
Didacticiel - Études de cas R.R.

6 juillet 2012 Page 1

1 Topic

Description of the CVM (Core Vector Machine) and BVM (Ball Vector Machine) methods from the

LIBCVM library (http://c2inet.sce.ntu.edu.sg/ivor/cvm.html).

The Support Vector Machines algorithms are well-known in the supervised learning domain. They are

especially appropriate when we handle a dataset with a large number “p” of descriptors1. But they

are much less efficient when the number of instances “n” is very high. Indeed, a naive

implementation is of complexity O(n3) for the calculation time and O(n2) for the storing of the values.

In consequence, instead of the optimal solution, the learning algorithms often highlight the near-

optimal solutions with a tractable computation time2.

I recently discovered the CVM and BVM approaches. The idea of the authors is really clever: since

only approximate best solutions can be highlighted, their approaches try to resolve an equivalent

problem which is easier to handle - the minimum enclosing ball problem in computational geometry -

to detect the support vectors. So, we have a classifier which is as efficient as those obtained by the

other SVM learning algorithms, but with an enhanced ability to process datasets with a large number

of instances.

I found the papers really interesting. They are all the more interesting that all the tools enabling to

reproduce the experiments are provided: the program and the datasets. So, all the results shown in

the paper can be verified. It contrasts to too numerous papers where some authors flaunt

tremendous results but we can never reproduce them.

The CVM and BVM methods are incorporated into the LIBCVM library. This is an extension of the

LIBSVM (version 2.85), which is already included into Tanagra. The source code for LIBCVM being

available, I compiled it as a DLL (Dynamic-link Library) and I included it also into Tanagra 1.4.44.

In this tutorial, we describe the behavior of the CVM and BVM supervised learning methods on the

"Web" dataset available on the website of the authors. We compare the results and the computation

time to those of the C-SVC algorithm based on the LIBSVM library.

2 “Web” dataset in the sparse format

The “web » database is initially subdivided in 2 files: “w8a.data” corresponds to the learning sample

(49,749 instances); “w8a.test” is the test sample (14,951 instances). They are both in the sparse

format, handled – among others – by the SVMLIGHT and the LIBSVM libraries.

Each row represents an instance of the dataset. The first value is the class membership. Then, we

have a list of couples of values divided by the character ":". The first one is the variable number; the

second one is the value associated to this variable. Thus, the value for the not referenced variables in

a row is implicitly 0. This kind of representation enables to dramatically reduce the size of the data

file without loss of information. Below, we observe the firsts instances of "w8a.data" data file.

1 E.g. http://data-mining-tutorials.blogspot.fr/2009/07/implementing-svm-on-large-dataset.html (n=135, p=31,809).

2 Paragraph based on the papers available on the LIBCVM website - http://c2inet.sce.ntu.edu.sg/ivor/cvm.html

http://c2inet.sce.ntu.edu.sg/ivor/cvm.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://c2inet.sce.ntu.edu.sg/ivor/data/web.zip
http://data-mining-tutorials.blogspot.fr/2009/07/implementing-svm-on-large-dataset.html
http://c2inet.sce.ntu.edu.sg/ivor/cvm.html

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 2

The first observation belongs to the class "-1". Then, we have V1 = 0 since this variable is not

referenced; V2 = 0; ...; V41 = 1 because we observe "41:1"; V42 = 0; ...; V54 = 1; etc.

A data file with a large number of null values is common when it is obtained from the pretreatment

of an unstructured document (e.g. text, image). This is a kind of compression. Except that the

resulting file is readable with a simple text editor.

For convenience, we have concatenated the two data files and we used a small program to transform

the file in the dense format (standard tab separated attribute value description, “w8a.txt”). Thus, we

have a data file with 64,700 rows and 301 columns (including the class attribute). We show here the

firsts rows of the new data file.

3 Core Vector Machine (CVM)

We do not describe the CVM approach in this section. This has been done in the Tsang and al. paper

available online: Ivor W. Tsang, James T. Kwok, Pak-Ming Cheung. Core vector machines: Fast SVM

training on very large data sets. Journal of Machine Learning Research, 6:363-392, 2005. According

to the authors, the main consequence is that we can handle large datasets with similar results to the

standard implementation of the SVM algorithms. To check this, we will compare the results with

those of C-SVC from the LIBSVM library (section 5).

http://c2inet.sce.ntu.edu.sg/ivor/publication/tsang05a.pdf
http://c2inet.sce.ntu.edu.sg/ivor/publication/tsang05a.pdf

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 3

3.1 Importing the data file

Into Tanagra, we click on the FILE / NEW menu to create a new diagram. We select the "w8a.txt"

data file and we start the data importation.

301 variables and 64,700 instances are imported. The class attribute is discrete; all the others are

viewed as continuous even if they are binary. This last remark is not insignificant. This will determine

the data transformation mode for the learning process.

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 4

3.2 Partition into learning and test samples

The learning sample corresponds to the first 49,749 instances. We partition the dataset using the

SELECT FIRST EXAMPLES component (INSTANCE SELECTION tab).

We add the component into the diagram. We activate the PARAMETERS contextual menu. We set “m

= 49749”. We validate the choice and we click on the VIEW menu.

Tanagra confirms the selection of the first observations.

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 5

3.3 Set the parameters of learning process

We insert the DEFINE STATUS component to indicate the role of the variables: CLASSE is the target

attribute; the others are the input ones “V1…V300”.

Then, we add the CVM (SPV LEARNING tab). We set the parameters by clicking on the SUPERVISED

PARAMETERS menu.

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 6

Into the METHOD tab, we specify the settings of the learning process3:

 Kernel Type: RBF (Radial Basis Function, option : –t 2)

 Gamma: 1 (-g 1)

 Cost: 1 (–c 1)

 Max number of core vectors: 50000 (-f 50000)

Into the TRANSFORMATION tab, we set the eventual data transformation used. This option is

specific to Tanagra. By default, Tanagra uses the following NORMALIZATION for each input attribute:

So, Z varies between [-1; +1]. This transformation is important when the variables are expressed in

different units. The variances are not the same. The variables which have higher amplitude may

influence excessively the calculations. For our dataset, we have only binary input attributes 0/1. This

normalization is not really required. This is the reason for which we select the NONE option.

3 See http://c2inet.sce.ntu.edu.sg/ivor/cvm.html to understand these settings (Section How to Use).

http://c2inet.sce.ntu.edu.sg/ivor/cvm.html

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 7

In the OPTIMIZATION tab, we set the options which influence the quality of the optimization (and

which influence also the calculation times!):

 Epsilon: 0.0001 (-e 0.0001)

 Use shrinking for optimization (-h 1).

We validate and we click on the VIEW menu to run the learning phase.

3.4 Training phase and model evaluation

The resubstitution error rate is 0.55% (244 + 31 = 275 misclassified instances on 49,749). There are

3,843 support vectors.

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 8

The calculation time of the learning phase is 148 seconds. But it can

be divided in two parts, the detail for each step is provided into the

log file (debugfile.txt): 65 seconds are dedicated to the creation of

the model, this is really fast for a SVM like algorithm considering the

size of our dataset; 83 seconds correspond to the classification of the

instances into the learning sample AND the test sample. This second

step is needed for the calculation of the error rate on the learning

sample, but it is also need for the calculation of the test error rate. Its

execution time is not negligible. It will be all the more important that

the number of support vectors is high.

To obtain the test error rate, we add again the DEFINE STATUS component. We set CLASSE as

TARGET, and the prediction column PRED_SPVINSTANCE_1 as INPUT.

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 9

Then, we insert the TEST component (SPV LEARNING ASSESSMENT tab) into the diagram. By default,

it computes the confusion matrix on the unselected instances into the branch i.e. the test sample.

The test error rate is 0.57%, with 85 (74 +11) misclassified among 14,951 instances.

4 Ball Vector Machine

BVM is a variant of CVM. The reference article is: I. W. Tsang, A. Kocsor, J. T. Kwok. Simpler core

vector machines with enclosing balls. Proceedings of the Twenty-Fourth International Conference on

Machine Learning (ICML), Corvallis, Oregon, USA, June 2007.

http://c2inet.sce.ntu.edu.sg/ivor/Publication/tsang07.pdf
http://c2inet.sce.ntu.edu.sg/ivor/Publication/tsang07.pdf

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 10

Roughly speaking, the minimization requirement during the search of the enclosing ball is relaxed.

The calculation time should be reduced during the learning process. But the classification

performance (accuracy) should not be affected.

We add the BVM component (SPV LEARNING tab) into the diagram. We set exactly the same settings

as the CVM component above. We leave the default values for the additional parameters.

The calculation time is 84 seconds (27 for the model construction, 57 for the classification of all the

instances). We obtain 2,710 support vectors. The resubstitution error rate is 0.56%.

The test error rate is 0.59% (88 misclassified among 14,951 instances).

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 11

5 Comparison with C-SVC [LIBSVM]

5.1 The C-SVC approach from the LIBSVM library

CVM and BVM are expected to provide results comparable to those of standard SVM

implementation, while being able to handle large databases. To verify this, we apply the C-SVC from

the state-of-the-art LIBSVM library on the same dataset.

We add the C-SVC component (SPV LEARNING tab) into the diagram. We set the same settings as for

CVM and BVM.

We launch the calculations.

We obtain 33,057 support vectors in 2,125 seconds (35 minutes!). More specifically, the time for

the model construction is 1,560 seconds; it is 564 seconds for the classification of the instances. The

resubstitution error rate is 0.61%.

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 12

The test error rate is 0.61%. This is similar to those of CVM and BVM.

5.2 Comparison

To compare the methods, we summarize the key results in the following table:

Method

Model characteristics Calculation time (sec.)

support vector Test error rate Model

construction

Classification

(64,700 cases)

CVM [LIBCVM] 3843 0.57 % 60 80

BVM [LIBCVM] 2710 0.59 % 27 57

C-SVC [LIBSVM] 33057 0.61 % 1560 5644

With the same settings, and the same accuracy than C-SVC, the calculation time is divided by 27 for

CVM; and by 57 for BVM. It seems also that these approaches can handle very large datasets (e.g. the

KDD-99 database with n = 4,898,431 instances in the authors' experiments).

Note: To be honest, the differences are not always as spectacular. By changing the settings (e.g.

gamma = 0, which is equivalent to set gamma = 1 / number of descriptors), we can obtain slightly less

accurate classifiers, but the calculations times become very similar.

4 The calculation time is strongly penalized by the large number of support vectors. Speaking generally, fastness in

classification phase depends on the number of supports vectors.

Didacticiel - Études de cas R.R.

6 juillet 2012 Page 13

6 Conclusion

The CVM and BVM algorithms from the LIBCVM library seem particularly efficient. They are a very

credible alternative to conventional implementations of the SVM algorithms in the treatment of large

databases (with many instances). These methods are incorporated in Tanagra 1.4.44 (and later).

