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1 Introduction 

Equivalences between linear discriminant analysis and linear multiple regression. 

Linear discriminant analysis and linear regression are both supervised learning techniques. 

But, the first one is related to classification problems i.e. the target attribute is categorical; the 

second one is used for regression problems i.e. the target attribute is continuous (numeric). 

However, there are strong connections between these approaches when we deal with a binary 

target attribute. In this particular case, we can even recreate the outputs of the linear 

discriminant analysis with a linear regression program (Bishop, 2007, pages 189 - 190; Duda 

et al., 2001, pages 242 – 243; Huberty et Olejnik, 2006, pages 353 – 355; Nakache et Confais, 

2003, pages 14 – 16; Saporta, 2006, pages 451 – 452; Tomassone et al., 1988, pages 36 – 38). 

Unfortunately, if the various references show the connections between the matrix expressions, 

some explaining the transition formulas, no one details the calculations on a numerical 

example, making the demonstration too abstract. We perceive badly the real scope of this 

equivalence. By searching on the Web (in English and French), I ended up finding a detailed 

example that highlights the relationship. The coefficients of the linear functions from the two 

approaches are proportional, alas, without that the author details the mathematical expression 

of the ratio between the coefficients (Desbois, 2003; page 31). 

This tutorial takes up the idea. From a practical example, we describe the connections 

between the two approaches in the case of a binary target variable. We detail the formulas 

for obtaining the coefficients of discriminant analysis from those of linear regression. It 

appears that if the equivalence is total when we have balanced dataset i.e. we have the same 

number of instance for the two classes. In contrast, it is necessary to introduce an additional 

adjustment of the constant term when the classes are not represented equally (Hastie et al, 

2009; page 110). The corresponding formula, not found also in the various references, is 

detailed. 

We perform the calculations under Tanagra (balanced data) and R (imbalanced data). Our 

main reference is the book of Tomassone and al. (1988). This book is remarkable on this 

subject, but also in general on the various themes related to the machine learning problems. 

Unfortunately, it is not well distributed. No one thought of translating it into English. 

http://www.modulad.fr/archives/numero-30/desbois-30/desbois-30.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
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2 Dealing with balanced data 

2.1 IRIS dataset 

We use a modified version of the famous IRIS dataset in this section. We keep only the two 

last descriptors {petal-length, petal-width} and K = 2 classes {iris-versicolor, iris-virginica}. So, 

we have n = 100 instances (50 + 50). We add also the variable y that we will describe 

thereafter. Here are the 6 first rows of the dataset (Figure 1). 

 

Figure 1 – First rows of the dataset – Binary IRIS 

Since we have 2 descriptors, we can plot the data points in a scatterplot. We differentiate the 

instances according to their class membership. 

 

Figure 2 – Scatterplot – Class membership 

The two groups of individuals are rather distinct. Finding a linear boundary that allows to 

separate them will be easy. The error rate of the model should be low. Misclassified 

individuals will be located in the overlapping parts of the conditional point clouds. 

2.2 Linear discriminant analysis with Tanagra – Reading the results 

2.2.1 Data importation 

We want to perform a linear discriminant analysis with Tanagra. We open the 

“lda_regression_dataset.xls” file into Excel, we select the whole data range and we send it to 

Tanagra using the “tanagra.xla” add-in. 

pet.length pet.width species y

4.7 1.4 versicolor 0.5

4.5 1.5 versicolor 0.5

4.9 1.5 versicolor 0.5

4.0 1.3 versicolor 0.5

4.6 1.5 versicolor 0.5

4.5 1.3 versicolor 0.5

http://archive.ics.uci.edu/ml/datasets/Iris
http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html
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Tanagra is automatically launched; 4 columns are imported with 100 instances. 

 

2.2.2 Discriminant analysis 

First, we must define the status of the variables. We use the DEFINE STATUS component for 

that. We click on the shortcut into the toolbar. We set SEPCIES as target, PET.LENGTH and 

PET.WIDTH as input. The variable Y is not used at this stage. 
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We add the LINEAR DISCRIMINANT ANALYSIS (SPV LEARNING tab) into the diagram. 

 

We click on the VIEW contextual menu to obtain the results. 
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2.2.3 Reading the results 

Confusion matrix. The “Classifier performances” part incorporates the confusion matrix 

computed on the learning sample. 

 

Figure 3 – Confusion matrix 

We have a balanced dataset with n1 = 50 « G1 : versicolor » and n2 = 50 « G2 : virginica ». 6 

instances are misclassified (error rate: 6 / 100 = 6%), with 4 instances “virginica” labeled 

“versicolor”, and 2 conversely. We can visualize them when we draw the boundary separating 

the classes in the representation space (Figure 7). 

MANOVA. The multivariate analysis of variance corresponds to a test for comparison of 

conditional centroids. The Wilks’ lambda () is the ratio between the within-group variance 

and the total variance. The closer it gets to 0, the furthest are the conditional centroids. For 

our dataset, we have  = 0.2802. This suggests a good separation of the groups, confirmed 

on the one hand by the scatterplot of conditional data points (Figure 2), on the other hand, 

by the low error rate (Figure 3). 

 

Figure 4 – MANOVA test 

The Wilks' lambda can be applied to any number of classes (K  2). For the binary problem (K 

= 2), we can compute the distance between the centroids 1 (versicolor) and 2 (virginica). We 

use the “Mahalanobis distance” (D), it is defined as follows: 

𝐷² =
1 − Λ

Λ
×
𝑛(𝑛 − 2)

𝑛1 × 𝑛2
 

For our dataset, 

𝐷² =
1 − 0.2802

0.2802
×
100(98)

50 × 50
= 10.0678 

Classifier performances

Value Recall 1-Precision versicolor virginica Sum

versicolor 0.96 0.0769 versicolor 48 2 50

virginica 0.92 0.0417 virginica 4 46 50

Sum 52 48 100

Error rate 0.06

Values prediction Confusion matrix

MANOVA

Stat Value p-value

Wilks' Lambda 0.2802 -

Bartlett -- C(2) 123.3935 0

Rao -- F(2, 97) 124.5641 0
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We can visualize the centroids (1, 2) – with the coordinates 1 = (4.26, 1.33) and 2 = (5.55, 

2.03) – and their distance D² (Figure 5). 

 

Figure 5 – Conditional centroids - Mahalanobis distance (D²) 

To test the significance of the difference, we use the Rao's F statistic which follows a Fisher 

distribution under the null hypothesis (the centroids are identical). For our dataset, we have F 

= 124.5641, the statistic follows a Fisher distribution at (2, 97) degrees of freedom. We note 

that we reject the null hypothesis at the 5% level (Figure 4). 

Classification functions – Score function. The classification functions can be used to 

determine to which group each instance most likely belongs. There are as many classification 

functions as there are groups (Huberty and Olejnik, 2006; page 274).  

D(G1, X) = a0 + a1 * X1 + a2 * X2 

D(G2, X) = b0 + b1 * X1 + b2 * X2 

In the binary problems (K = 2), we can compute a linear “score” function1 which is formed 

from the difference term by term of the coefficients provided by the classification functions. 

Applied to an instance, it returns a value which is proportional to the level of membership to 

the group G1. It is an alternative to the LOGIT function provided by the logistic regression. 

D(X) = 0 + 1 * X1 + 2 * X2 

With 

j = (aj – bj) 

                                        
1 "Score” function is maybe not the best way to designate it in English. But it corresponds to the usual practice in the 

French-speaking world. 

D² = 10.07

1

2
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Tanagra provides the classification functions, we can infer the “score” function. 

 

Figure 6 – Classification functions and score function 

The classification rule for an unseen instance  is: 

IF D[X()]  0 THEN Versicolor ELSE Virginica 

Thus, for an instance with the following values (pet.length = 4.7, pet.width = 1.4): 

D = 29.116340 + (-2.764569 * 4.7) + (-9.280052 * 1.4) = 3.13 > 0 

The class “versicolor” is assigned to the instance. This seems obvious when we consider the 

location of the instance into the representation space (Figure 7). 

Boundary between classes. D(X) = 0 defines the boundary allowing to separate the classes 

into the representation space. In the two-dimensional representation space, it corresponds to 

a straight line (Figure 7). 

 

Figure 7 - Boundary defined by the linear discriminant analysis 

We observe the 6 misclassified instances in either side of the boundary (Figure 7). These are 

those that highlighted in the confusion matrix (Figure 3). 

Relevance of the predictive variables. The “Statistical Evaluation” part of the coefficients 

table enables to appreciate the variable importance in the model. One possible point of view 

is that it is based on a statistical test allowing to check if the coefficients of a variable are 

identical whatever the classification function. 

Score function

Attribute versicolor virginica D(X)

pet.length 14.40029 17.164859 -2.764569

pet.width 7.824622 17.104674 -9.280052

constant -36.55349 -65.66983 29.116340

Classification functions

D(X) = 0
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Concretely, the test statistic Fj is based on the comparison of the Wilks’ lambda  with and 

without the variable Xj to evaluate. Under the null hypothesis, it follows a Fisher distribution 

with (1, n – p – K + 1) degrees of freedom [(1, n – p – 1) since K = 2 for our dataset]. 

 

Figure 8 – Relevance of the input variables – Linear discriminant analysis 

We note that the two variables are both relevant (significant) at the 5% level. In particular, we 

will remember the values of F to compare them with the significance test statistics of the 

linear regression below. 

2.3 Comparison with SAS 

The same results are available with two procedures of the SAS software. The PROC DISCRIM 

provides the global evaluation and the classification functions. 

proc discrim data = mesdata.iris_binary manova; 
class species; 
var pet_length pet_width; 
priors proportional; 
run; 

We obtain (see Figure 4 and Figure 6). 

 

LDA Summary

Attribute versicolor virginica Wilks L. Partial L. F(1,97) p-value

pet.length 14.40029 17.164859 0.314202 0.89192 11.75412 0.000893

pet.width 7.824622 17.104674 0.381538 0.734509 35.06098 0.000000

constant -36.55349 -65.66983

Classification functions Statistical Evaluation

-

https://www.sas.com/
https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#discrim_toc.htm
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The PROC STEPDISC provides the test statistic Fj allowing to measure the variable importance. 

proc stepdisc data = mesdata.iris_binary method = backward; 
class species; 
var pet_length pet_width; 
run; 

The statistic F are identical to those of Tanagra (Figure 8). 

 

2.4 Linear regression for the classification process 

2.4.1 Principle – Working with a coded target attribute 

The aim of the linear regression is to explain (predict) the values of a numeric dependent 

variable with one or more independent variables. We dispose of many tools to evaluate the 

model in its globality and the influence of each independent variables. 

Let us see how to perform a linear regression on our modified version of the IRIS dataset. We 

must code appropriately the categorical target attribute SPECIES which takes two values {G1: 

versicolor, G2: virginica}. The coded target attribute Y takes two possible numerical values (y1, 

y2), which are defined as follows for an individual :  

 









22

11

Gωwhen y

Gωwheny
y   

We obtain a regression equation: 

R(X) = 0 + 1 * X1 + 2 * X2 

Where j are the coefficients of the model. 

For an unseen instance to classify , the classification rule is: 

IF 𝑅[𝑋(𝜔)] ≥ �̅� THEN Versicolor ELSE Virginica 

The threshold value �̅� is the average of the variable Y 

n

ynyn
y 2211 
  

https://en.wikipedia.org/wiki/Linear_regression
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Coding values. Any coding values are adapted as long as y1  y2. Several options are 

possible. 

• The simplest: (y1 = 1 ; y2 = 0). In this case, the threshold value is 
n

n
y 1 . De facto, 

the threshold 0.5 is a particular situation which is adapted when we have balanced 

dataset (n1 = n2). 

• The coding values 









n

n
y

n

n
y 1

2
2

1 ;  (Tomassone, 1988; page 38) have the 

advantage to infer a null threshold for the reason that 0y . The regression equation 

is similar to a score function in this case. We will see that they are fully equivalent 

when n1 = n2. 

• Other coding values which leads to a null threshold ( 0y ) are possible: 











2

2

1

1 ;
n

n
y

n

n
y  (Duda and al., 2001, page 242; Saporta, 2006, page 451); 
















2

1
2

1

2
1 ;

n

n
y

n

n
y (Nakache and Confais, 2003; page 14); etc. 

We choose the coding values 







 5.0;5.0 1

2
2

1
n

n
y

n

n
y  for our dataset (variable y). It 

corresponds to the last column of our data file (Figure 1). 

2.4.2 Multiple linear regression with Tanagra 

We go back to Tanagra. We add a new DEFINE STATUS component into the diagram. We set 

Y as TARGET, PET.LENGTH and PET.WIDTH as INPUT. 
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We insert the tool MULTIPLE LINEAR REGRESSION (REGRESSION tab). We click on the VIEW 

contextual menu to visualize the results. 

 

Let us see the details. 
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2.4.3 Overall model fit 

The R-Square (R²) is the main tool for the evaluation of the model. This is the proportion of 

variance explained by the model. For our dataset, we have R² = 0.719757. 

 

Figure 9 – Overall model fit 

We can associate to the R² the test statistic F. It enables to test the global significance of the 

model (H0 : all the coefficients associated to the variables are equal to 0). Under H0, it follows 

a Fisher distribution with (p, n – p – 1) degrees of freedom. We obtain F = 124.5641; the 

model is globally significant at the 5% level (Figure 9). 

2.4.4 Regression coefficients and tests for significance 

This table provides the estimated coefficients of the model j (Coef.). The column “t(97)” is 

the t-statistic tj for significance (H0 : j = 0). It follows a Student distribution at (n – p – 1) 

degrees of freedom. 

 

Figure 10 – Regression Coefficients - Tests for significance 

A quick comparison allows to observe that the ratio between the coefficients of the score 

function from the linear discriminant analysis (LDA, Figure 6) and the regression equation 

(REG, Figure 10) is the same whatever the variable being considered, including the constant: 

−2.764569

−0.197641
=
−9.280052

−0.663436
=
29.11634

2.081544
= 13.98 

This phenomenon has also been noticed on another part of the IRIS dataset [setosa vs. 

versicolor] (Desbois, 2003; page 31). 

Global results

Endogenous attribute y

Examples 100

R² 0.719757

Adjusted-R 0.713979

Sigma error 0.268752

F-Test (2,97)
124.5641 

(0.000000)

Coefficients

Attribute Coef. std t(97) p-value

pet.length -0.197641 0.057648 -3.428428 0.000893

pet.width -0.663436 0.112044 -5.921231 0.000000

Intercept 2.081544 0.168871 12.326226 0.000000
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Figure 11 - Ratio between the coefficients of the score function (LDA) and the regression (REG) 

Therefore, the linear regression for the classification as we define it in this section provides a 

result fully equivalent to that of the linear discriminant analysis. Both approaches construct 

the same boundary line to separate the classes. 

2.5 Transition formula and equivalences 

Observing the equivalence retrospectively is a good thing. But the real issue is to be able to 

calculate this ratio a priori, in order to deduce the results of linear discriminant analysis (LDA) 

from the linear regression (REG). This is what we show in this section. 

2.5.1 From R² to  - Equivalence between the global evaluation of the models 

The R² (R-squared) of the regression is obtained from the ratio between the explained 

variance and the total variance. The Wilks’ lambda () of the linear discriminant analysis is the 

ratio between the residual variance (within-group variance) and the total variance. The 

following relation comes naturally: 

 = 1 – R² = 1 – 0.719757 = 0.280243 

We find the result of the LDA. The tests for global significance are identical with F = 124.5641 

which follows a Fisher distribution at (2, 97) degrees of freedom (Figure 4 and Figure 9). 

2.5.2 Transition formula between the coefficients 

Since we have , we can calculate the Mahalanobis distance D between the centroids. We 

obtain D² = 10.0678 (see page 5). 

To simplify the expressions, we set: 

98210022211  nnnc  

And 

25
5050

5050

21

21
2 











nn

nn
c  

We obtain the ratio between the coefficients of LDA and REG with (Tomassone and al., 1988): 

 212

2

21

yyc

Dcc

j

j









    (j = 0, 1, …, p) 

Score function Coefficients

LDA REG Ratio

pet. length -2.764569 -0.197641 13.98783

pet.width -9.280052 -0.663436 13.98786

constant 29.116340 2.081544 13.98786
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For the IRIS dataset, we perform the following calculation: 

 
98786.13

)5.0(5.025

0678.102598





  

This is the value obtained when we calculate retrospectively the ratio between the coefficients 

of LDA and REG (Figure 11). This ratio  is the same whatever the coefficients, including the 

constant term when we have balanced dataset (n1 = n2). 

2.5.3 Tests for significance of coefficients 

For the regression, we have the t-statistic tj which follows a Student distribution with (n – p – 

1) degrees of freedom. For the discriminant analysis, we have Fj which follows a Fisher 

distribution with (1, n – p – 1) degrees of freedom. The following relation is obvious: 

2

jj tF   

For instance, for the first explanatory variable (PET.LENGTH) (Figure 10 and Figure 8), we have: 

  75412.11428428.3
22

11  tF  

Here also, we can directly use the results of the regression to measure the relevance of the 

variables in the binary linear discriminant analysis. 

3 Handling imbalanced dataset 

The regression provides a constant term which is not proportional to the one of the score 

function of LDA when we deal with imbalanced dataset (n1  n2). The boundary provided by 

the regression is parallel to the one of the discriminant analysis. Therefore, the regression 

model has not the same behavior than the linear discriminant model since the classification 

rule is different (Hastie et al, 2009; page 110). An additional correction must be introduced for 

the constant term to obtain the equivalence. 

3.1 Additional correction for the constant term 

The relation between the coefficients of the variables remains the same: jj     (j  1). 

An additional correction  is need for the constant term: 

  000

~
 

The correction 𝛿 is based on the distribution of classes and the coordinates of the centroids. 

It can be obtained from the coefficients related to the independent variables from the score 

function (Nakache and Confais, 2003, page 19; the authors describes the Fisher's discriminant 

function and, consequently, omit the part relating to the groups sample sizes n1 and n2) : 

http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
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  



p

j

jjj

j
n

n

1

21

2

1 2
2

1
ln   

Where j is the mean of the variable Xj for all the instances, 𝜇1
𝑗
 (resp. 𝜇2

𝑗
) the mean of the 

variable Xj for the instances from the group G1 (resp. G2). 

Note: We observe that  = 0 when we have balanced dataset (n1 = n2). Indeed, in this case: 

  01lnln
2

1 








n

n
 

And, 

    02
2

1
2121

2211 


 jjjjj
jj

j

n

nn



  

3.2 BREAST dataset 

To illustrate the calculations for imbalanced dataset, we use a part of the well-known “breast-

cancer-wisconsin”2 dataset, with only p = 3 descriptors (clump, ucellsize, ucellshape). The 

target attribute TARGET is binary3 (K = 2). The first G1 is the class “begnin”, G2 corresponds to 

“malignant”. We have n = 699 instances, with n1 = 458 and n2 = 241. Here are the first rows 

of the dataset.  

 

3.2.1 Coding the target variable 

The first step consists in coding the target attribute, we create Y with two possible values: 

345.0
699

2412
1 

n

n
y and -0.655

699

458
-y 1

2 
n

n
 

3.2.2 Results of the regression 

We send Y and the p = 3 independent variables to Tanagra. We perform the regression 

analysis. We obtain the following results. 

                                        
2 http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29 

3 We changed the name of the variable "class" to "target" to avoid confusion when processing under R below. 

clump ucellsize ucellshape target

4 2 2 begnin

1 1 1 begnin

2 1 1 begnin

10 6 6 malignant

4 1 1 begnin

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
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At this stage, we have all the elements to calculate the ratio  between the coefficients of the 

regression and the score function of the linear discriminant analysis.  

3.2.3 Calculating the ratio  - Calculation the coefficients of the score function 

Several steps are needed to achieve this. We must first calculate the Wilks’ lambda () from 

the R-squared (R²) of the regression: 

 = 1 – R² = 1 – 0.747486 = 0.252514 

Then, we calculate the Mahalanobis distance: 

𝐷² =
1 − Λ

Λ
×
𝑛(𝑛 − 2)

𝑛1 × 𝑛2
=
1 − 0.252514

0.252514
×
699(699 − 2)

458 × 241
= 13.06607 

We calculate c1 and c2 to be consistent with the presentation of the previous section: 

908.157
241458

241458

697269922

21

21
2

211














nn

nn
c

nnnc

 

We finally get  

   
48002.17

)655.0(345.0908.157

06607.13908.157697

212

2

21 










yyc

Dcc
  

Thus, from the coefficients of the regression j, we can compute the coefficients of the score 

function j = j x  : 

Global results

Endogenous attribute y

Examples 699

R² 0.747486

Adjusted-R² 0.746396

Sigma error 0.239526

F-Test (3,695) 685.7753 (0.000000)

Coefficients

Attribute Coef. std t(695) p-value

clump -0.048006 0.004315 -11.124401 0

ucellsize -0.053245 0.007144 -7.453079 0

ucellshape -0.051713 0.007415 -6.973756 0

Intercept 0.544840 0.016888 32.262169 0
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3.2.4 Correction of the constant term () 

To adjust the constant term, we must calculate the centroids (overall and conditional). 

 

Then, we calculate  : 

    67021.2418.42195.7956.283915.0
2

1

241

458
ln    

Thus, the adjusted constant term is: 

19403.1267021.252382.9
~

00    

Now, we have all the coefficients of the LDA score function: 

 

3.2.5 Comparison with the LDA score function of Tanagra 

When we perform directly the LDA with Tanagra, we obtain coefficients (Figure 12) which are 

consistent with those obtained from the post processing of the linear regression coefficients. 

The small differences are due to truncation errors in the intermediate calculations. 

Beta_j Theta_j

clump -0.048006 -0.83915

ucellsize -0.053245 -0.93072

ucellshape -0.051713 -0.90394

Intercept 0.544840 9.52382

Barycentres

Classes _clump _ucellsize _ucellshape

mu_1 2.956 1.325 1.443

mu_2 7.195 6.573 6.560

mu 4.418 3.134 3.207

Score function
LDA by REG

clump -0.83915

ucellsize -0.93072

ucellshape -0.90394

Intercept 12.19403
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Figure 12 – LDA results - "Breast" dataset 

3.3 An example of processing under R 

In order for the reader to be able to easily reproduce the process and, why not, to transpose 

it to other files, I propose to resume the whole procedure as a R program in this section. 

Here is the commented source code. 

#data importation 

library(xlsx) 

breast <- read.xlsx(file="lda_regression_dataset.xls", header=T, sheetIndex=2) 

print(summary(breast)) 

 

#sample sizes 

n1 <- table(breast$target)[1] #begnin 

n2 <- table(breast$target)[2] #malignant 

n <- n1+n2 

 

#coding the target attribute  - Tomassone, page 38 

y1 <- n2/n 

y2 <- -n1/n 

y <- ifelse(breast$target=="begnin",y1,y2) 

 

#regression on the coded target attribute 

reg <- lm(y ~ ., data = breast[-4]) 

print(reg) 

MANOVA

Stat Value p-value

Wilks' Lambda 0.2525 -

Bartlett -- C(3) 957.2095 0

Rao -- F(3, 695) 685.7753 0

LDA Summary

Score
Attribute begnin malignant Function Wilks L. Partial L. F(1,695) p-value

clump 0.70839 1.54754 -0.83915 0.297477 0.848853 123.75231 0

ucellsize 0.13147 1.06218 -0.93072 0.272696 0.92599 55.54839 0

ucellshape 0.25922 1.16318 -0.90395 0.270184 0.9346 48.63328 0

constant -1.74408 -13.93812 12.19404

Classification Statistical Evaluation

-
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beta <- reg$coefficients 

print(round(beta,5)) 

 

#summary 

sreg <- summary(reg) 

 

#R2 (R-squared) of the regression 

R2 <- sreg$r.squared 

 

#D2 (Mahalanobis distance) - Huberty, page 353; Tomassone, page 38 

D2 <- (R2/(1-R2))*(n*(n-2))/(n1*n2) 

names(D2)[1] <- "D2" 

print(D2) 

 

#intermediate results for the calculations (Tomassone, page 27) 

c1 <- n1+n2-2 

c2 <- (n1*n2)/(n1+n2) 

 

#rho – correction factor 

rho <- (c1+c2*D2)/(c2*(y1-y2)) 

print(rho) 

 

# score function before the adjustment of the constant term 

theta <- beta*rho 

print(round(theta,5)) 

 

#*** correction of the constant term *** 

 

#1st adjustment 

e1 <- log(n1/n2) 

 

#average 

mu <- sapply(breast[1:3],mean) 

 

#conditional average 

mu.cond <- aggregate(breast[1:3],by=list(breast$target),mean)[2:4] 

 

#adjustment on the averages 

mu.centre <- ((mu.cond[1,]+mu.cond[2,])-2*mu) 

 

#coef. Of the LDA (without the constant term) 
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coef.lda.p <- theta[2:4] 

 

#scalar product – 2nd correction 

e2 <- -0.5*sum(coef.lda.p*mu.centre) 

 

#delta 

delta <- e1 + e2 

print(delta) 

 

#correction of the constant term 

theta_tilde <- theta 

theta_tilde[1] <- theta[1] + delta 

 

#LDA score function after all the adjustments 

print(round(theta_tilde,5)) 

 

#*** comparaison des performances *** 

 

#confusion matrix and error rate 

confusion.matrix <- function(dataset,coef){ 

  #prediction for one row 

  prediction <- function(data.row){ 

    score <- sum(data.row[1:3]*coef[2:4])+coef[1] 

    return(ifelse(score>=0,"begnin","malignant")) 

  } 

  #prediction for all rows 

  pred <- factor(apply(data.matrix(dataset),1,prediction)) 

  #confusion matrix 

  cm <- table(dataset$target,pred) 

  print(cm) 

  #error rate 

  er <- 1-sum(diag(cm))/sum(cm) 

  print(er) 

} 

 

#confusion matrix - regression 

confusion.matrix(breast,beta) 

 

#confusion matrix - lda 

confusion.matrix(breast,theta_tilde) 
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Here are the main outputs of the program. 

Coefficients of the regression . 

 

Mahalanobis distance (D²) obtained from the R-squared (R²) of the regression. 

 

Calculation of the ratio . 

 

1st version of the score function 

 

Correction  for the constant term 

 

Score function after adjustment of the constant (see Figure 12). 

 

Comparison of the accuracy 
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Strangely, the regression (Error rate = 4.58%) would be more efficient than the discriminant 

analysis (Error rate = 6.15%) on our dataset. But, before leaping to any conclusions, we must 

note that this is only an example on a single dataset. Moreover, the performance is evaluated 

in resubstitution i.e. we use the same sample for learning and testing phases. It just confirms 

that the regression (before correction of the constant) and discriminant analysis produce 

different models when the classes are unbalanced. That explains the disparities between the 

confusion matrices. 

4 Conclusion 

Working on this tutorial was particularly exciting. I knew for a long time that it was possible 

to get the results of the binary discriminant analysis from multiple linear regression since 

everyone was talking about it. But it is quite different to detail the process when we must 

explain it in a tutorial. It was necessary to identify the correct transition formula at each step, 

and rebuild the expression to rectify the constant when the classes are not balanced. 

Surprisingly, this process is not really well described in the various books I have consulted. 

The synonymy between these two approaches exceeds the scientific curiosity. It legitimizes 

the use of a multiple regression program/algorithm to perform a binary linear discriminant 

analysis. The results are fully equivalent, but the processing will be faster because the 

calculations and data structures are simpler for regression, increasing our ability to process 

large databases. This advantage is even more important in a variable selection process which 

requires more computing resources. 
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