[2,] 0.8252693 0.3755839 -0.03180923 -0.887046 -0.8118423 -1.406320 

            V14        V15       V16        V17        V18         V19 

[1,] -1.9378001 -0.9810732 -1.031163 -0.8476767 -0.8018206 -0.01620569 

[2,] -0.8989741 -0.9614553 -0.966065 -0.6904285 -0.7548960 -0.53788446 

            V20        V21 

[1,] -0.7937134  0.2506806 

[2,] -0.7006180 -2.0250856 

It seems that the southwest part of the map - cells n°1 and 2 by starting from the bottom 

left (Figure 2) - are characterized by high values for V5, V6 and V7; and low values for V12, 

V13 and V14. 

Heatmaps. Even it is attractive, we realize that the "codebook" chart is difficult to read 

when the number of nodes and variables increases. Rather than making a single chart for all 

the variables, we can make a graph for each variable, trying to highlight the contrasts 

between the high and low value areas. This univariate description is easier to understand. 

We use the values of the "codebooks" to build the graphs that we set together into one 

frame. The color scheme used combines red colors (respectively blue) with high values (low 

values). We use the coolBlueHotRed() function for that (Wehrens, 2015). 

#colors function for the charts 

coolBlueHotRed <- function(n, alpha = 1) { 

  rainbow(n, end=4/6, alpha=alpha)[n:1] 

} 

 

#plotting the heatmap for each variable 

par(mfrow=c(6,4)) 

for (j in 1:ncol(D)){ 

  plot(carte,type="property",property=carte$codes[,j],palette.name=coolBlueHotRed,main=colnames(D)[j],cex=0.5) 

} 

par(mfrow=c(1,1)) 

The influence areas appear clearly (Figure 7). 
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Figure 7 – Areas for high values (red) and low values (blue) for each variable 

We distinguish approximately 3 areas which will be confirmed by the cluster analysis below 

(section 2.7): southwest, characterized by high values for V3 to V8; north for V10 to V12; 

southeast for V14 to V18.  

Variable factor map. This kind of chart is very popular in principal component analysis 

(PCA), it is not usual in the Kohonen map context. However, we have all resources for 

achieving the calculations: we have the coordinates (x, y) of each cell (Figure 2); their 

weights (number of instances, Figure 4), and the value for each variable from the codebook. 

We calculate the weighted correlation for each column of the codebook: 

#correlation based on the coordinates (x,y) of the map 

#v: variable (one column of the codebook), w: weight, grille: Kohonen map 

weighted.correlation <- function(v,w,grille){ 

  x <- grille$grid$pts[,"x"] 
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  y <- grille$grid$pts[,"y"] 

  mx <- weighted.mean(x,w) 

  my <- weighted.mean(y,w) 

  mv <- weighted.mean(v,w) 

  numx <- sum(w*(x-mx)*(v-mv)) 

  denomx <- sqrt(sum(w*(x-mx)^2))*sqrt(sum(w*(v-mv)^2)) 

  numy <- sum(w*(y-my)*(v-mv)) 

  denomy <- sqrt(sum(w*(y-my)^2))*sqrt(sum(w*(v-mv)^2)) 

  #correlation for the two axes 

  res <- c(numx/denomx,numy/denomy) 

  return(res) 

} 

 

#correlations for all the columns of the codebook 

CORMAP <- apply(carte$codes,2,weighted.correlation,w=nb,grille=carte) 

print(CORMAP) 

We obtain a pair of values for each variable: 

              V1         V2         V3         V4         V5         V6         V7 

[1,] 0.098092995 -0.3427152 -0.5881500 -0.6869289 -0.7590438 -0.8356554 -0.9120511 

[2,] 0.007083712 -0.2025105 -0.2840669 -0.4148091 -0.4816572 -0.3385431 -0.1949636 

              V8         V9        V10         V11       V12       V13       V14 

[1,] -0.89006908 -0.8006609 -0.4758664 -0.08393847 0.3694334 0.7546540 0.8776806 

[2,]  0.02609795  0.3339969  0.6452938  0.77856603 0.7116477 0.4976912 0.1886124 

             V15        V16        V17        V18        V19        V20          V21 

[1,]  0.92361028  0.8841228  0.8006326  0.7578706  0.6278790  0.3548972 -0.001883609 

[2,] -0.08297735 -0.1824730 -0.3346339 -0.3135307 -0.3403646 -0.1477782  0.191807627 

We insert them into a scatter plot: 

#graphical representation of the variable factor map 

plot(CORMAP[1,],CORMAP[2,],xlim=c(-1,1),ylim=c(-1,1),type="n") 

lines(c(-1,1),c(0,0)) 

lines(c(0,0),c(-1,1)) 

text(CORMAP[1,],CORMAP[2,],labels=colnames(Z),cex=0.75) 

symbols(0,0,circles=1,inches=F,add=T) 

The chart (Figure 8) is very similar to the variable factor map obtained from the principal 

component analysis (PCA) on the same dataset. The chart looks like a heart (inverted here). 

I have always wondered if the authors (Breiman et al., 1984) have done it intentionally by 

generating the data. 

We agree that the variable factor map is first as an indicative tool in this framework. There 

are no mathematical meanings to the calculations, especially since the topological map is 

supposed to be able to represent nonlinear patterns. Nevertheless, this kind of synthetic 

chart is otherwise easier to inspect than codebooks (Figure 6) and heatmaps (Figure 7) when 

the number of variables and nodes increases. In our example, the conclusions of the variable 

factor map are consistent with the above representations. 
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Figure 8 – Variable factor map for the Kohonen network 

2.6 Relevance of the variables 

Confirming the suggestions of graphical representations with statistical indicators is always 

a good thing. Strong contrasts highlight the importance of variables in the definition of the 

different areas into the “heatmaps” charts (Figure 7). We can convey this idea using an 

indicator such as the variance. Thus, it is possible to rank the influence of the variables. 

Two characteristics allow us to do this: the variables are standardized, their influences are 

directly comparable; the codebooks vectors of the cells correspond to an estimation of the 

conditional averages, calculating their variance for each variable is equivalent to estimating 

the between-node variance of the variable, and hence their relevance. 

We calculate the weighted variance for each variable (weighted by the number of instances 

within each cell). 

#spread of the codebooks 

#variance weighed by the cell size 

sigma2 <- sqrt(apply(carte$codes,2,function(x,effectif){m<-sum(effectif*(x-

weighted.mean(x,effectif))^2)/(sum(effectif)-1)},effectif=nb)) 
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# printing according to a decreasing order 

print(sort(sigma2,decreasing=T)) 

The relevant variables (because they induce the strongest contrasts between the cells of the 

map) appear first: 

      V15        V7       V17        V8        V6       V13       V11       V14  

0.8900360 0.8797254 0.8603220 0.8540305 0.8538536 0.8527706 0.8518798 0.8518771  

      V16        V5       V10        V9       V12       V18        V4       V19  

0.8508026 0.8461657 0.8437845 0.8435556 0.8198914 0.8161934 0.8141638 0.8067165  

       V1       V21        V2       V20        V3  

0.8010057 0.7907470 0.7904047 0.7895682 0.7713664 

Extreme variables (V1 to V3) and (V19 to V21) are the less influential i.e. the conditional 

averages are homogeneous across the whole map. These results confirm what we found in 

the different graphical representations seen earlier. But numerical indicators are more 

convenient for the processing of large datasets. 

2.7 Cluster analysis from the map – Two-step clustering 

Clustering of nodes. Kohonen map is a kind of cluster analysis, where adjacent cells have 

similar codebooks. We can start from the preclusters (the cells of the map) provided by the 

SOM algorithm to perform a cluster analysis. The HAC (hierarchical agglomerative 

clustering) is often used in this context. 

Below, we calculate the pairwise distance between the cells (using the codebooks) [dist], 

then we perform a HAC [hclust] using the Ward's method [method = “ward.D2”]. 

#distance matrix between the cells 

dc <- dist(carte$codes) 

 

#hac – the option “members” is crucial 

cah <- hclust(dc,method="ward.D2",members=nb) 

plot(cah,hang=-1,labels=F) 

 

#visualizing the 3 clusters into the dendrogram 

rect.hclust(cah,k=3) 

The option “members” is crucial. Indeed, the number of instances related to each node is 

not the same i.e. the nodes have not identical weights. We must take into account it when 

we calculate the Ward's criterion. 
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Figure 9 - Dendrogram 

A partitioning in 3 clusters seems justified in view of the dendrogram (Figure 9). 

We create a cluster membership variable (cutree):  

#cutting in 3 clusters 

groupes <- cutree(cah,k=3) 

print(groupes) 

The variable ‘groupes’ enables to identify the cluster membership of each node of the 

Kohonen map. 

  [1] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 

 [42] 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3 2 2 2 2 2 2 1 1 1 1 3 1 3 

 [83] 3 3 3 2 2 2 2 2 1 1 1 3 3 3 3 3 3 3 2 2 2 2 2 1 1 3 3 3 3 3 3 3 3 3 3 2 2 2 1 3 3 

[124] 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

The first node n°1 belongs to the cluster 1, the second one also, …, the last node of the map 

(n°150) belongs to the cluster 2. 

We can visualize the groupings into the map.  

#visualizing the clusters into the map 

plot(carte,type="mapping",bgcol=c("steelblue1","sienna1","yellowgreen")[groupes]) 

add.cluster.boundaries(carte,clustering=groupes) 

The three areas identified in the various previous charts are clearly highlighted. And we 

know how to interpret them now. 
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Figure 10 - Representation of the clusters into the map 

Note: The adjacent nodes are grouped in the same cluster. This seems normal considering 

the properties of the map (adjacent nodes have similar codebooks). But anomalies may 

appear sometimes, mainly because of the constraints inherent in the clustering algorithm. 

Cluster membership of the individuals. The cells of the map are associated to the cluster. 

But, usually, we are interested in the cluster membership of the individuals. We obtain this 

in a two-step process: we assign first the individuals to a cell, then we identify the cluster 

associated to this cell. 

#assign each instance to its cluster 

ind.groupe <- groupes[carte$unit.classif] 

print(ind.groupe) 

The individual n°1 is associated to the cluster 3, the n°2 to the cluster 1, …, the n°1500 to the 

cluster 2. 

[1] 3 1 2 1 1 2 3 2 1 1 3 3 1 2 3 3 3 1 3 1 3 3 3 1 3 2 2 1 1 2 1  

... 

[1477] 2 3 3 1 2 1 2 2 3 2 2 3 3 1 2 2 1 1 3 2 2 3 3 2 

Visualizing the clusters into the original representation space. Since we know the cluster 

membership of individuals and the variables explaining the grouping, it is possible to 

represent them in a three-dimensional space formed from the main variables defining the 3 

areas identified previously (sections 2.5 and 2.6), i.e. V7, V11 and V15. 

We use the Karline Soetaert’s “plot3D” package. 

 

https://cran.r-project.org/web/packages/plot3D/
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#representation of the individuals and their group membership 

#in a 3D representation space 

library(plot3D) 

points3D(D$V7,D$V11,D$V15,colvar=ind.groupe,col=c("steelblue1","sienna1","yellowgreen"),phi=35,theta=70) 

We easily distinguish the 3 clusters (Figure 11). 

 

Figure 11 – Clusters in a 3D representation space (V7, V11 and V15) 

By means of the “plot3Drgl” package of the same author, we can generate an interactive 

graphical representation. 

#animated 3D graphical representation 

library(plot3Drgl) 

plotrgl(lighting = T) 

A specific window appears. I admit to having a lot of fun by turning the graphic in all 

directions and playing with the zoom (Figure 12). As we can see, the possibilities of data 

representation, and therefore data analysis, are attractive. 
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Figure 12- Interactive 3D representation  

3 External evaluation - SOM vs. K-MEANS with Tanagra 

Is the combined (SOM + HAC) approach is efficient? We chose to compare the performance 

of (SOM + HAC) with the state-of-the-art K-means to check it. The comparison is based on 

an external evaluation scheme i.e. the true class membership of the individuals is known, we 

want to create clusters which are the most consistent to this reference. 

We go to the basics in this section. The implementation of the Kohonen maps under 

Tanagra is described in a previous tutorial (SOM 2, 2009). The reader may to refer to it for 

the construction step by step and the settings of the data mining diagram. 

3.1 Dataset 

We use the whole 5000 instances of the WAVEFORM dataset here (waveform_som_2.xls). 

The class attribute WAVE (last column) is not used for the construction of the clusters, but is 

used for their evaluation. Because, the WAVEFORM is an artificial dataset, it is appropriated 

for this type of evaluation scheme.  

3.2 SOM + CAH with Tanagra 

We import the dataset2, then we define the input variables with the DEFINE STATUS tool 

(input: V1 to V21). We add the KOHONEN-SOM component into the diagram. We set the 

size of the map (15 rows and 10 columns) (1), and we standardize the variables (2). 

                                                             

2 http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html 

https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Version+1)
http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html
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Tanagra displays the number of instances into each cell. It provides also an indication about 

the quality of the map, this is the proportion of variance explained. We have 59.92% for our 

analysis. 

To launch the cluster analysis (HAC) from the pre-clusters defined by the topological map, 

we add the HAC component into the diagram by specifying the used variables with a second 

DEFINE STATUS component: TARGET corresponds to the pre-clusters of KOHONEN-SOM 

(CLUSTER_SOM_1), INPUT correspond to the descriptors (V1 to V21). We ask the creation 

of 3 clusters since we know the true solution in advance. In any case, if we let the tool to 

detect automatically the right number of cluster, it would have proposed this number of 

clusters for this dataset. 

(1)

(2)
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To evaluate the performance of the approach, we compute a cross-tabulation of the 

computed cluster variable and the observed class attribute. Then we calculate the Cramer’s 

V criterion. The diagram is completed in the following manner. 

 

 

Target = 

CLUSTER_SOM_1

Input = V1…V21

Target = WAVE

Input = CLUSTER_HAC_1

https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V
https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V
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V = 0.5029. This is a reference value. Let us see if K-Means algorithm can do better. 

3.3 K-Means with Tanagra 

K-Means algorithm is a well-known approach. We complete the diagram as follows. 

 

Again, we compare the computed cluster variable with the class attribute WAVE. 

 

Target = WAVE

Input = CLUSTER_KMEANS_1

https://en.wikipedia.org/wiki/K-means_clustering
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Cramer’s V is now equal to 0.5010. 

Both approaches are equivalent when compared with the true class membership. But, the 

association between (SOM + HAC) combines two advantages (1) the dimensionality 

reduction ability of the SOM algorithm which enables to visualize the data into a two-

dimensional representation space proposed by the topological map (SOM 1, 2017); (2) the 

inherent qualities of the HAC which allow to propose scenarios of nested solutions and a 

tool, the dendrogram, for evaluating their reliability (CAH, 2017). The interpretation of the 

results is made easier. 

4 Conclusion 

Kohonen maps are both a technique for dimensionality reduction, visualization, and 

clustering (at least, it allows to establish a preclustering of data). In this tutorial, I tried to 

highlight the advantages of the approach, emphasizing the different possibilities of 

interpretations with the various maps, also showing the power of its association with the 

Hierarchical Agglomerative Clustering (HAC) in an unsupervised learning process. 
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